CN110484942A - 一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法 - Google Patents

一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法 Download PDF

Info

Publication number
CN110484942A
CN110484942A CN201910723367.9A CN201910723367A CN110484942A CN 110484942 A CN110484942 A CN 110484942A CN 201910723367 A CN201910723367 A CN 201910723367A CN 110484942 A CN110484942 A CN 110484942A
Authority
CN
China
Prior art keywords
crystalline substance
plating
micron crystalline
coating
micron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910723367.9A
Other languages
English (en)
Other versions
CN110484942B (zh
Inventor
鞠辉
苏长伟
张长科
方艳昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Changde Nafir New Material Technology Co Ltd
Hunan Nafeier New Material Science Co Ltd
Original Assignee
Hunan Changde Nafir New Material Technology Co Ltd
Hunan Nafeier New Material Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Changde Nafir New Material Technology Co Ltd, Hunan Nafeier New Material Science Co Ltd filed Critical Hunan Changde Nafir New Material Technology Co Ltd
Priority to CN201910723367.9A priority Critical patent/CN110484942B/zh
Publication of CN110484942A publication Critical patent/CN110484942A/zh
Application granted granted Critical
Publication of CN110484942B publication Critical patent/CN110484942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/56Electroplating: Baths therefor from solutions of alloys
    • C25D3/562Electroplating: Baths therefor from solutions of alloys containing more than 50% by weight of iron or nickel or cobalt

Abstract

本发明公开了一种Ni‑P‑C‑Si‑W多元微米晶镀层、镀液及其制备方法,本发明所得供的镀液具有化学镀/电镀双重作用,可快速稳定的获得微米晶镀层,本发明所提供的镀液是以化学镀镍磷溶液为基础,加入了络合能力强的络合剂,以及具有稳定作用的钨酸钠作为稳定剂,同时加入碳化硅粉,碳化硅粉吸附到阴极表面,为镍磷钨的沉积提高了晶核;碳化硅粉大量且次序地吸附沉积在镍磷镀层上,有效控制了镍磷钨晶核的生长,最终获得了微米晶的Ni‑P‑C‑Si‑W多元微米晶镀层。本发明的制备方法,采用化学镀/电镀双重工艺,操作简单,成本低,电流效率高,深镀能力好;所得镀层具有优良的耐磨性和耐腐蚀性,可以替代六价铬电镀,应用前景广阔。

