CN110487313B - 光频域反射技术中光源扫频非线性自校正方法 - Google Patents

光频域反射技术中光源扫频非线性自校正方法 Download PDF

Info

Publication number
CN110487313B
CN110487313B CN201910710774.6A CN201910710774A CN110487313B CN 110487313 B CN110487313 B CN 110487313B CN 201910710774 A CN201910710774 A CN 201910710774A CN 110487313 B CN110487313 B CN 110487313B
Authority
CN
China
Prior art keywords
signal
light source
frequency
measuring
frequency domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910710774.6A
Other languages
English (en)
Other versions
CN110487313A (zh
Inventor
崔继文
赵士元
谭久彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201910710774.6A priority Critical patent/CN110487313B/zh
Publication of CN110487313A publication Critical patent/CN110487313A/zh
Application granted granted Critical
Publication of CN110487313B publication Critical patent/CN110487313B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35329Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with two arms in transmission, e.g. Mach-Zender interferometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity

Abstract

本发明提供了光频域反射技术中光源扫频非线性自校正方法。利用测量光路测量臂上一个强反射点反射光与测量光路本振光形成的相干干涉作为获取光源调谐信息的手段,通过在频域上对该干涉信号频率分量提取与相位提取,恢复出调谐光源的实时频率或相位随时间演化信息,进而将其补偿到测量结果上,实现对测量信号的非线性校正。本发明无需借助独立的辅助干涉仪实体,利用测量光路测量臂上一个自校正标志参考点即可实现对光源调谐信息的获取进而校正测量信号的非线性。和传统借助单独的辅助干涉仪实体同步采集并后处理的非线性校正技术相比,其优势包括降低成本,降低数据传输与处理量,利于系统小型化与集成化等。

Description

光频域反射技术中光源扫频非线性自校正方法
技术领域
本发明属于光纤传感技术领域,具体涉及一种光频域反射技术中光源扫频非线性自校正方法。
背景技术
光频域反射技术(optical frequency domain reflectometry)广泛用于光纤通讯网络及其器件测试以及应力、温度、扰动传感等领域中。光频域反射系统中以扫频激光器作为系统光源,对光源的需求是光频扫描范围大,并且调谐过程中保持线性特性。光频域反射技术中的信号处理需要将时域信号转换到频域,通常使用快速傅里叶算法实现,而算法要求采取等光频间隔采样。但是一般具备宽调谐范围的外腔式激光器或者半导体激光器在调谐中很难满足输出的光学频率随时间线性变化,这就导致如果对系统等时间采样,获取的并不是等光频间隔,光源的调谐非线性造成系统的空间分辨力恶化,同时影响基于该系统与原理的分布式传感的性能。丁振扬等人综述了现有的在光频域反射系统中用于校正光源调谐非线性的方法与技术(Ding Z,et al.Distributed optical fiber sensors basedon optical frequency domain reflectometry:A review[J].Sensors,2018,18(4):1072)。通过设置与测量光路同步工作的另一个辅助干涉仪,系统可以实时获取光源调谐信息,并将此信息作为补偿或校正信号实现测量信号的非线性校正。基于辅助干涉仪获取调谐信息的非线性校正方式是非实时的,后处理的。发明人认识到此种非线性校正技术存在的问题包括(1)系统由于引入辅助干涉仪,带来硬件成本高的问题;(2)辅助干涉仪的延迟光纤使得系统受到环境扰动的概率加大;(3)后续数据处理复杂,插值等操作直接导致数据量增大,对运算资源消耗大。以上三点使得基于该非线性校正技术的整套测量系统不利于小型化与集成。
发明内容
针对上述不足,本发明提供了光频域反射技术中光源扫频非线性自校正方法。利用测量光路测量臂上一个强反射点反射光与测量光路本振光形成的相干干涉作为获取光源调谐信息的手段,通过在频域上对该干涉信号频率分量提取与相位提取,恢复出调谐光源的实时频率或相位随时间演化信息,进而将其补偿到测量结果上,实现对测量信号的非线性校正。
本发明提出了光频域反射技术中光源扫频非线性自校正方法,其特征在于该方法包含以下步骤:
第1步、将原始采集的测量光路的未校正调谐非线性的时域信号A1快速傅里叶变换到频域,得到信号A2;
第2步、对信号A2带通滤波,选定的校正用参考反射点(一般为某一强反射点)所对应的频率分量为中心的一个频率范围作为带通部分,通带之外频率分量置零。得到滤波后的信号A3;
第3步、将信号A3快速傅里叶反变换到时域得到信号A4;
第4步、对信号A4取实部得到实信号A5;
第5步、对信号A5进行相位提取得到光源随时间变化的相位A6;
第6步、对相位信号A6进行等相位细分,记录等相位点所对应的离散位置序列B1;
第7步、对原始采集的测量光路的时域信号A1按B1序列进行重采样得到非线性校正后的信号A2。
本发明的有益效果:本发明无需借助独立的辅助干涉仪实体,利用测量光路测量臂上一个自校正标志参考点即可实现对光源调谐信息的获取进而校正测量信号的非线性。和传统借助单独的辅助干涉仪实体同步采集并后处理的非线性校正技术相比,其优势包括降低成本,降低数据传输与处理量,利于系统小型化与集成化等。
附图说明
图1是基于自校正的光频域反射非线性校正流程图;
图2是基于自校正非线性校正的光频域反射最小系统示意图;
图3是未进行非线性校正的距离域反射图;
图4是通过自校正方法校正非线性的距离域反射图;
图2中:1为扫频光源,2为50/50光耦合器,3为环形器,4为50/50光耦合器,5为平衡探测器,6为数字采集卡,7为计算机,8为APC连接头,9为PC连接头,10为测量光路,11为干涉仪参考臂。
具体实施方式
下面结合图2对本发明所提出的自校正非线性校正方法进行详细的描述:
在图1所示光路中为经典的基于光外差相干探测的光频域反射系统,测量光路由马赫增德干涉仪构成。扫频光源1以一定的扫描速率输出光频随时间变化的连续光,经过50/50光耦合器2,其中一束光信号经过参考臂11进入50/50光耦合器4,另一束光信号进入环形器3的a通道口,从环行器3的c端口进入测量或传感光纤,光纤的背向散射光或反射光从环行器3的c端口进入,从环行器3的b端口输出,进入50/50光耦合器4,50/50光耦合器4输入的两束光信号进行合束,形成拍频干涉并从50/50光耦合器4输出进入平衡探测器5,平衡探测器5将输出的模拟电信号传输至数字采集卡6,数字采集卡6采用固定采样率的内时钟作为时钟信号将采集到的模拟电信号传输至计算机7,计算机7对数字采集卡6采集的干涉信号进行数据处理。环形器3的c端口后边所接为待测量光路10,APC连接头8,PC连接头9均为光路中接入的连接头。
图2所示的光频域反射系统中,扫频光源1在启动扫频后,数字采集卡6采用固定采样率开始对测量光路的信号进行采集,采集的信号为测量光路未校正非线性的原始的时域信号A1。将该时域信号快速傅里叶变换到频域上得到信号A2,根据光频域反射系统原理,该频域信号表示沿光纤各个位置的反射强度。如图3所示为信号A2的幅值(对数表示)。可以看出在1.2米位置的APC连接头和4米位置的光纤PC连接头均发生了显著的展宽,4米位置的光纤PC连接头的-3dB宽度达到了约1.5米,说明了由于光源调谐非线性导致频域信号发生了展宽,空间分辨力恶化。
采用本发明的自校正方式对光源调谐非线性进行校正。选取4米位置的光纤PC连接头作为自校正参考反射点。对信号A2作带通滤波,PC连接头位置所对应的频率分量为中心的一个频率范围作为带通部分(图3中虚线方框内),通带之外频率分量置零。得到滤波后的信号A3。将信号A3快速傅里叶反变换到时域得到信号A4。此时A4为和原始时域信号A1等长的复数信号。对信号A4取实部以获得实信号A5。A5信号为测量光路上位于4米位置的光纤PC连接头反射光与经过测量光路参考臂的本振光的干涉图案(信号),其形式一般为频率变化的正弦信号。至此,我们获得了和传统具有附加干涉仪实体并和主测量路同步采集校正非线性技术相同的单一位置形成的携带光源相位变化的干涉信息。
接下来我们采用重采样法对该干涉信号A5进行处理。
信号A5应具有如下形式
Ipc(t)=cos[2πγ(t)τt+ξ0].
其中,γ(t)为光源扫频速度,τ为PC连接头和参考臂本振光形成的干涉仪的时延。ξ0是初始相位。Ipc(t)的希尔伯特变换为
HT{Ipc(t)}=sin(2πτv(t)+ξ0).
干涉信号A5的相位可以表示为
φ(t)=2πτv(t)+ξ0=tan-1[HT{Ipc(t)}/Ipc(t)].
该相位经过解卷后得到信号A6。
另一方面,激光光频和相位具备如下关系:
Figure BDA0002153658900000041
其中,n为光纤中折射率。C为真空中光速,ΔL为PC连接头和本振光形成的干涉仪的时延代表的长度差。可以看出,等相位点代表着等光频点,为了确定等光频点位置,需要对信号A6进行等相位细分,非限制性地,间隔可以为π,π/2或π/4。记录等间隔相位点所对应的时域上的采样点时序位置B1。对原始采集的测量光路的时域信号A1按B1序列进行重采样(数据提取)得到新的信号A2。该信号A2为校正了非线性或补偿了非线性的在时域上的测量信号。
对信号A2快速傅里叶变换到频域上得到信号其反射分布。描绘出其反射谱如图4所示。可以看出,相较于未校正前的图3,光纤上各个连接头清晰锐利,即便用于校正的参考点PC连接头也得到了很好的校正,其-3dB宽度为40微米,为系统分辨力极限。说明自校正方式很好地实现了系统的非线性校正。
用于提取光源相位信息的自校正参考点(如光纤PC连接头),其位置可以位于待测量光纤前也可以位于待测量光纤后。这一位置的区别不影响本发明所采用方法的实现过程。
本发明所叙述的示例为基本的光频域反射光路与结构,没有给出其他更多的示例,如增加了偏振差异探测结构或其他功能模块的光路结构或者待测光纤,或者测量干涉仪采用了其他结构(如迈克尔逊型干涉结构)等情景。应该注意这样只是出于对表述通用性以及使读者易于理解的考虑。本发明所采用的非线性校正方法同样适用于其他改进的光频域反射系统的调谐非线性校正,只要该系统遵循光频域反射技术的基本原理即可。
本发明所述方式实质是利用测量光路中一个反射点(一般需要强反射)的反射光与测量干涉仪参考臂的本振光形成的干涉信号在距离域上的频率分量提取,恢复出光源的实时频率(相位)演化信息,进而将其补偿到测量结果上。其优点在于省去了单独的辅助干涉仪实体,而构造的相干干涉的其中一路正好利用了待测量光路自身的光学路径。在自校正方法中,当获取了强反射点与本振光形成的干涉信号的时域信号后,后续可借助其他的现有的方法与技术(利用实体的辅助干涉仪获得干涉信号并利用该信息校正调谐非线性)用于校正调谐非线性。例如,非均匀傅里叶变换,去斜滤波器,过零点检测等。本示例所采用的重采样方法仅仅为众多中在已知干涉信号的时域信号后校正测量信号的方法中的一种。
本发明所采用的非线性校正方法适用于调频连续波(FMCW),光学相干层析成像(OCT)等其他采用扫频光源作为系统光源的调谐非线性的校正。
用于提取光源相位信息的校正参考点可以是PC连接头,APC连接头,光纤光栅等反射强于瑞利反射的反射实体。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。

Claims (1)

1.光频域反射技术中光源扫频非线性自校正方法,其特征在于该方法包含以下步骤:
第一步、将原始采集的光频域反射系统中的马赫曾德干涉仪输出的未校正调谐非线性的时域信号A1快速傅里叶变换到频域,得到信号A2;
第二步、对信号A2带通滤波,选定的校正用参考反射点,所对应的频率分量为中心的一个频率范围作为带通部分,通带之外频率分量置零,得到滤波后的信号A3;
第三步、将信号A3快速傅里叶反变换到时域得到信号A4;
第四步、对信号A4取实部得到实信号A5;
第五步、对信号A5进行相位提取得到光源随时间变化的相位A6;
第六步、对相位信号A6进行等相位细分,记录等相位点所对应的离散位置序列B1;
第七步、对原始采集的测量光路的时域信号A1按B1序列进行重采样得到非线性校正后的信号A2。
CN201910710774.6A 2019-08-02 2019-08-02 光频域反射技术中光源扫频非线性自校正方法 Active CN110487313B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910710774.6A CN110487313B (zh) 2019-08-02 2019-08-02 光频域反射技术中光源扫频非线性自校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910710774.6A CN110487313B (zh) 2019-08-02 2019-08-02 光频域反射技术中光源扫频非线性自校正方法

Publications (2)

Publication Number Publication Date
CN110487313A CN110487313A (zh) 2019-11-22
CN110487313B true CN110487313B (zh) 2021-04-16

Family

ID=68549349

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910710774.6A Active CN110487313B (zh) 2019-08-02 2019-08-02 光频域反射技术中光源扫频非线性自校正方法

Country Status (1)

Country Link
CN (1) CN110487313B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111397644B (zh) * 2020-03-26 2022-02-08 南京大学 一种用于光频域反射计的激光器非线性调谐效应的补偿方法
CN111461961B (zh) * 2020-03-27 2022-10-21 佛山市灵觉科技有限公司 一种oct血管图像错位矫正方法
CN111735527B (zh) * 2020-06-01 2022-03-29 哈尔滨工业大学 基于时域相位计算的光纤分布式振动传感方法
CN111780856B (zh) * 2020-06-01 2022-03-29 哈尔滨工业大学 基于瑞利散射谱的相位谱分析的光纤分布式振动测量方法
CN112291006A (zh) * 2020-07-21 2021-01-29 哈尔滨工业大学 基于光纤瑞利散射相干滤波器的光信号处理装置及方法
CN112051583B (zh) * 2020-08-25 2022-06-14 哈尔滨工业大学 Fmcw距离测量系统中拍频信号非线性校正方法
CN112114326B (zh) * 2020-09-21 2022-10-04 哈尔滨工业大学 Fmcw距离测量的扫频信号拼接方法及装置
CN113804404B (zh) * 2021-08-16 2023-05-05 广东工业大学 一种用于光频域偏振串音测量的光源扫频非线性校正方法
CN114598394B (zh) * 2022-03-09 2024-01-30 青岛弘大智能电子科技有限公司 一种ofdr系统调频信号强度误差的实时补偿方法
JP2023172404A (ja) * 2022-05-23 2023-12-06 株式会社豊田中央研究所 周波数掃引特性測定装置、LiDAR装置および周波数掃引特性測定方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539316A (en) * 1995-08-25 1996-07-23 Bruker Instruments, Inc. Shimming method for NMR magnet having large magnetic field inhomogeneities
JP2004317467A (ja) * 2003-04-21 2004-11-11 National Institute Of Advanced Industrial & Technology レーザ振動計及びレーザ変位計の動的線形性計測方法及び計測装置
WO2010021421A1 (en) * 2008-08-20 2010-02-25 Korea Research Institute Of Standards And Science Method and apparatus for determining phase sensitivity of an accelerometer based on an analysis of the harmonic components of the interference signal
CN102238127A (zh) * 2011-07-08 2011-11-09 武汉邮电科学研究院 一种基于相干光正交频分复用系统降低峰均比的方法
CN102997937A (zh) * 2012-12-12 2013-03-27 天津大学 一种可抑制光源相位噪声的光频域反射装置和解调方法
WO2014105911A1 (en) * 2012-12-24 2014-07-03 Luna Innovations Incorporated Dispersion correction in optical frequency-domain reflectometry
CN103944644A (zh) * 2014-04-09 2014-07-23 上海交通大学 基于匹配延迟采样光相干系统及测量与补偿相位噪声方法
CN104038281A (zh) * 2014-06-20 2014-09-10 天津大学 非线性相位估计的长距离高分辨率光频域反射解调方法
CN105490738A (zh) * 2016-01-05 2016-04-13 上海交通大学 基于频率合成的光频域反射方法及系统
CN109682403A (zh) * 2019-01-29 2019-04-26 南京大学 一种光频域反射计中校正可调谐激光器非线性扫频的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7474407B2 (en) * 2003-02-20 2009-01-06 Applied Science Innovations Optical coherence tomography with 3d coherence scanning
CA2738627A1 (en) * 2008-09-27 2010-04-01 Sensortran, Inc. Auto-correcting or self-calibrating dts temperature sensing sytems and methods

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5539316A (en) * 1995-08-25 1996-07-23 Bruker Instruments, Inc. Shimming method for NMR magnet having large magnetic field inhomogeneities
JP2004317467A (ja) * 2003-04-21 2004-11-11 National Institute Of Advanced Industrial & Technology レーザ振動計及びレーザ変位計の動的線形性計測方法及び計測装置
WO2010021421A1 (en) * 2008-08-20 2010-02-25 Korea Research Institute Of Standards And Science Method and apparatus for determining phase sensitivity of an accelerometer based on an analysis of the harmonic components of the interference signal
CN102238127A (zh) * 2011-07-08 2011-11-09 武汉邮电科学研究院 一种基于相干光正交频分复用系统降低峰均比的方法
CN102997937A (zh) * 2012-12-12 2013-03-27 天津大学 一种可抑制光源相位噪声的光频域反射装置和解调方法
WO2014105911A1 (en) * 2012-12-24 2014-07-03 Luna Innovations Incorporated Dispersion correction in optical frequency-domain reflectometry
CN103944644A (zh) * 2014-04-09 2014-07-23 上海交通大学 基于匹配延迟采样光相干系统及测量与补偿相位噪声方法
CN104038281A (zh) * 2014-06-20 2014-09-10 天津大学 非线性相位估计的长距离高分辨率光频域反射解调方法
CN105490738A (zh) * 2016-01-05 2016-04-13 上海交通大学 基于频率合成的光频域反射方法及系统
CN109682403A (zh) * 2019-01-29 2019-04-26 南京大学 一种光频域反射计中校正可调谐激光器非线性扫频的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
High resolution optical frequency domain reflectometry for characterization of components and assemblies;Brian J. Soller 等;《OPTICS EXPRESS》;20050124;全文 *
纳米级位移传感器的系统补偿方法;谭久彬 等;《仪器仪表学报》;19950228;第16卷(第1期);全文 *
超高空间分辨率光反射仪关键技术进展;汪帅 等;《光电工程》;20181231;全文 *

Also Published As

Publication number Publication date
CN110487313A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
CN110487313B (zh) 光频域反射技术中光源扫频非线性自校正方法
EP3540401B1 (en) High resolution interferometric optical frequency domain reflectometry (ofdr)
CN110068828B (zh) 基于激光调频连续波远距离测距的装置及色散补偿方法
US6900896B2 (en) Method and system for measuring optical characteristics of a sub-component within a composite optical system
CN108873007B (zh) 一种抑制振动效应的调频连续波激光测距装置
CN103090808B (zh) 一种基于光谱位相的高精度大量程间距测量方法及系统
CN112923960B (zh) 用于校正非线性调谐效应的光纤参数测量装置
CN108562237B (zh) 一种采用hcn气室在光频域反射传感系统中进行光谱校准的装置和方法
CN109682403A (zh) 一种光频域反射计中校正可调谐激光器非线性扫频的方法
CN111397644B (zh) 一种用于光频域反射计的激光器非线性调谐效应的补偿方法
EP2936048A1 (en) Dispersion correction in optical frequency-domain reflectometry
CN102607612B (zh) 基于单色频率绝对相位的低相干干涉解调方法
WO2023020179A1 (zh) 一种用于光频域偏振串音测量的光源扫频非线性校正方法
CN111780856B (zh) 基于瑞利散射谱的相位谱分析的光纤分布式振动测量方法
CN111694008A (zh) 一种扫频相干测距中激光跳模影响的消除方法
CN112683495A (zh) 一种具有时域分析能力的光器件频响测量方法及装置
CN111735527B (zh) 基于时域相位计算的光纤分布式振动传感方法
CN109541621A (zh) 一种频率扫描干涉绝对测距系统的振动补偿方法
CN109031341B (zh) 一种使用连续调频激光雷达装置的物体运动速度测量方法
CN111562088A (zh) 基于采样函数的平行平板光学参数的测量方法
CN112462380A (zh) 一种基于激光调频连续波远距离测距的色散补偿方法
CN108845333B (zh) 一种抑制振动效应的调频连续波激光测距方法
JP6828227B2 (ja) 光周波数領域反射測定装置及び光周波数領域反射測定方法
CN104316204A (zh) 一种高精度的变频干涉的四步相移标定方法
CN211554315U (zh) 一种调频连续波激光测距系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant