CN110473919A - Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method - Google Patents
Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method Download PDFInfo
- Publication number
- CN110473919A CN110473919A CN201810447296.XA CN201810447296A CN110473919A CN 110473919 A CN110473919 A CN 110473919A CN 201810447296 A CN201810447296 A CN 201810447296A CN 110473919 A CN110473919 A CN 110473919A
- Authority
- CN
- China
- Prior art keywords
- substrate
- dielectric material
- semiconductor structure
- flowable dielectric
- pit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 120
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 100
- 239000003989 dielectric material Substances 0.000 claims abstract description 78
- 230000009969 flowable effect Effects 0.000 claims abstract description 74
- 238000000034 method Methods 0.000 claims abstract description 45
- 229910002601 GaN Inorganic materials 0.000 claims description 52
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 45
- 239000000463 material Substances 0.000 claims description 34
- 238000010438 heat treatment Methods 0.000 claims description 25
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 16
- 239000011521 glass Substances 0.000 claims description 11
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 8
- 239000005360 phosphosilicate glass Substances 0.000 claims description 7
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 5
- 230000005669 field effect Effects 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- GDFCWFBWQUEQIJ-UHFFFAOYSA-N [B].[P] Chemical compound [B].[P] GDFCWFBWQUEQIJ-UHFFFAOYSA-N 0.000 claims 3
- 239000011435 rock Substances 0.000 claims 3
- 239000005368 silicate glass Substances 0.000 claims 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 239000011810 insulating material Substances 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000010410 layer Substances 0.000 description 68
- 239000005380 borophosphosilicate glass Substances 0.000 description 28
- 239000000919 ceramic Substances 0.000 description 10
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 6
- 230000007547 defect Effects 0.000 description 5
- 238000001451 molecular beam epitaxy Methods 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 239000002019 doping agent Substances 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000005533 two-dimensional electron gas Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/475—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT] having wider bandgap layer formed on top of lower bandgap active layer, e.g. undoped barrier HEMTs such as i-AlGaN/GaN HEMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/351—Substrate regions of field-effect devices
- H10D62/357—Substrate regions of field-effect devices of FETs
Landscapes
- Junction Field-Effect Transistors (AREA)
Abstract
本发明提供了一种半导体结构、高电子迁移率晶体管及半导体结构制造方法,半导体结构包含基底、可流动介电材料以及氮化镓系(GaN‑based)半导体层。基底具有坑洞(pit)从该基底的上表面暴露出来,可流动介电材料填满坑洞,并且氮化镓系半导体层设置在基底和可流动介电材料之上。本发明可以提升半导体装置的制造良品率,并降低工艺成本。
The present invention provides a semiconductor structure, a high electron mobility transistor and a method for manufacturing a semiconductor structure, wherein the semiconductor structure comprises a substrate, a flowable dielectric material and a GaN-based semiconductor layer. The substrate has a pit exposed from the upper surface of the substrate, the flowable dielectric material fills the pit, and the GaN-based semiconductor layer is disposed on the substrate and the flowable dielectric material. The present invention can improve the manufacturing yield of semiconductor devices and reduce process costs.
Description
技术领域technical field
本发明实施例是有关于半导体制造技术,且特别是有关于具有氮化镓系半导体材料的半导体结构、高电子迁移率晶体管及半导体结构制造方法。The embodiments of the present invention relate to semiconductor manufacturing technology, and in particular to a semiconductor structure with gallium nitride-based semiconductor materials, a high electron mobility transistor, and a method for manufacturing the semiconductor structure.
背景技术Background technique
氮化镓系(GaN-based)半导体材料具有许多优秀的材料特性,例如高抗热性、宽能隙(band-gap)、高电子饱和速率。因此,氮化镓系半导体材料适合应用于高速与高温的操作环境。近年来,氮化镓系半导体材料已广泛地应用于发光二极管(light emitting diode,LED)组件、高频率组件,例如具有异质界面结构的高电子迁移率晶体管(high electronmobility transistor,HEMT)。Gallium nitride-based (GaN-based) semiconductor materials have many excellent material properties, such as high heat resistance, wide band-gap, and high electron saturation rate. Therefore, gallium nitride-based semiconductor materials are suitable for high-speed and high-temperature operating environments. In recent years, gallium nitride-based semiconductor materials have been widely used in light emitting diode (light emitting diode, LED) components, high frequency components, such as high electron mobility transistors (high electron mobility transistors, HEMTs) with heterostructures.
随着氮化镓系半导体材料的发展,这些使用氮化镓系半导体材料的半导体结构应用于更严苛工作环境中,例如更高频、更高温或更高电压。因此,具有氮化镓系半导体材料的半导体结构的工艺条件也面临许多新的挑战。With the development of gallium nitride-based semiconductor materials, these semiconductor structures using gallium nitride-based semiconductor materials are used in more severe working environments, such as higher frequency, higher temperature or higher voltage. Therefore, the process conditions of the semiconductor structure having gallium nitride-based semiconductor materials also face many new challenges.
发明内容Contents of the invention
本发明的一些实施例提供半导体结构,半导体结构包含基底、可流动介电材料以及氮化镓系(GaN-based)半导体层。基底具有坑洞(pit)从该基底的上表面暴露出来,可流动介电材料填满坑洞,并且氮化镓系半导体层设置在基底和可流动介电材料之上。Some embodiments of the present invention provide a semiconductor structure including a substrate, a flowable dielectric material, and a GaN-based semiconductor layer. The substrate has pits exposed from an upper surface of the substrate, the flowable dielectric material fills the pits, and a gallium nitride-based semiconductor layer is disposed over the substrate and the flowable dielectric material.
本发明的一些实施例提供高电子迁移率晶体管(HEMT),此高电子迁移率晶体管(HEMT)包含氮化铝基底,氮化铝基底具有多个坑洞从氮化铝基底的上表面暴露出来,以及填满这些坑洞的硼磷硅酸盐玻璃。此高电子迁移率晶体管还包含设置在氮化铝基底和硼磷硅酸盐玻璃之上的氮化镓半导体层、设置在氮化镓半导体层之上的氮化镓铝半导体层,以及设置在氮化镓铝半导体层之上的源极电极、漏极电极和栅极电极。Some embodiments of the present invention provide a high electron mobility transistor (HEMT) comprising an aluminum nitride substrate having a plurality of cavities exposed from an upper surface of the aluminum nitride substrate , and the borophosphosilicate glass that fills these craters. The high electron mobility transistor also includes a gallium nitride semiconductor layer disposed on the aluminum nitride substrate and borophosphosilicate glass, a gallium aluminum nitride semiconductor layer disposed on the gallium nitride semiconductor layer, and a gallium nitride semiconductor layer disposed on the A source electrode, a drain electrode, and a gate electrode over the aluminum gallium nitride semiconductor layer.
本发明的一些实施例提供半导体结构的制造方法,此方法包含提供基底,基底具有坑洞(pit)从基底的上表面暴露出来,在基底上形成可流动介电材料,执行热处理,使可流动介电材料回流(reflow)至且填满坑洞,执行平坦化工艺,移除可流动介电材料在坑洞以外的部分且暴露出基底的上表面,以及在平坦化工艺之后,在基底之上形成氮化镓系半导体层。Some embodiments of the present invention provide a method of fabricating a semiconductor structure, the method comprising providing a substrate having pits exposed from an upper surface of the substrate, forming a flowable dielectric material on the substrate, performing a heat treatment to make the flowable The dielectric material reflows to and fills the pits, a planarization process is performed to remove the portion of the flowable dielectric material outside the pits and expose the upper surface of the substrate, and after the planarization process, between the substrates GaN-based semiconductor layer is formed on it.
本发明的半导体结构可应用于多种类型的半导体装置,为让本发明的特征和优点能更明显易懂,下文特举出应用于高电子迁移率晶体管的实施例,并配合所附图式,作详细说明如下。The semiconductor structure of the present invention can be applied to various types of semiconductor devices. In order to make the characteristics and advantages of the present invention more obvious and easy to understand, the following specifically lists the embodiments applied to high electron mobility transistors, and cooperates with the accompanying drawings , as detailed below.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。为了使图式清楚显示,图式中各个不同的元件可能未依照比例绘制,其中:In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those skilled in the art, other drawings can also be obtained according to these drawings without any creative effort. For clarity of the drawings, various elements in the drawings may not be drawn to scale, wherein:
图1A至图1E是根据本发明的一些实施例,说明形成基底结构在各个不同阶段的剖面示意图。1A to 1E are schematic cross-sectional views illustrating various stages of forming a base structure according to some embodiments of the present invention.
图2是根据本发明的一些实施例,显示使用图1E的基底结构所形成的高电子迁移率晶体管的剖面示意图。FIG. 2 is a schematic cross-sectional view showing a high electron mobility transistor formed using the substrate structure of FIG. 1E according to some embodiments of the present invention.
具体实施方式Detailed ways
以下揭露提供了许多的实施例或示例,用于实施所提供的半导体结构的不同组件。各组件和其配置的具体示例描述如下,以简化本发明实施例的说明。当然,这些仅仅是示例,并非用以限定本发明实施例。举例而言,叙述中若提及第一组件形成在第二组件之上,可能包含第一和第二组件直接接触的实施例,也可能包含额外的组件形成在第一和第二组件之间,使得它们不直接接触的实施例。此外,本发明实施例可能在不同的示例中重复参考数字和/或字母。如此重复是为了简明和清楚,而非用以表示所讨论的不同实施例之间的关系。The following disclosure provides a number of embodiments or examples for implementing different components of the provided semiconductor structures. Specific examples of each component and its configuration are described below to simplify the description of the embodiments of the present invention. Certainly, these are only examples, and are not intended to limit the embodiments of the present invention. For example, if it is mentioned in the description that the first component is formed on the second component, it may include an embodiment in which the first and second components are in direct contact, and may also include an additional component formed between the first and second components , so that they are not in direct contact with the example. In addition, embodiments of the present invention may repeat reference numerals and/or letters in different instances. This repetition is for brevity and clarity rather than to show the relationship between the different embodiments discussed.
以下描述实施例的一些变化。在不同图式和说明的实施例中,相似的组件符号被用来标示相似的组件。可以理解的是,在方法的前、中、后可以提供额外的步骤,且一些所叙述的步骤可在该方法的其他实施例被取代或删除。Some variations of the embodiment are described below. In the different drawings and described embodiments, similar reference numerals are used to designate similar components. It is understood that additional steps may be provided before, during, and after the method, and that some recited steps may be substituted or deleted in other embodiments of the method.
本发明实施例提供了半导体结构和高电子迁移率晶体管(HEMT)及其制造方法。通常,包含氮化镓系半导体材料的半导体装置形成于陶瓷基底上。由于透过粉末冶金形成的陶瓷基底会有坑洞在陶瓷基底的表面上,所以当陶瓷基底用于半导体工艺时,在基底上形成的材料层会形成于坑洞中,而降低半导体装置的制造良品率。为了提升半导体装置的制造良品率,本发明实施例提供一种半导体结构的制造方法,其包含将可流动介电材料形成于基底上,透过热处理使可流动介电材料回流(reflow)至且填满坑洞,接着对可流动介电材料执行平坦化工艺,以暴露出基底的上表面,使得基底可提供平坦表面以用于后续的半导体工艺。Embodiments of the present invention provide a semiconductor structure, a high electron mobility transistor (HEMT) and a manufacturing method thereof. Generally, semiconductor devices including GaN-based semiconductor materials are formed on ceramic substrates. Since the ceramic substrate formed by powder metallurgy has pits on the surface of the ceramic substrate, when the ceramic substrate is used in a semiconductor process, the material layer formed on the substrate will be formed in the pits, reducing the manufacturing of semiconductor devices. Yield rate. In order to improve the manufacturing yield of semiconductor devices, an embodiment of the present invention provides a method for manufacturing a semiconductor structure, which includes forming a flowable dielectric material on a substrate, and reflowing the flowable dielectric material to and through heat treatment. The cavity is filled, and then a planarization process is performed on the flowable dielectric material to expose the upper surface of the substrate, so that the substrate can provide a flat surface for subsequent semiconductor processes.
图1A至图1E是根据本发明的一些实施例,说明形成图1E所示的基底结构100’在各个不同阶段的剖面示意图。请参考图1A,提供基底102。基底102可以是圆形的,并且基底102的直径P可以是4英寸或以上,例如6英寸、8英寸或12英寸,以适用于半导体工业的制造设备。1A to 1E are schematic cross-sectional views illustrating various stages of forming the base structure 100' shown in FIG. 1E according to some embodiments of the present invention. Referring to FIG. 1A , a substrate 102 is provided. The base 102 may be circular, and the diameter P of the base 102 may be 4 inches or more, such as 6 inches, 8 inches or 12 inches, to be suitable for manufacturing equipment in the semiconductor industry.
基底102本质上存有一些缺陷104,缺陷104包含在基底102内的孔洞103,以及从基底102上表面暴露出来的坑洞(pit)105。在一些实施例中,基底102是陶瓷基底,其透过粉末冶金将陶瓷粉末高温烧结所形成。举例而言,基底102是氮化铝(AlN)基底、碳化硅(SiC)基底、蓝宝石(Sapphire)基底或类似基底。在将陶瓷粉末烧结以制造基底102期间,陶瓷粉末之间的空隙逐渐缩小并且消灭。在陶瓷粉末烧结之后,陶瓷粉末之间的空隙并不会完全消失。因此,一些缺陷104仍存留于基底102内部和表面。此外,即使将烧结后的基底102进行抛光研磨,以移除表面的坑洞105,基底102内的孔洞103将会暴露出来,而产生新的坑洞105于基底102的上表面。The substrate 102 essentially has some defects 104 , and the defects 104 include holes 103 in the substrate 102 and pits 105 exposed from the upper surface of the substrate 102 . In some embodiments, the substrate 102 is a ceramic substrate, which is formed by sintering ceramic powder at high temperature through powder metallurgy. For example, the substrate 102 is an aluminum nitride (AlN) substrate, a silicon carbide (SiC) substrate, a sapphire (Sapphire) substrate or the like. During the sintering of the ceramic powders to manufacture the substrate 102, the voids between the ceramic powders are gradually reduced and eliminated. After the ceramic powder is sintered, the voids between the ceramic powder will not completely disappear. Therefore, some defects 104 still remain inside and on the surface of the substrate 102 . In addition, even if the sintered substrate 102 is polished to remove the surface pits 105 , the holes 103 in the substrate 102 will be exposed, and new pits 105 will be formed on the upper surface of the substrate 102 .
在一些实施例中,基底102是用于制造含有氮化镓系(GaN-based)半导体层的半导体装置,例如发光二极管(light-emitting diode,LED)、高频装置或高压装置。高频装置或高压装置可以是例如,高电子迁移率晶体管(HEMT)、肖特基二极管(schottky bipolardiode,SBD)、双载体晶体管(bipolar junction transistor,BJT)、接面场效晶体管(junction field effect transistor,JFET)、绝缘栅双极晶体管(insulated gatebipolar transistor,IGBT)。In some embodiments, the substrate 102 is used for manufacturing semiconductor devices including GaN-based semiconductor layers, such as light-emitting diodes (light-emitting diodes, LEDs), high-frequency devices or high-voltage devices. The high frequency device or high voltage device may be, for example, a high electron mobility transistor (HEMT), a schottky bipolar diode (SBD), a bipolar junction transistor (BJT), a junction field effect transistor (junction field effect transistor) transistor, JFET), insulated gate bipolar transistor (insulated gate bipolar transistor, IGBT).
由于在基底102上表面上存在坑洞105,所以后续成长于基底102上表面的材料也会成长于坑洞105中。随着半导体组件尺寸的微缩化,基底102上表面的坑洞105成为半导体装置的致命缺陷(killer defects),而降低半导体装置的制造良品率。因此,需克服基底上表面的坑洞所造成的低制造良品率的问题。Since there are pits 105 on the upper surface of the substrate 102 , the material subsequently grown on the upper surface of the substrate 102 will also grow in the pits 105 . With the miniaturization of the size of the semiconductor device, the pits 105 on the upper surface of the substrate 102 become killer defects of the semiconductor device and reduce the yield rate of the semiconductor device. Therefore, it is necessary to overcome the problem of low manufacturing yield caused by the pits on the upper surface of the substrate.
应注意的是,尽管如图1A所绘示的坑洞105具有弧形的剖面轮廓,然而坑洞105的型态并非以此为限。实际上,坑洞105可具有不规则的剖面轮廓。在图1A的剖面示意图中,坑洞105可具有在横向上量测的各自宽度W,以及在纵向上量测的各自深度D。在本发明实施例中,当坑洞105的深度D大于其宽度W时,可定义坑洞105的尺寸为其深度D。反之,当坑洞105的宽度W大于其深度D时,可定义坑洞105的尺寸为其宽度W。一般而言,坑洞105的尺寸可以在约0.5微米(μm)至约15微米的范围内。It should be noted that although the pothole 105 as shown in FIG. 1A has an arc-shaped cross-sectional profile, the shape of the pothole 105 is not limited thereto. In practice, the pothole 105 may have an irregular cross-sectional profile. In the schematic cross-sectional view of FIG. 1A , the potholes 105 may have respective widths W measured in the lateral direction, and respective depths D measured in the longitudinal direction. In the embodiment of the present invention, when the depth D of the pit 105 is greater than the width W thereof, the dimension of the pit 105 can be defined as its depth D. Conversely, when the width W of the pit 105 is greater than the depth D, the dimension of the pothole 105 can be defined as its width W. Generally, the size of the pits 105 may range from about 0.5 microns (μm) to about 15 microns.
请参考图1B,在基底102的上表面上形成可流动介电材料106,并且可流动介电材料106填入坑洞105中,且顺应于坑洞105的轮廓。可流动介电材料106于基底102的上表面上具有厚度T1。在一些实施例中,由于大部分的坑洞105的尺寸大于可流动介电材料106的厚度T1,所以大部分的坑洞105并未被可流动介电材料106填满。尽管未显示,可流动介电材料106可将一些尺寸较小的坑洞105填满。Referring to FIG. 1B , a flowable dielectric material 106 is formed on the upper surface of the substrate 102 , and the flowable dielectric material 106 is filled into the cavity 105 and conforms to the contour of the cavity 105 . The flowable dielectric material 106 has a thickness T1 on the upper surface of the substrate 102 . In some embodiments, most of the cavities 105 are not filled by the flowable dielectric material 106 because the size of most of the cavities 105 is larger than the thickness T1 of the flowable dielectric material 106 . Although not shown, flowable dielectric material 106 may fill some of the smaller sized cavities 105 .
在本发明实施例中,形成于基底102上的可流动介电材料106在室温下是固态的,并且可透过热处理加热可流动介电材料106,使其具有类似液态的可流动性,而发生回流(reflow)。即,可流动介电材料106是在低温不具有可流动性,而在高温具有可流动性的一种介电材料。在一些实施例中,可流动介电材料106可以是旋转涂布玻璃(spin-on glass,SOG)、硼磷硅酸盐玻璃(borophosphosilicate glass,BPSG)、磷硅酸盐玻璃(phosphosilicate glass,PSG)类似材料或前述的组合。可透过旋转涂布(spin-oncoating)、化学气相沉积(CVD)、类似方法或前述的组合形成可流动介电材料106。In the embodiment of the present invention, the flowable dielectric material 106 formed on the substrate 102 is solid at room temperature, and the flowable dielectric material 106 can be heated through heat treatment to make it have a flowability similar to a liquid state, and Reflow occurs. That is, the flowable dielectric material 106 is a dielectric material that does not have flowability at low temperatures but has flowability at high temperatures. In some embodiments, the flowable dielectric material 106 may be spin-on glass (SOG), borophosphosilicate glass (BPSG), phosphosilicate glass (PSG) ) similar materials or a combination of the foregoing. The flowable dielectric material 106 can be formed by spin-oncoating, chemical vapor deposition (CVD), similar methods, or a combination thereof.
接着,在形成可流动介电材料106之后,对可流动介电材料106形成于其上的基底102执行热处理150,使可流动介电材料106可具有流动性,以进行回流。如图1C所示,可流动介电材料回流(reflow)至坑洞105中,并且将坑洞105的填满。通常,沉积介电材料的厚度至少要大于坑洞尺寸才能将坑洞填满。在本发明实施例中,使用可流动介电材料106,并且透过热处理150使可流动介电材料106回流至坑洞105中,以将坑洞105填满,所以可流动介电材料106的厚度T1可以小于坑洞105的尺寸。这可大幅减少用于填充坑洞的介电材料的沉积厚度和工艺时间,进而降低制造成本。Next, after the flowable dielectric material 106 is formed, a heat treatment 150 is performed on the substrate 102 on which the flowable dielectric material 106 is formed, so that the flowable dielectric material 106 may have fluidity for reflow. As shown in FIG. 1C , the flowable dielectric material reflows into the cavity 105 and fills up the cavity 105 . Usually, the thickness of the deposited dielectric material must be at least greater than the size of the hole to fill the hole. In the embodiment of the present invention, the flowable dielectric material 106 is used, and the flowable dielectric material 106 is reflowed into the pit 105 through the heat treatment 150 to fill the pit 105, so the flowable dielectric material 106 The thickness T1 may be smaller than the size of the dimple 105 . This can greatly reduce the deposition thickness and process time of the dielectric material used to fill the pits, thereby reducing manufacturing costs.
在可流动介电材料106为旋转涂布玻璃(SOG)的实施例中,热处理150的温度可在约300℃至约500℃的范围内,例如约350℃至约450℃,并且热处理时间可在约20分钟至60约分钟的范围内。当热处理温度小于300℃时,旋转涂布玻璃(SOG)可能无法发生回流,而当热处理温度大于500℃时,旋转涂布玻璃(SOG)的流动性太高,在降温之后,旋转涂布玻璃(SOG)与基底102之间可能会出现裂痕,甚至导致基底102破裂。在可流动介电材料106为旋转涂布玻璃(SOG)的实施例中,当可流动介电材料106在基底102上表面上的厚度T1约大于坑洞105尺寸的0.15,例如约为坑洞尺寸的0.15至0.3的范围内时,在热处理150之后,回流的可流动介电材料106可将坑洞105填满。In embodiments where the flowable dielectric material 106 is spin-on-glass (SOG), the temperature of the heat treatment 150 can be in the range of about 300°C to about 500°C, such as about 350°C to about 450°C, and the heat treatment time can be In the range of about 20 minutes to about 60 minutes. When the heat treatment temperature is less than 300°C, spin-on-coated glass (SOG) may not be able to reflow, and when the heat-treatment temperature is greater than 500°C, the fluidity of spin-on-coated glass (SOG) is too high. Cracks may occur between the (SOG) and the substrate 102 , even causing the substrate 102 to break. In an embodiment where the flowable dielectric material 106 is spin-on-glass (SOG), when the thickness T1 of the flowable dielectric material 106 on the upper surface of the substrate 102 is greater than about 0.15 of the size of the pit 105, for example, about In the range of 0.15 to 0.3 of the dimension, the reflowed flowable dielectric material 106 can fill the cavity 105 after the heat treatment 150 .