Description

一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法
技术领域
本发明涉及一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法,属于金属表面处理持术领域。
背景技术
镍磷基多元合金镀层表现出了优异的耐蚀性和耐磨性,受到很多研究者的关注,开发出了许多镍磷为基的多元合金化学镀和电镀技术。化学镀的镀层厚度非常均匀,但是镀速慢,且镀液稳定性差;电镀技术的镀速可以很快,镀液也稳定,但是镀层厚度不够均匀。
镍磷基多元合金镀层随着磷元素的提高,镀层结构逐渐变成非晶态,虽然本身的耐蚀性得到了提高,但是镀层变脆,对基体的保护能力降低了。
发明内容
针对现有技术的不足,本发明的目的在于提供一种Ni-P-C-Si-W多元微米晶镀层、镀液及制备方法。本发明所得供的镀液具有化学镀/电镀双重作用,可快速稳定的获得微米晶镀层。
本发明一种Ni-P-C-Si-W多元微米晶镀层,所述多元微米晶镀层为微米晶结构,粒径为3-15μm,其由Ni、P、W、C、Si五种元素组成。
优选的方案,所述Ni-P-C-Si-W多元微米晶镀层成份组成按质量百分比计如下:Ni75~85%,P 8~12%,W 0.5~5%,Si 1~3%,C 3~8%。
本发明一种Ni-P-C-Si-W多元微米晶镀液,用于镀制所述Ni-P-C-Si-W多元微米晶镀层,为包括以下浓度组分的水溶液:
硫酸镍10-50g/L、次亚磷酸钠10-50g/L、碳化硅粉5-15g/L、钨酸钠5-60g/L、己二酸5-30g/L、甘氨酸10-40g/L、硼酸10-30g/L。
本发明的技术方案,所提供的镀液是一种具有化学镀、电镀双重性质的镀液,其是以化学镀镍磷溶液体系为基础,采用能发生自身化学还原反应,又能通过外加电场发生电化学还原反应的次磷酸钠作为还原剂。加入了络合能力强的甘氨酸和己二酸作为络合剂,以及具有稳定作用的钨酸钠作为稳定剂,使得游离态的镍离子变少,和使得次磷酸钠的活性降低,这样该镀液在90℃都不会发生次磷酸根还原镍离子的反应。但在外加电的作用下,钨酸根离子由于带负电而脱离阴极(负极)向阳极(正极)移动,负极表面没有稳定剂钨酸钠的保护而发生了化学反应,即次磷酸根还原镍离子的反应,同时也发生电化学反应;因此具有化学沉积和电化学沉积双重作用。因此镀层厚度均匀性远大于电镀镀层的均匀性。
同时,在镀镍磷溶液中还再加入碳化硅粉,碳化硅粉吸附到阴极表面,为镍磷钨的沉积提高了晶核;碳化硅粉大量且次序地吸附沉积在镍磷镀层上,有效控制了镍磷钨晶核的生长,最终获得了微米晶的Ni-P-C-Si-W多元微米晶镀层。微晶之间能够吸收镀层受到的外部和内部的力,使得镀层脆性大大降低。
在本发明中,各配方成份与含量相互协同,获得了本发明同时具有化学镀与电镀性能的镀液;因此其可以控制化学反应的速率,使镀液更加稳定,得到的镀层韧性和耐蚀性较好。本发明中任何一种成份都是无可替代的,如还原剂为次亚磷酸钠,是保证可以作为化学镀与电镀的基础,甘氨酸在此镀液体系中不易分解,镀液的稳定性更好,如果采用其他任何一种络合剂替代甘氨酸均会由于更快的分解速度,影响镀液稳定性和镀层性能。而另外关于硬质颗粒,发明人发现,采用碳化硅粉才易于上镀,形成复合镀层,在本体系下换为其他任何一种硬质颗粒,如尝试过的碳化钨、氧化铝、金刚石等,均存在本发明体系中上镀条件要求高,得到镀层的韧性较差的问题。
优选的方案,所述Ni-P-C-Si-W多元微米晶镀液,为包括以下浓度组分的水溶液:硫酸镍15-30g/L、次亚磷酸钠15-35g/L、碳化硅粉10-15g/L、钨酸钠20-40g/L、己二酸15-35g/L、甘氨酸15-40g/L、硼酸15-30g/L。
作为进一步的优选,所述Ni-P-C-Si-W多元微米晶镀液,为包括以下浓度组分的水溶液:硫酸镍20-30g/L、次亚磷酸钠15-30g/L、碳化硅粉10-12g/L、钨酸钠20-30g/L、己二酸20-30g/L、甘氨酸20-40g/L、硼酸15-25g/L。
优选的方案,所述Ni-P-C-Si-W多元微米晶镀液,还包括酒石酸或柠檬酸,其在镀液中的浓度在10g/L以下。
在发明中可以进一步的加入少量酒石酸或柠檬酸作为辅助络合剂,进一步增强络合能力,但是所加入辅助络合剂的浓度不宜过高,否则将降低镀层镀速。
优选的方案,所述碳化硅粉的粒径为0.5~5μm。
发明人发现,碳化硅粉的粒径,对所形成的镀层具有一定的影响,粒径太大,镀层致密性较差,粒径太小则分散性较差,容易团聚,同样会影响镀层的均匀性与致密性。
本发明一种Ni-P-C-Si-W多元微米晶镀层的制备方法,包括如下步骤:
按设计比例配取Ni-P-C-Si-W多元微米晶镀液各原料,加水、加热搅拌溶解,用氢氧化钠调节pH至5-8,优选为6-7.5;加水定容获得Ni-P-C-Si-W多元微米晶镀液,将样品除油、除锈和酸洗活化后浸渍于Ni-P-C-Si-W多元微米晶镀液中,进行电镀和化学镀处理获得Ni-P-C-Si-W多元微米晶镀层,在处理过程中,控制温度为70-90℃,优选为80~90℃;电流密度为1-10A/dm2,优选为1.5~3.5A/dm2
优选的方案,在电镀和化学镀处理过程中,所述Ni-P-C-Si-W多元微米晶镀层的沉积速度为10~30μm/h。
与现有技术相比,本发明的有益效果是:
本发明在现有化学镀镍磷镀液中加入钨酸钠作为稳定剂,加入甘氨酸作为络合剂,碳化硅粉作为晶体成核剂,获得了微米晶的Ni-P-C-Si-W多元微米晶镀层。方法简单,成本低,电流效率高。表现出了远大于电镀镍磷镀层的分散能力,大于化学镀镍磷的沉积速度;除了具备镍磷(钨)镀层的特性外,因为是微晶体,晶粒大小3-15微米,所以其脆性也大大降低了。
同样,与化学镀相比,本发明中的镀液的稳定性更好,能与硬质微粒形成复合镀层,提升镀层的硬度和耐磨损性能,而化学镀液在加入硬质微粒后则容易自分解而报废。与其他电镀相比,本发明中的镀液的电流效率可以大于100%,在很低的电流密度下具有较快的沉积速率,能够降低电耗或提高效率。
附图说明
图1是实施例1中所得Ni-P-C-Si-W多元微米晶镀层的能谱图。
图2是实施例1中所得Ni-P-C-Si-W多元微米晶镀层的电镜图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
称取硫酸镍20g/L,次亚磷酸钠30g/L,钨酸钠20g/L,甘氨酸20g/L,硼酸20g/L和己二酸20g/L,加水至体积的3/5,加热搅拌溶解,利用氢氧化钠调节电镀液pH为7.0,再加入10g/L粒径为5μm的碳化硅,最后加水定容。温度控制在80±5℃之间。把铁片(3cm*6cm)折成一个直角,分别3cm*3cm的正方形小块,背面用绝缘胶带绝缘,在2A/dm2电镀2小时。镀层厚度分布比较均匀,最厚处为40微米,最薄处为25微米。经元素能谱(EDS)分析,见图1,可知镀层组分为Ni为82.12%,P为10.86%,W为1.47%,Si为1.53%和C为4.02%。显微结构见电镜图(图2),可知Ni-P-C-Si-W多元镀层由3-15微米的晶体组成。
实施例2
称取硫酸镍30g/L,次亚磷酸钠15g/L,钨酸钠30g/L,甘氨酸40g/L,硼酸20g/L和己二酸30g/L,加水至体积的3/5,加热搅拌溶解,再加入12g/L的粒径为2μm的碳化硅,利用氢氧化钠调节电镀液pH为6.5;最后加水定容。温度控制在80±5℃之间。用30*30mm铜片做阴极,电流密度1.5A/dm2电镀2小时。镀层厚度均匀,平均26微米。
对比例1
其他条件与实施例1相同,仅络合剂由甘氨酸改为柠檬酸。镀液颜色很快变深,柠檬酸较快分解,镀液稳定性变差,镀层沉积速度降低为每小时5微米。
对比例2
其他条件与实施例2相同,仅加入颗粒由碳化硅改为碳化钨,相同工艺条件下得到的镀层中碳化钨颗粒分布不均匀,镀层脆性较大。
以上显示和描述了本发明的基本原理、主要特点和优点,在不脱离本发明精神和范围的条件下,本发明还有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。

Claims (9)

1.一种Ni-P-C-Si-W多元微米晶镀层,其特征在于:所述多元微米晶镀层为微米晶结构,粒径为3-15μm,其由Ni、P、W、C、Si五种元素组成。
2.根据权利要求1所述的一种Ni-P-C-Si-W多元微米晶镀层,其特征在于:所述Ni-P-C-Si-W多元微米晶镀层成份组成按质量百分比计如下:Ni 75~85%,P 8~12%,W 0.5~5%,Si 1~3%,C 3~8%。
3.一种Ni-P-C-Si-W多元微米晶镀液,其特征在于,用于镀制权利要求1或2所述的Ni-P-C-Si-W多元微米晶镀层,包括以下浓度组分的水溶液:
硫酸镍10-50g/L、次亚磷酸钠10-50g/L、碳化硅粉5-15g/L、钨酸钠5-60g/L、己二酸5-30g/L、甘氨酸10-40g/L、硼酸10-30g/L。
4.根据权利要求3所述的一种Ni-P-C-Si-W多元微米晶镀液,其特征在于,所述Ni-P-C-Si-W多元微米晶镀液,为包括以下浓度组分的水溶液:硫酸镍15-30g/L、次亚磷酸钠15-35g/L、碳化硅粉10-15g/L、钨酸钠20-40g/L、己二酸15-35g/L、甘氨酸15-40g/L、硼酸15-30g/L。
5.根据权利要求4所述的一种Ni-P-C-Si-W多元微米晶镀液,其特征在于,所述Ni-P-C-Si-W多元微米晶镀液,为包括以下浓度组分的水溶液:硫酸镍20-30g/L、次亚磷酸钠15-30g/L、碳化硅粉10-12g/L、钨酸钠20-30g/L、己二酸20-30g/L、甘氨酸20-40g/L、硼酸15-25g/L。
6.根据权利要求3所述的一种Ni-P-C-Si-W多元微米晶镀液,其特征在于,所述Ni-P-C-Si-W多元微米晶镀液,还包括酒石酸或柠檬酸,其在镀液中的浓度不大于10g/L。
7.根据权利要求3所述的一种Ni-P-C-Si-W多元微米晶镀液,其特征在于,所述碳化硅粉的粒径为0.5~5μm。
8.制备如权利要求1或2所述的一种Ni-P-C-Si-W多元微米晶镀层的方法,其特征在于,包括如下步骤:
按设计比例配取Ni-P-C-Si-W多元微米晶镀液各原料,加水、加热搅拌溶解,用氢氧化钠调节pH至5-8,加水定容获得Ni-P-C-Si-W多元微米晶镀液,将样品除油、除锈和酸洗活化后浸渍于Ni-P-C-Si-W多元微米晶镀液中,进行电镀和化学镀处理,获得Ni-P-C-Si-W多元微米晶镀层,在处理过程中,控制温度为70-90℃,电流密度为1-10A/dm2。其中优选的工艺参数为,pH=6~7.5,温度80~90℃,电流密度1.5~3.5A/dm2
9.根据权利要求9所述的一种Ni-P-C-Si-W多元微米晶镀层的制备方法,其特征在于,在电镀和化学镀处理过程中,所述Ni-P-C-Si-W多元微米晶镀层的沉积速度为10~30μm/h。
CN201910723367.9A 2019-08-07 2019-08-07 一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法 Active CN110484942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910723367.9A CN110484942B (zh) 2019-08-07 2019-08-07 一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910723367.9A CN110484942B (zh) 2019-08-07 2019-08-07 一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法

Publications (2)

Publication Number Publication Date
CN110484942A true CN110484942A (zh) 2019-11-22
CN110484942B CN110484942B (zh) 2022-01-04

Family

ID=68549969

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910723367.9A Active CN110484942B (zh) 2019-08-07 2019-08-07 一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法

Country Status (1)

Country Link
CN (1) CN110484942B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500104A (zh) * 2020-04-24 2020-08-07 南京同诚节能环保装备研究院有限公司 一种镍包覆石墨烯碳化硅的制备方法
CN113106521A (zh) * 2021-04-14 2021-07-13 西南石油大学 一种Ni-W-ZrC微晶镀层、镀液及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092480A (zh) * 1992-12-17 1994-09-21 非晶技术国际有限公司 镍-钨非晶镀层及微晶镀层的电镀
JP2002105511A (ja) * 2000-10-03 2002-04-10 Sumitomo Metal Ind Ltd 耐久性に優れた水素吸蔵合金とその製造方法
CN101302614A (zh) * 2008-01-17 2008-11-12 中山大学 一种制备高硬度化学镀Ni-P-SiC镀层的环保镀液
CN102575367A (zh) * 2009-06-29 2012-07-11 奥克兰联合服务有限公司 在基材上制造金属-陶瓷涂层的镀覆或涂覆方法
CN104313656A (zh) * 2014-11-07 2015-01-28 淄博圣丰工贸有限公司 镍-钨-碳化硅-氧化铝复合电镀液及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1092480A (zh) * 1992-12-17 1994-09-21 非晶技术国际有限公司 镍-钨非晶镀层及微晶镀层的电镀
JP2002105511A (ja) * 2000-10-03 2002-04-10 Sumitomo Metal Ind Ltd 耐久性に優れた水素吸蔵合金とその製造方法
CN101302614A (zh) * 2008-01-17 2008-11-12 中山大学 一种制备高硬度化学镀Ni-P-SiC镀层的环保镀液
CN102575367A (zh) * 2009-06-29 2012-07-11 奥克兰联合服务有限公司 在基材上制造金属-陶瓷涂层的镀覆或涂覆方法
CN104313656A (zh) * 2014-11-07 2015-01-28 淄博圣丰工贸有限公司 镍-钨-碳化硅-氧化铝复合电镀液及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111500104A (zh) * 2020-04-24 2020-08-07 南京同诚节能环保装备研究院有限公司 一种镍包覆石墨烯碳化硅的制备方法
CN113106521A (zh) * 2021-04-14 2021-07-13 西南石油大学 一种Ni-W-ZrC微晶镀层、镀液及其制备方法
CN113106521B (zh) * 2021-04-14 2022-05-20 西南石油大学 一种Ni-W-ZrC微晶镀层、镀液及其制备方法

Also Published As

Publication number Publication date
CN110484942B (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
Roventi et al. Normal and anomalous codeposition of Zn–Ni alloys from chloride bath
CN109628983B (zh) 一种金属-石墨烯复合电镀材料的制备方法
l Gawad et al. Development of electroless Ni-P-Al2O3 and Ni-P-TiO2 composite coatings from alkaline hypophosphite gluconate baths and their properties
US6010610A (en) Method for electroplating metal coating(s) particulates at high coating speed with high current density
Karwas et al. Influence of boric acid on electrodeposition and stripping of Ni‐Zn alloys
Lupi et al. Electrodeposition of nickel cobalt alloys: the effect of process parameters on energy consumption
CN104313652B (zh) 一种铝基多相惰性复合阳极材料的制备方法
CN110828828A (zh) 一种3d多孔锌负载集流体、亲钠或钾的电池负极及其制备和应用
Ruidong et al. Effects of rare earth on microstructures and properties of Ni-WP-CeO2-SiO2 nano-composite coatings
Yu et al. A novel strategy to electrodeposit high-quality copper foils using composite additive and pulse superimposed on direct current
CN110484942A (zh) 一种Ni-P-C-Si-W多元微米晶镀层、镀液及其制备方法
CN101985766B (zh) 一种离子液体电镀Zn-Ti合金的方法
CN111074317B (zh) 一种铜箔的表面处理方法及铜箔材料
Zhang et al. Influence of electrodeposition conditions on the microstructure and hardness of Ni-B/SiC nanocomposite coatings
CN113463148A (zh) 一种在钛或钛合金基材表面电镀金的方法
CN104846417A (zh) 一种Ni/CeO2复合析氢电极的制备方法
Haseeb et al. XRD, XPS and SIMS investigations on electrodeposited nickel-phosphorous alloy coatings
Low et al. Normal and anomalous electrodeposition of tin–copper alloys from methanesulphonic acid bath containing perfluorinated cationic surfactant
CN111041525B (zh) 一种低温熔盐电镀Ni-WC复合层增强微波通讯器件表面的方法
Xiangyang et al. Effect of Ag content and β-PbO2 plating on the properties of Al/Pb-Ag alloy
CN110184631B (zh) 一种无氰镀金电镀液及其制备方法和电镀工艺
EP4080620A1 (en) Surface-treated copper foil, method for producing same, and negative electrode for secondary battery including same
TW201213623A (en) Nickel pH adjustment method and apparatus
CN105624746B (zh) 一种Ni-Cr-SiO2纳米复合镀层、电镀液以及电镀方法
CN104419953A (zh) 铁基体表面电镀锌镍合金工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant