CN110483747B - 一种聚乳酸接枝壳聚糖纳米晶须的制备方法 - Google Patents

一种聚乳酸接枝壳聚糖纳米晶须的制备方法 Download PDF

Info

Publication number
CN110483747B
CN110483747B CN201910942172.3A CN201910942172A CN110483747B CN 110483747 B CN110483747 B CN 110483747B CN 201910942172 A CN201910942172 A CN 201910942172A CN 110483747 B CN110483747 B CN 110483747B
Authority
CN
China
Prior art keywords
pla
grafting
chitosan
nanowhiskers
lactide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910942172.3A
Other languages
English (en)
Other versions
CN110483747A (zh
Inventor
徐荷澜
罗贵清
马博谋
侯秀良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WUXI JINTONG HIGH FIBER Co.,Ltd.
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201910942172.3A priority Critical patent/CN110483747B/zh
Publication of CN110483747A publication Critical patent/CN110483747A/zh
Priority to PCT/CN2020/119238 priority patent/WO2021063386A1/zh
Application granted granted Critical
Publication of CN110483747B publication Critical patent/CN110483747B/zh
Priority to US17/481,643 priority patent/US11299584B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/823Preparation processes characterised by the catalyst used for the preparation of polylactones or polylactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/68Polyesters containing atoms other than carbon, hydrogen and oxygen
    • C08G63/685Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen
    • C08G63/6852Polyesters containing atoms other than carbon, hydrogen and oxygen containing nitrogen derived from hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L87/00Compositions of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds
    • C08L87/005Block or graft polymers not provided for in groups C08L1/00 - C08L85/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2487/00Characterised by the use of unspecified macromolecular compounds, obtained otherwise than by polymerisation reactions only involving unsaturated carbon-to-carbon bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明公开了一种聚乳酸接枝壳聚糖纳米晶须的制备方法,属于材料技术领域。本发明是将丙交酯、催化剂和壳聚糖混合均匀后进行聚合接枝制备PLA‑g‑CS,再将PLA‑g‑CS分散于碱液中,通过反复冷冻/解冻的方法得到纳米晶须,聚合接枝过程中无溶剂。该方法使得没有良好溶剂的PLA‑g‑CS可以制备得到纳米晶须,整个反应高效清洁,绿色环保。

Description

一种聚乳酸接枝壳聚糖纳米晶须的制备方法
技术领域
本发明涉及一种聚乳酸接枝壳聚糖纳米晶须的制备方法,属于材料领域。
背景技术
有机纳米材料是指基于脂质、蛋白、多糖及有机高分子聚合物的新型纳米材料。随着纳米技术的不断发展和应用,纳米材料已被广泛地应用于食品、生物医药、农业以及环境等领域。纳米材料由于其纳米级别的尺寸效应而具有的独特物理和化学性质,为食品、农业、工业等领域带来了新的创新发展机遇。多糖纳米晶须生物相容性好、生物降解性好、无毒性、易修饰性和纳米尺寸的功能性等优异的生化性能已引起广泛的研究,在不同的领域已有相应的应用,且在复合材料中的应用十分广泛,以天然高分子和聚合物为基质的纳米复合材料的研究日益深入。
近年来,壳聚糖/聚乳酸复合材料因其良好的抗菌性、生物相容性和可降解性得到了人们的广泛关注。目前已有较多将壳聚糖与聚合接枝的文献(壳聚糖-聚乳酸接枝共聚物的制备与表征,化工新型材料,2012,5,4005)和(壳聚糖与丙交酯接枝共聚物的制备与表征,材料科学与工程学报,2008,1,2601),对于PLA-g-CS颗粒度的研究有通过物理球磨的方法达到15μm的(Poly(l-lactic acid)bio-composites reinforced by oligo(d-lacticacid)grafted chitosan for simultaneously improved ductility,strength andmodulus.International Journal of Biological Macromolecules,2019.131:p.495-504.),也有以渗滤法和超声波法制得PLA-g-CS纳米颗粒的报道(Preparation ofbiocompatible chitosan grafted poly(lactic acid)nanoparticles.InternationalJournal of Biological Macromolecules,2012.51(3):p.221-227.)。
壳聚糖接上聚乳酸后,本身的氨基与聚乳酸的羧基反应生成酰胺,连接端基为羟基的聚乳酸链段,侧链的整体亲水性下降。由于PLA-g-CS既不溶于醋酸又不溶于氯仿,这使得将PLA-g-CS做到纳米尺寸的颗粒较为困难,因此还未有学者研究过PLA-g-CS的纳米晶须的制备。另外,而上述文献制备得到的是纳米颗粒,纳米颗粒多为球形,而纳米晶须一般是有一定长径比的直径在纳米尺度的小棍,上述文献制备得到的并非纳米晶须,且上述制备纳米颗粒过程中又需使用大量的有机溶剂,对环境造成污染,不够环保。
发明内容
为了解决上述问题,本发明采用干态接枝方法,制备PLA-g-CS,再将PLA-g-CS分散于碱液中,通过反复冷冻/解冻的方法得到纳米晶须。该方法使得没有良好溶剂的PLA-g-CS可以制备得到纳米晶须,整个反应高效清洁,绿色环保,具有一定的可推广性。
本发明的第一个目的是提供一种聚乳酸接枝壳聚糖(PLA-g-CS)的纳米晶须制备方法,所述方法包括以下步骤:
(1)制备PLA-g-CS:将丙交酯、催化剂和壳聚糖混合均匀后,进行聚合接枝,制备得到PLA-g-CS,聚合接枝过程中无溶剂;
(2)制备PLA-g-CS纳米晶须:将步骤(1)制备得到的PLA-g-CS分散在NaOH:尿素:H2O或LiOH:KOH:尿素:H2O的混合溶液中,冷冻/解冻、超声、离心、透析后得到PLA-g-CS纳米晶须。
在本发明一种实施方式中,步骤(1)中丙交酯和壳聚糖的质量比为(2~10):1,催化剂为辛酸亚锡,加入量为丙交酯质量百分数的0.1~1‰。
在本发明一种实施方式中,步骤(1)中聚合接枝条件为:氮气气氛;接枝温度:120-180℃;接枝时间:3-5h。
在本发明一种实施方式中,PLA-g-CS添加量为0.25%~1%。
在本发明一种实施方式中,所述步骤(2)中的NaOH:尿素:H2O=(8-15):(4-8):(80-85)。
在本发明一种实施方式中,所述步骤(2)中的LiOH:KOH:尿素:H2O=(8-15):7(5-9):8:
(80-85)。
在本发明一种实施方式中,所述步骤(2)中冷冻条件为温度为-80~-20℃,时间为0.5-3h;解冻条件为5-10℃,时间0.1-0.5h,冷冻/解冻循环2-5次。
在本发明一种实施方式中,所述步骤(2)中超声频率为30-60Hz,时间为10-30min。
在本发明一种实施方式中,所述步骤(2)中离心转速为5000-10000r/min,时间为15-30min。
本发明的第二个目的是提供一种上述方法制备得到的PLA-g-CS纳米晶须。
本发明的第三个目的是提供一种上述PLA-g-CS纳米晶须在食品包装、医药和复合材料方面的应用。
本发明的有益效果:
(1)本发明用聚乳酸接枝壳聚糖,可增强壳聚糖的疏水性和机械性能,同时又环保可降解。目前已知的壳聚糖与聚乳酸的接枝方法均是以溶剂作为反应介质,甚至还需要使用大量溶剂将接枝物析出,而本发明所使用的接枝方法,为干态接枝,在120~150℃下丙交酯处于熔融状态,无需使用溶剂作为反应介质,即可使丙交酯发生开环聚合,以及丙交酯与壳聚糖发生聚合反应,反应过程环保且简单高效,接枝率能高达97%,做到了绿色环保,顺应了时代的发展;同时接枝产物在食品包装、医药或作为增强体用于复合材料等方面具有潜在应用。
(2)本发明将几乎无法溶解的PLA-g-CS通过在碱液中反复冷冻解冻得的方法制备得到了纳米晶须。由于壳聚糖具有良好的生物降解性、生物相容性、抗菌性及多功能化学和物理性质,聚乳酸是由乳酸为原料聚合得到的,属于可再生资源,原料来源充足且具有良好的生物降解性,可完全降解成水和二氧化碳,不会对环境造成污染,接枝产物做成纳米晶须后在食品包装、医药或作为增强体用于复合材料等方面具有广阔的应用前景,尤其在生物医疗和增强复合材料方面的应用具有极大的潜力。
附图说明
图1为聚乳酸(PDLA)、壳聚糖(CS)和聚乳酸接枝壳聚糖(Oligo(D-LA)-g-CS)的红外光谱图。
图2是按本发明实施例1所制备的聚乳酸与壳聚糖接枝物的纳米晶须SEM照片。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
实施例1
将10g的丙交酯、5g壳聚糖和5μL的辛酸亚锡分别快速放入三口烧瓶中进行接枝反应,同时加入磁子进行搅拌。接枝温度:150℃;接枝时间:4h;接枝气氛:氮气气氛;搅拌器旋转速度:150r/min;得到聚乳酸与壳聚糖的接枝物PLA-g-CS(见图1),接枝率为95%。将0.025g的将PLA-g-CS分散在9.975g的NaOH:尿素:H2O=11:4:85的混合溶液中,然后将悬浮液在-30℃下冷冻3h,再于5℃下搅拌解冻,冷冻/解冻循环3次。使用超声波细胞粉碎机在60Hz下将溶液超声30min,超声后以10000r/min的转速离心15min得到上清液,将上清液装入透析袋透析48h,经冷冻干燥得到长度连续的PLA-g-CS纳米晶须(见图2),平均直径为281.1nm。
实施例2
将10g的丙交酯、5g壳聚糖和5μL的辛酸亚锡分别快速放入三口烧瓶中进行接枝反应,同时加入磁子进行搅拌。接枝温度:150℃;接枝时间:4h;接枝气氛:氮气气氛;搅拌器旋转速度:150r/min;得到聚乳酸与壳聚糖的接枝物PLA-g-CS,接枝率为95%。将0.05g的将PLA-g-CS分散在9.975g的NaOH:尿素:H2O=11:4:85的混合溶液中,然后将悬浮液在-30℃下冷冻3h,再于5℃下搅拌解冻,冷冻/解冻循环3次。使用超声波细胞粉碎机在60Hz下将溶液超声30min,超声后以10000r/min的转速离心15min得到上清液,将上清液装入透析袋透析48h,经冷冻干燥得到长度连续的PLA-g-CS纳米晶须,平均直径为502.7nm。
实施例3
将10g的丙交酯、5g壳聚糖和5μL的辛酸亚锡分别快速放入三口烧瓶中进行接枝反应,同时加入磁子进行搅拌。接枝温度:150℃;接枝时间:4h;接枝气氛:氮气气氛;搅拌器旋转速度:150r/min;得到聚乳酸与壳聚糖的接枝物PLA-g-CS,接枝率为95%。将0.1g的将PLA-g-CS分散在9.975g的NaOH:尿素:H2O=11:4:85的混合溶液中,然后将悬浮液在-30℃下冷冻3h,再于5℃下搅拌解冻,冷冻/解冻循环3次。使用超声波细胞粉碎机在60Hz下将溶液超声30min,超声后以10000r/min的转速离心15min得到上清液,将上清液装入透析袋透析48h,经冷冻干燥得到长度连续的PLA-g-CS纳米晶须,平均直径为893.6nm。
实施例4
将10g的丙交酯、5g壳聚糖和5μL的辛酸亚锡分别快速放入三口烧瓶中进行接枝反应,同时加入磁子进行搅拌。接枝温度:150℃;接枝时间:4h;接枝气氛:氮气气氛;搅拌器旋转速度:150r/min;得到聚乳酸与壳聚糖的接枝物PLA-g-CS,接枝率为95%。将0.025g的将PLA-g-CS分散在9.975g的NaOH:尿素:H2O=11:4:85的混合溶液中,然后将悬浮液在-30℃下冷冻2h,再于5℃下搅拌解冻,冷冻/解冻循环3次。使用超声波细胞粉碎机在60Hz下将溶液超声30min,超声后以10000r/min的转速离心15min得到上清液,将上清液装入透析袋透析48h,经冷冻干燥得到长度连续的PLA-g-CS纳米晶须,平均直径为699.5nm。
实施例5
将10g的丙交酯、5g壳聚糖和5μL的辛酸亚锡分别快速放入三口烧瓶中进行接枝反应,同时加入磁子进行搅拌。接枝温度:150℃;接枝时间:4h;接枝气氛:氮气气氛;搅拌器旋转速度:150r/min;得到聚乳酸与壳聚糖的接枝物PLA-g-CS,接枝率为95%。将0.025g的将PLA-g-CS分散在9.975g的NaOH:尿素:H2O=11:4:85的混合溶液中,然后将悬浮液在-30℃下冷冻1h,再于5℃下搅拌解冻,冷冻/解冻循环3次。使用超声波细胞粉碎机在60Hz下将溶液超声30min,超声后以10000r/min的转速离心15min得到上清液,将上清液装入透析袋透析48h,经冷冻干燥得到长度连续的PLA-g-CS纳米晶须,平均直径为996.2nm。
实施例6
将10g的丙交酯、5g壳聚糖和5μL的辛酸亚锡分别快速放入三口烧瓶中进行接枝反应,同时加入磁子进行搅拌。接枝温度:150℃;接枝时间:4h;接枝气氛:氮气气氛;搅拌器旋转速度:150r/min;得到聚乳酸与壳聚糖的接枝物PLA-g-CS,接枝率为95%。将0.025g的将PLA-g-CS分散在9.975g的NaOH:尿素:H2O=11:4:85的混合溶液中,然后将悬浮液在-80℃下冷冻0.5h,再于5℃下搅拌解冻,冷冻/解冻循环3次。使用超声波细胞粉碎机在60Hz下将溶液超声30min,超声后以10000r/min的转速离心15min得到上清液,将上清液装入透析袋透析48h,经冷冻干燥得到长度连续的PLA-g-CS纳米晶须,平均直径为332.0nm。
实施例7
将10g的丙交酯、5g壳聚糖和5μL的辛酸亚锡分别快速放入三口烧瓶中进行接枝反应,同时加入磁子进行搅拌。接枝温度:150℃;接枝时间:4h;接枝气氛:氮气气氛;搅拌器旋转速度:150r/min;得到聚乳酸与壳聚糖的接枝物PLA-g-CS,接枝率为95%。将0.025g的将PLA-g-CS分散在9.975g的NaOH:尿素:H2O=11:8:81的混合溶液中,然后将悬浮液在-80℃下冷冻0.5h,再于5℃下搅拌解冻,冷冻/解冻循环3次。使用超声波细胞粉碎机在60Hz下将溶液超声30min,超声后以10000r/min的转速离心15min得到上清液,将上清液装入透析袋透析48h,经冷冻干燥得到长度连续的PLA-g-CS纳米晶须,平均直径为725.7nm。
实施例8
将10g的丙交酯、5g壳聚糖和5μL的辛酸亚锡分别快速放入三口烧瓶中进行接枝反应,同时加入磁子进行搅拌。接枝温度:150℃;接枝时间:4h;接枝气氛:氮气气氛;搅拌器旋转速度:150r/min;得到聚乳酸与壳聚糖的接枝物PLA-g-CS,接枝率为95%。将0.025g的将PLA-g-CS分散在9.975g的LiOH:KOH:尿素:H2O=4.5:7:8:80.5的混合溶液中,然后将悬浮液在-30℃下冷冻3h,再于5℃下搅拌解冻,冷冻/解冻循环3次。使用超声波细胞粉碎机在60Hz下将溶液超声30min,超声后以10000r/min的转速离心15min得到上清液,将上清液装入透析袋透析48h,经冷冻干燥得到长度连续的PLA-g-CS纳米晶须,平均直径为361.9nm。
表1 PLA-g-CS纳米晶须的性能
Figure BDA0002223227140000051
由表1可知,实施例1所得的PLA-g-CS纳米晶须的平均直径最小,达到281.1nm。根据单因素变量原则,在其他条件不变的情况下,随着PLA-g-CS所占溶液的比例的增加,所得纳米晶须的平均直径也不断增大,这是因为PLA-g-CS的比例增加,一定的溶液对其晶区的破坏能力下降,所以得到的纳米晶须的平均直径便越大。在其他条件不变只改变冷冻时间的情况下,由上表可知,冷冻时间越长所得纳米晶须的粒度越小,这说明,溶液对PLA-g-CS晶区的破坏是一个缓慢的过程,因此需要足够的时间来完成这一过程。而在-80℃下所得纳米晶须的平均直径与-20℃所得基本一致,但冷冻时间较短,这是因为-80℃条件对PLA-g-CS晶区的破坏较为剧烈,因此所需的时间较短。NaOH:尿素:H2O=11:8:81的溶液体系所得的晶须平均直径较大,这是因为该体系不适合用于溶解PLA-g-CS,对PLA-g-CS的晶区破坏能力较弱。以LiOH:KOH:尿素:H2O=4.5:7:8:80.5的溶液体系所制得的PLA-g-CS纳米晶须的平均直径略小于NaOH:尿素:H2O=11:4:81的溶液体系,二者基本相当。在同样条件下,未改性的CS和接枝率小于50%的PLA-g-CS无法在相同条件下溶解,因此无法在此条件下制备纳米颗粒或纳米晶须。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (5)

1.一种聚乳酸接枝壳聚糖纳米晶须的制备方法,其特征在于,所述方法是将丙交酯、催化剂和壳聚糖混合均匀后进行聚合接枝制备PLA-g-CS,再将PLA-g-CS分散于碱液中,通过反复冷冻/解冻的方法得到纳米晶须,聚合接枝过程中无溶剂;所述方法包括以下步骤:
(1)制备PLA-g-CS:将丙交酯、催化剂和壳聚糖混合均匀后,进行聚合接枝,制备得到PLA-g-CS;丙交酯和壳聚糖的质量比为(2~10):1;聚合接枝条件为:氮气气氛;接枝温度:120-180℃;接枝时间:3-5h;
(2)制备PLA-g-CS纳米晶须:将步骤(1)制备得到的PLA-g-CS分散在NaOH:尿素:H2O或LiOH:KOH:尿素:H2O的混合溶液中,冷冻/解冻、超声、离心、透析后得到PLA-g-CS纳米晶须;NaOH:尿素:H2O=11:4:81;LiOH:KOH:尿素:H2O=(8-15):(5-9):8:(80-85);
PLA-g-CS添加量为0.25%~0.5%。
2.根据权利要求1所述的方法,其特征在于,催化剂为辛酸亚锡,加入量为丙交酯的0.1~1‰。
3.根据权利要求1所述的方法,其特征在于,所述步骤(2)中冷冻条件为温度为-80~-20℃,时间为0.5-3h;解冻条件为5-10℃,时间0.1-0.5h,冷冻/解冻循环2-5次。
4.权利要求1~3任一所述的方法制备得到的PLA-g-CS纳米晶须。
5.一种权利要求4所述的PLA-g-CS纳米晶须在食品包装、医药和复合材料方面的应用。
CN201910942172.3A 2019-09-30 2019-09-30 一种聚乳酸接枝壳聚糖纳米晶须的制备方法 Active CN110483747B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910942172.3A CN110483747B (zh) 2019-09-30 2019-09-30 一种聚乳酸接枝壳聚糖纳米晶须的制备方法
PCT/CN2020/119238 WO2021063386A1 (zh) 2019-09-30 2020-09-30 一种聚乳酸接枝壳聚糖纳米晶须的制备方法
US17/481,643 US11299584B2 (en) 2019-09-30 2021-09-22 Preparation method for polylactic acid grafted chitosan nanowhiskers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910942172.3A CN110483747B (zh) 2019-09-30 2019-09-30 一种聚乳酸接枝壳聚糖纳米晶须的制备方法

Publications (2)

Publication Number Publication Date
CN110483747A CN110483747A (zh) 2019-11-22
CN110483747B true CN110483747B (zh) 2020-11-06

Family

ID=68544747

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910942172.3A Active CN110483747B (zh) 2019-09-30 2019-09-30 一种聚乳酸接枝壳聚糖纳米晶须的制备方法

Country Status (3)

Country Link
US (1) US11299584B2 (zh)
CN (1) CN110483747B (zh)
WO (1) WO2021063386A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110483747B (zh) * 2019-09-30 2020-11-06 江南大学 一种聚乳酸接枝壳聚糖纳米晶须的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948345A (zh) * 2006-10-11 2007-04-18 武汉理工大学 一种全生物降解材料的制备方法
CN101736438A (zh) * 2009-12-30 2010-06-16 暨南大学 一种壳聚糖纳米纤维及其制备方法和应用
CN103059319A (zh) * 2013-01-30 2013-04-24 武汉大学 甲壳素纳米纤维制备方法
CN103467752A (zh) * 2013-09-09 2013-12-25 浙江大学 一种酸-碱联用溶解壳聚糖的方法
CN109721740A (zh) * 2017-10-27 2019-05-07 武汉大学 一种连续制备不同脱乙酰度的甲壳素/壳聚糖溶液的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644078B1 (ko) * 2002-09-30 2006-11-10 주식회사 바이오랜드 양막과 생분해성 고분자로 구성된 이식용 진피대체물,이의 제조방법 및 용도
CN101580556B (zh) * 2009-06-18 2012-05-23 同济大学 一种壳聚糖为主链的温度敏感两亲性接枝共聚物的制备方法
CN105001425B (zh) * 2015-07-28 2017-11-28 大连大学 一种基于壳聚糖‑聚乳酸接枝共聚物的制备方法
US11331409B2 (en) * 2017-11-06 2022-05-17 Purdue Research Foundation Bioactive glass-polymer composite bone scaffolds
CN110483747B (zh) * 2019-09-30 2020-11-06 江南大学 一种聚乳酸接枝壳聚糖纳米晶须的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1948345A (zh) * 2006-10-11 2007-04-18 武汉理工大学 一种全生物降解材料的制备方法
CN101736438A (zh) * 2009-12-30 2010-06-16 暨南大学 一种壳聚糖纳米纤维及其制备方法和应用
CN103059319A (zh) * 2013-01-30 2013-04-24 武汉大学 甲壳素纳米纤维制备方法
CN103467752A (zh) * 2013-09-09 2013-12-25 浙江大学 一种酸-碱联用溶解壳聚糖的方法
CN109721740A (zh) * 2017-10-27 2019-05-07 武汉大学 一种连续制备不同脱乙酰度的甲壳素/壳聚糖溶液的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"淀粉/壳聚糖与丙交酯接枝共聚物的制备与表征";施云峰 等;《中国优秀博硕士学位论文全文数据库 (硕士) 医药卫生科技辑》;20070615;第E080-29页 *
Incorporation of chitosan whisker and hydroxyapatite:Asynergistic approach to reinforce chitosan/Poly(ethyleneglycol)gel;Pornpitcha Kanokpreechawut et al.;《Polymer Degradation and Stability》;20190301;第164卷;第198-205 *
Poly(L-lacticacid)bio-compositesreinforcedbyoligo(D-lacticacid)graftedchitosanforsimultaneouslyimprovedductility,strength andmodulus;Wei Li et al.;《International Journal of Biological Macromolecules》;20190316;第131卷;第495-504页 *

Also Published As

Publication number Publication date
US20220002482A1 (en) 2022-01-06
WO2021063386A1 (zh) 2021-04-08
US11299584B2 (en) 2022-04-12
CN110483747A (zh) 2019-11-22

Similar Documents

Publication Publication Date Title
Ferreira et al. Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: From a micro-to a nano-scale view
Fan et al. Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization
Oksman et al. Review of the recent developments in cellulose nanocomposite processing
US8829110B2 (en) Nanocomposite biomaterials of nanocrystalline cellulose (NCC) and polylactic acid (PLA)
Xu et al. Polylactide/acetylated nanocrystalline cellulose composites prepared by a continuous route: a phase interface-property relation study
Ma et al. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan
Ray et al. In situ processing of cellulose nanocomposites
Yang et al. Reinforcement of ramie fibers on regenerated cellulose films
Bandyopadhyay-Ghosh et al. The use of biobased nanofibres in composites
Wang et al. Mussel-inspired fabrication of konjac glucomannan/microcrystalline cellulose intelligent hydrogel with pH-responsive sustained release behavior
Tran et al. A ball milling-based one-step transformation of chitin biomass to organo-dispersible strong nanofibers passing highly time and energy consuming processes
Liu et al. Air-dried porous powder of polymethyl methacrylate modified cellulose nanocrystal nanocomposite and its diverse applications
Zhang et al. Recent developments of nanocellulose and its applications in polymeric composites
CN110483747B (zh) 一种聚乳酸接枝壳聚糖纳米晶须的制备方法
Hu et al. Improved properties and drug delivery behaviors of electrospun cellulose acetate nanofibrous membranes by introducing carboxylated cellulose nanocrystals
CN112898545A (zh) 一种制备聚乳酸纳米材料的无溶剂绿色方法
Chen et al. Comparison of cellulose and chitin nanocrystals for reinforcing regenerated cellulose fibers
Ding et al. Cellulose-enabled polylactic acid (PLA) nanocomposites: recent developments and emerging trends
Chen et al. Preparation and research of PCL/cellulose composites: Cellulose derived from agricultural wastes
Zhang et al. A simple mechanical agitation method to fabricate chitin nanogels directly from chitin solution and subsequent surface modification
CN104558639B (zh) 一种再生纤维素纳米颗粒及其制备方法
Simangunsong et al. The effect of nanocrystalline cellulose (NCC) filler on polylactic acid (PLA) nanocomposite properties
Yu et al. Mechanical Properties of Cellulose Nanofibril (CNF)‐and Cellulose Nanocrystal (CNC)‐Based Nanocomposites
CN110423336A (zh) 一种聚乳酸接枝壳聚糖的无溶剂制备方法
Jiao et al. Effects of charge state of nano-chitin on the properties of polyvinyl alcohol composite hydrogel

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: No. 1800 road 214000 Jiangsu Lihu Binhu District City of Wuxi Province

Applicant after: Jiangnan University

Address before: 214000 Zhang Yong, 1800 Lihu Avenue, Binhu District, Wuxi City, Jiangsu Province

Applicant before: Jiangnan University

GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210412

Address after: No.18, Hongxiang Road, Hudai Industrial Park, Wuxi City, Jiangsu Province, 214000

Patentee after: WUXI JINTONG HIGH FIBER Co.,Ltd.

Address before: 214000 1800 Lihu Avenue, Binhu District, Wuxi, Jiangsu

Patentee before: Jiangnan University