CN110479373A - 一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法 - Google Patents

一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法 Download PDF

Info

Publication number
CN110479373A
CN110479373A CN201910506001.6A CN201910506001A CN110479373A CN 110479373 A CN110479373 A CN 110479373A CN 201910506001 A CN201910506001 A CN 201910506001A CN 110479373 A CN110479373 A CN 110479373A
Authority
CN
China
Prior art keywords
tert
nitro
butyl benzene
carbon nanotube
benzene oxygroup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910506001.6A
Other languages
English (en)
Inventor
李忠玉
李清萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou University
Original Assignee
Changzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou University filed Critical Changzhou University
Priority to CN201910506001.6A priority Critical patent/CN110479373A/zh
Publication of CN110479373A publication Critical patent/CN110479373A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1825Ligands comprising condensed ring systems, e.g. acridine, carbazole
    • B01J31/183Ligands comprising condensed ring systems, e.g. acridine, carbazole with more than one complexing nitrogen atom, e.g. phenanthroline
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/19Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with organic hydroperoxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/26Zinc

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种3α‑(对叔丁基苯氧基)‑α‑(硝基)‑酞菁锌/多壁碳纳米管催化剂的制备方法,包括步骤:碳纳米管的预处理,3α‑(对叔丁基苯氧基)‑α‑(硝基)‑酞菁锌的制备和3α‑(对叔丁基苯氧基)‑α‑(硝基)‑酞菁锌/多壁碳纳米管催化剂的制备。本发明的有益效果是:复合光催化剂制备成本低,纯度高,制备工艺简单;实现了对苯乙烯的高效催化,其催化活性要明显好于3α‑(对叔丁基苯氧基)‑α‑(硝基)‑酞菁锌颗粒,可应用于工业中苯乙烯的催化。

Description

一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管 催化剂的制备方法
技术领域
本发明具体涉及一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法。
背景技术
近年来,金属酞菁由于其新颖的材料特性,在催化研究方面吸引了越来越多的关注。酞菁是一种平面大共轭芳香体系的化合物,酞菁的中心空穴可与铁、镁、钴、锌、铜、铝、镍等多种金属元素发生配位,得到金属酞菁。酞菁化合物具有18 π的电子共轭结构,并且酞菁的电子密度非常均匀。目前,酞菁化合物主要研究是对称酞菁,对于不对称的酞菁的研究相对较少,与传统的对称酞菁相比,它拥有优异的光物理以及化学性能。在分子整流器、气敏传感器、光致电荷转移、光动力疗法、非线性光学等有广泛的应用。酞菁是高度共轭的平面大分子,在此平面区域内的轴向能够发生催化反应,芳环可以作为电子受体和电子给体。但是,金属酞菁的主要问题是其在溶液中极易发生团聚现象从而会影响光催化性能。碳纳米管 (CNTs) 是一种具有特殊结构的准一维纳米材料,它是通过石墨烯卷曲而成的管状结构。多壁碳纳米管 (MWCNTs) 的表面改性使其能提高反应活性并提供活性位点,通常被用于有机大环化合物的载体。运用超声浸渍法将酞菁固定在MWCNTs表面有效地阻止了酞菁的聚集,从而增强了酞菁的催化活性。它为设计和开发具有独特催化性能的复合材料开辟了新的机遇。
发明内容
本发明要解决的技术问题是:基于上述问题,本发明提供一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂及其制备方法。
本发明解决其技术问题所采用的一个技术方案是:一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂,由3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌和多壁碳纳米管复合而成,3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌结构式如下:
本发明所述的一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法,包括以下步骤:
(1) 碳纳米管的预处理
称取多壁碳纳米管,放入三口烧瓶中,加入50~70 wt %的浓硝酸,120~150℃加热搅拌8~10 h,反应结束后冷却,用水洗至中性;
(2) 3-对叔丁基苯氧基邻苯二甲腈的制备
将3-硝基邻苯二腈和对叔丁基苯酚倒入烧瓶,加入LiOH•H2O,氮气保护下于50℃搅拌11 h,反应结束后冷却,饱和NaCl水溶液中,过滤,用饱和NaCl水溶液洗涤,取滤饼烘干,得到纯的白色产物;
(3) 3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的制备
将3-对叔丁基苯氧基邻苯二甲腈、3-硝基邻苯二腈、二水合乙酸锌、催化剂1,8-二氮杂二环[5,4,0]十一碳-7-烯和溶剂正戊醇加入反应容器,在氮气保护下加热搅拌,回流冷凝,135℃反应5 h,冷却静置到室温,抽滤,洗涤,烘干,得到粗品,通过柱层析进行纯化;
(4) 3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备
将3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌和多壁碳纳米管加入乙醇溶液中,超声负载2~6 h,得到3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管复合催化剂的制备。
(5) 苯乙烯催化反应
将所制备的3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂进行苯乙烯催化实验,以测试其催化活性。
将酞菁复合催化剂,溶剂N,N-二甲基甲酰胺 (DMF),氧化剂,苯乙烯加入反应管内,100℃反应10 h,冷却至室温,过滤稀释,使用气相色谱进行分析。
进一步地,所述的步骤 (3) 洗脱剂石油醚和乙酸乙酯的体积比为6:1。
进一步地,步骤 (4) 中3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌和多壁碳纳米管的质量比为4:1。
本发明的有益效果是:复合催化剂制备成本低,纯度高,制备工艺简单;实现了对苯乙烯的有效催化,其催化活性要明显好于纯3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌颗粒,可应用于工业中苯乙烯的催化。
附图说明
下面结合附图和实施例对本发明做进一步说明:
图1为实施例1中制备的3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的XRD图;
图2为多壁碳纳米管和实施例1中制备的3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管复合催化材料的SEM图,其中,a为多壁碳纳米管,b为3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管复合催化材料;
图3为实施例1制备的3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化材料催化苯乙烯的效果图。
具体实施方式
为了更好地理解本发明,下面结合实施例和应用例进一步阐明本发明的内容,但本发明的内容不仅仅局限于以下的实施例和应用例。
实施例1
(1) 碳纳米管的预处理
取碳纳米管2 g和浓硝酸200 ml放入250 ml三口烧瓶中,温度为80℃,回流冷凝反应10h自然冷却至室温后除去HNO3清夜,再用去离子水稀释后再去除HNO3清液,重复稀释,然后用布氏漏斗抽滤,最后用烘箱烘干可得。
(2) 3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的制备
将0.06 g (0.347 mmol) 3-硝基邻苯二腈,0.88 g (3.18 mmol) 对叔丁基苯酚和0.22g (1 mmol)二水合乙酸锌倒入反应容器中,加入35 mL 正戊醇以0.5ml DBU,氮气保护下于135℃反应5个小时,反应结束后,将溶液倒入甲醇中,析出绿色沉淀,抽滤并用甲醇溶液洗涤,取滤饼烘干,得到绿色粗产物,通过柱层析纯化。
(3) 3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备
将0.01 g碳纳米管溶于10 ml乙醇中,在超声强化下逐滴加入0.04 g 3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的20 ml乙醇溶液中,然后在室温下超声5 h后,烘干收集得到3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管复合催化剂。该3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的XRD图如图1所示,3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌特征峰明显,在用多壁碳纳米管负载后,对比于3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的特征衍射峰3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的特定衍射峰强度变弱,这说明多壁碳纳米管的负载已经使3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的分散性变的良好,有效的阻止了酞菁的聚集现象。3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的扫描电镜如图2所示,3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的体积明显要比碳纳米管大,说明3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌成功负载在碳纳米管上,这样可以克服金属酞菁容易发生聚集现象从而降低催化效率的缺点。
(4) 苯乙烯催化反应
将实施例1得到的40 mg ZnPc/MWCNTs倒入50 mL的反应管中,同时向反应管中加入0.46 ml苯乙烯,2.8 ml TBHP,DMF 以及搅拌磁子。将反应管放入油浴锅中,当温度达到80℃时开始计时,反应10 h后关闭加热装置。用吸管吸取2 ml反应液到注射器中,用滤头分离ZnPc/MWCNTs,然后加入二氯甲烷稀释有机相,同时起到除去水分的作用。最后吸取0.4 μL除水后的反应液通过具有火焰检测器和0.32 mm×0.25 μm HP-5毛细管柱的气相色谱(GC) 进行分析苯乙烯的转化率以及选择性,即图3。在反应结束后,3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管显示出更好的催化活性。
实施例2
(1) 碳纳米管的预处理
将碳纳米管5 g和浓硝酸200 ml放入250 ml三口烧瓶中,温度为120℃,回流冷凝反应8h自然冷却至室温后除去HNO3清夜,再用去离子水稀释后再去除HNO3清液,重复稀释,然后用布氏漏斗抽滤,最后用烘箱烘干可得。
(2) 3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的制备
将0.12 g (0.694 mmol) 3-硝基邻苯二腈,1.76 g (6.36 mmol) 对叔丁基苯酚和0.44g (2 mmol)二水合乙酸锌倒入反应容器中,加入35 mL 正戊醇以及1 mL DBU,氮气保护下于135℃反应5个小时,反应结束后,将溶液倒入甲醇中,析出绿色沉淀,抽滤并用甲醇溶液洗涤,取滤饼烘干,得到绿色粗产物,通过柱层析纯化。
(3) 3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备
将0.02 g多壁碳纳米管溶于10 ml乙醇中,在超声强化下逐滴加入0.08 g 3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的20 ml乙醇溶液中,然后在室温下超声6 h后,烘干收集得到3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管复合催化剂。该3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的XRD图如图1所示,3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌特征峰明显,在用多壁碳纳米管负载后,对比于3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的特征衍射峰α3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的特定衍射峰强度变弱,这说明碳多壁纳米管的负载已经使3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的分散性变的良好,有效的阻止了酞菁的聚集现象。3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的扫描电镜如图2所示,3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管的体积明显要比碳纳米管大,说明3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌成功负载在碳纳米管上,这样可以克服金属酞菁容易发生聚集现象从而降低催化效率的缺点。
(4) 苯乙烯催化反应
将实施例2得到的40 mg ZnPc/MWCNTs倒入50 mL的反应管中,同时向反应管中加入0.46 ml苯乙烯,2.8 ml TBHP,DMF 以及搅拌磁子。将反应管放入油浴锅中,当温度达到80℃时开始计时,反应10 h后关闭加热装置。用吸管吸取2 ml反应液到注射器中,用滤头分离ZnPc/MWCNTs,然后加入二氯甲烷稀释有机相,同时起到除去水分的作用。最后吸取0.4 μL除水后的反应液通过具有火焰检测器和0.32 mm×0.25 μm HP-5毛细管柱的气相色谱(GC) 进行分析苯乙烯的转化率以及选择性,即图3。在反应结束后,α3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管显示出更好的催化活性。

Claims (4)

1.一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备,其特征是:由3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌和多壁碳纳米管复合而成,3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的结构式如下所示:
2.一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法,其特征是:包括以下步骤:
(1)多壁碳纳米管的预处理
称取多壁碳纳米管,放入三口烧瓶中,加入50~70wt%的浓硝酸,120~150℃加热搅拌8~10h,反应结束后冷却,用水洗至中性;
(2)3-对叔丁基苯氧基邻苯二甲腈的制备
将3-硝基邻苯二腈和对叔丁基苯酚倒入烧瓶,加入LiOH·H2O,氮气保护下于50℃搅拌11h,反应结束后冷却,倒入饱和NaCl水溶液中,过滤,用饱和NaCl水溶液洗涤,取滤饼烘干,得到纯的白色产物;
(3)3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌的制备
将3-对叔丁基苯氧基邻苯二甲腈、3-硝基邻苯二腈、二水合乙酸锌、催化剂1,8-二氮杂二环[5,4,0]十一碳-7-烯和溶剂正戊醇加入反应容器,在氮气保护下加热搅拌,回流冷凝,135℃反应5h,冷却静置到室温,抽滤,洗涤,烘干,得到粗品,通过柱层析进行纯化,洗脱剂为石油醚和乙酸乙酯的混合溶剂;
(4)3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备
将3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌和多壁碳纳米管加入乙醇溶液中,超声负载2~4h,得到3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管复合催化剂的制备。
3.根据权利要求2所述的3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法,其特征是:所述的步骤(3)洗脱剂石油醚和乙酸乙酯的体积比为6:1。
4.权利要求2所述的3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法,其特征是:所述的步骤(4)中3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌和多壁碳纳米管的质量比为4:1。
CN201910506001.6A 2019-06-12 2019-06-12 一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法 Pending CN110479373A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910506001.6A CN110479373A (zh) 2019-06-12 2019-06-12 一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910506001.6A CN110479373A (zh) 2019-06-12 2019-06-12 一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN110479373A true CN110479373A (zh) 2019-11-22

Family

ID=68545922

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910506001.6A Pending CN110479373A (zh) 2019-06-12 2019-06-12 一种3α-(对叔丁基苯氧基)-α-(硝基)-酞菁锌/多壁碳纳米管催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN110479373A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600165A (zh) * 2021-08-16 2021-11-05 常州大学 四取代3-(4-甲酰基)苯氧基酞菁钴/多壁碳纳米管复合催化剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507930A (zh) * 2009-03-27 2009-08-19 华南师范大学 金属酞菁/碳纳米管复合催化剂及其制备方法以及使用这种催化剂的锂/亚硫酰氯电池
CN102181179A (zh) * 2011-03-15 2011-09-14 同济大学 点击化学法制备可溶性取代酞菁-碳纳米管复合光敏材料的方法
CN102432982A (zh) * 2011-08-30 2012-05-02 同济大学 点击化学法制备酞菁-碳纳米管-聚噻吩复合光敏材料的方法
CN103920535A (zh) * 2014-05-07 2014-07-16 常州大学 化学接枝法制备氨基钴酞菁/碳纳米管复合催化剂
CN104959166A (zh) * 2015-07-06 2015-10-07 常州大学 一种基于溶剂热法原位制备锌酞菁/碳纳米管复合催化剂的方法
KR20150120259A (ko) * 2014-04-17 2015-10-27 한국과학기술연구원 탄소나노튜브를 이용한 3차원 구조의 탄소 담지 촉매 및 그 제조 방법
CN105536876A (zh) * 2016-02-05 2016-05-04 常州大学 一种硝基钴酞菁/凹凸棒石复合光催化剂的制备方法
CN108855221A (zh) * 2018-05-07 2018-11-23 常州大学 一种[3-2-(n-乙基苯氨基)乙氧基]锌酞菁/凹凸棒石复合光催化剂的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101507930A (zh) * 2009-03-27 2009-08-19 华南师范大学 金属酞菁/碳纳米管复合催化剂及其制备方法以及使用这种催化剂的锂/亚硫酰氯电池
CN102181179A (zh) * 2011-03-15 2011-09-14 同济大学 点击化学法制备可溶性取代酞菁-碳纳米管复合光敏材料的方法
CN102432982A (zh) * 2011-08-30 2012-05-02 同济大学 点击化学法制备酞菁-碳纳米管-聚噻吩复合光敏材料的方法
KR20150120259A (ko) * 2014-04-17 2015-10-27 한국과학기술연구원 탄소나노튜브를 이용한 3차원 구조의 탄소 담지 촉매 및 그 제조 방법
CN103920535A (zh) * 2014-05-07 2014-07-16 常州大学 化学接枝法制备氨基钴酞菁/碳纳米管复合催化剂
CN104959166A (zh) * 2015-07-06 2015-10-07 常州大学 一种基于溶剂热法原位制备锌酞菁/碳纳米管复合催化剂的方法
CN105536876A (zh) * 2016-02-05 2016-05-04 常州大学 一种硝基钴酞菁/凹凸棒石复合光催化剂的制备方法
CN108855221A (zh) * 2018-05-07 2018-11-23 常州大学 一种[3-2-(n-乙基苯氨基)乙氧基]锌酞菁/凹凸棒石复合光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QINGPING LI ET AL.: "Synthesis of asymmetric zinc phthalocyanine supported on multi-walled carbon nanotubes and its improvement of catalytic activity on styrene oxidation", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600165A (zh) * 2021-08-16 2021-11-05 常州大学 四取代3-(4-甲酰基)苯氧基酞菁钴/多壁碳纳米管复合催化剂及其制备方法

Similar Documents

Publication Publication Date Title
Shi et al. Construction of CuBi2O4/Bi2MoO6 pn heterojunction with nanosheets-on-microrods structure for improved photocatalytic activity towards broad-spectrum antibiotics degradation
Shen et al. Accelerating photocatalytic hydrogen evolution and pollutant degradation by coupling organic co-catalysts with TiO2
Zeng et al. Scalable one-step production of porous oxygen-doped g-C3N4 nanorods with effective electron separation for excellent visible-light photocatalytic activity
Shao et al. Investigation of nitrogen doped and carbon species decorated TiO2 with enhanced visible light photocatalytic activity by using chitosan
Ren et al. Ultrathin graphene encapsulated Cu nanoparticles: A highly stable and efficient catalyst for photocatalytic H2 evolution and degradation of isopropanol
Cano et al. One-step microwave synthesis of palladium–carbon nanotube hybrids with improved catalytic performance
Zhang et al. Fabrication of a coated BiVO4@ LDHs Z-scheme heterojunction and photocatalytic degradation of norfloxacin
Nguyen et al. Ag@ ZnO porous nanoparticle wrapped by rGO for the effective CO2 electrochemical reduction
Chen et al. K+, Ni and carbon co-modification promoted two-electron O 2 reduction for photocatalytic H 2 O 2 production by crystalline carbon nitride
Zhao et al. Controlled synthesis of metal-organic frameworks coated with noble metal nanoparticles and conducting polymer for enhanced catalysis
Kargar et al. Cu/cellulose-modified magnetite nanocomposites as a highly active and selective catalyst for ultrasound-promoted aqueous O-arylation Ullmann and sp-sp2 Sonogashira cross-coupling reactions
CN111151285B (zh) 一种氮掺杂多孔碳负载ZnS纳米复合材料及其制备方法和应用
Tran et al. Experimental and computational investigation of a green Knoevenagel condensation catalyzed by zeolitic imidazolate framework-8
CN104528683A (zh) 一种竹节状碳纳米管的制备方法
Zhao et al. Au nanoparticles-modified S-scheme In2O3/H1. 5CN heterojunction with enhanced photocatalytic CO2 reduction activity
Zeng et al. Visual observation of hydrogen bubble generation from monodisperse CoP QDs on ultrafine gC 3 N 4 fiber under visible light irradiation
WO2023060920A1 (zh) 一种钯单原子催化剂及其制备方法和在铃木偶联反应中的应用
CN107252695A (zh) 钯基多巴胺包裹磁性碳纳米管催化剂及其制备方法及应用
Zhang et al. Visible light-driven oxidant-free dehydrogenation of alcohols in water using porous ultrathin g-C3N4 nanosheets
CN104785301A (zh) 一种磁性钯复合催化剂及其制备方法和用途
CN103657643A (zh) 一种制备纳米钯金属催化剂的方法
Pan et al. Towards application of a covalent organic framework-silver nanoparticles@ sand heterostructure as a high-efficiency catalyst for flow-through reduction of organic pollutants
Das et al. Gold nanoparticle supported on mesoporous vanadium oxide for photo-oxidation of 2-naphthol with hydrogen peroxide and aerobic oxidation of benzyl alcohols
Li et al. Ru nanoparticles anchored on porous N-doped carbon nanospheres for efficient catalytic hydrogenation of Levulinic acid to γ-valerolactone under solvent-free conditions
CN109659576B (zh) 微纳电池催化剂及制备方法与用途

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20191122

WD01 Invention patent application deemed withdrawn after publication