在可流动介电材料106为硼磷硅酸盐玻璃(BPSG)的实施例中,热处理150的温度可在约800℃至约1000℃的范围内,例如约850℃至约950℃,并且热处理时间可在约20分钟至60分钟的范围内。当热处理温度小于800℃时,硼磷硅酸盐玻璃(BPSG)可能无法发生回流,而当热处理温度大于1000℃时,硼磷硅酸盐玻璃(BPSG)的流动性太高,在降温之后,硼磷硅酸盐玻璃(BPSG)与基底102之间可能会出现裂痕,甚至导致基底102破裂。在可流动介电材料106为硼磷硅酸盐玻璃(BPSG)的实施例中,当可流动介电材料106在基底102上表面上的厚度T1约大于坑洞尺寸的0.3,例如约为坑洞尺寸的0.3至0.6的范围内时,并且在热处理150之后,回流的可流动介电材料106可将坑洞105填满。In embodiments where the flowable dielectric material 106 is borophosphosilicate glass (BPSG), the temperature of the heat treatment 150 may be in the range of about 800°C to about 1000°C, such as about 850°C to about 950°C, and the heat treatment The time may range from about 20 minutes to 60 minutes. When the heat treatment temperature is less than 800°C, borophosphosilicate glass (BPSG) may not be able to reflow, and when the heat treatment temperature is greater than 1000°C, the fluidity of borophosphosilicate glass (BPSG) is too high. After cooling, Cracks may occur between the borophosphosilicate glass (BPSG) and the substrate 102 , even causing the substrate 102 to crack. In an embodiment where the flowable dielectric material 106 is borophosphosilicate glass (BPSG), when the thickness T1 of the flowable dielectric material 106 on the upper surface of the substrate 102 is greater than about 0.3 of the pit size, for example, about In the range of 0.3 to 0.6 of the hole size, and after the heat treatment 150 , the reflowed flowable dielectric material 106 can fill the hole 105 .
在热处理150之后,对可流动介电材料106执行平坦化工艺160,例如化学机械研磨(CMP)。如图1D所示,在平坦化工艺160之后,移除可流动介电材料106在坑洞105以外的部分,使得基底102上表面暴露出来。可流动介电材料106在坑洞105中的剩余部分106’的上表面与基底102的上表面大致上共平面。在一些实施例中,由于基底102的研磨选择性大于可流动介电材料106,所以在平坦化工艺之后,可流动介电材料106的剩余部分106’的上表面可略低于基底102的上表面。After the thermal treatment 150 , a planarization process 160 , such as chemical mechanical polishing (CMP), is performed on the flowable dielectric material 106 . As shown in FIG. 1D , after the planarization process 160 , the portion of the flowable dielectric material 106 outside the hole 105 is removed, so that the upper surface of the substrate 102 is exposed. The upper surface of the remaining portion 106' of the flowable dielectric material 106 in the cavity 105 is substantially coplanar with the upper surface of the substrate 102. In some embodiments, since the substrate 102 has a greater polishing selectivity than the flowable dielectric material 106, the upper surface of the remaining portion 106' of the flowable dielectric material 106 may be slightly lower than the upper surface of the substrate 102 after the planarization process. surface.
在平坦化工艺160之后,形成基底结构100。相较于基底102,基底结构100具有大致上平坦的上表面,以提供半导体装置形成于其上。After the planarization process 160, the base structure 100 is formed. Compared with the substrate 102 , the base structure 100 has a substantially flat upper surface for forming semiconductor devices thereon.
值得注意的是,在热处理150之后,可流动介电材料106的热稳定性会提升。例如,对于热处理150之后的旋转涂布玻璃(SOG)而言,旋转涂布玻璃(SOG)发生二次回流的温度需要约大于400℃,旋转涂布玻璃(SOG)才会再次具有可流动性。例如,对于热处理150之后的硼磷硅酸盐玻璃(BPSG)而言,硼磷硅酸盐玻璃(BPSG)发生二次回流的温度需要约大于1100℃,硼磷硅酸盐玻璃(BPSG)才会再次具有可流动性。因此,当使用基底结构100于后续半导体工艺时,工艺温度上限取决于可流动介电材料106(也即,剩余部分106’)发生二次回流的温度。举例而言,如果以硼磷硅酸盐玻璃(BPSG)填充坑洞105,后续半导体工艺的温度上限可达到约1100℃。Notably, after thermal treatment 150, the thermal stability of flowable dielectric material 106 is improved. For example, for spin on glass (SOG) after heat treatment 150, the temperature at which the spin on glass (SOG) undergoes secondary reflow needs to be greater than about 400° C. before the spin on glass (SOG) becomes flowable again. . For example, for borophosphosilicate glass (BPSG) after heat treatment 150°C, the temperature at which borophosphosilicate glass (BPSG) undergoes secondary reflow needs to be greater than about 1100°C for borophosphosilicate glass (BPSG) to will be mobile again. Therefore, when using the base structure 100 in subsequent semiconductor processes, the upper process temperature limit depends on the temperature at which the secondary reflow of the flowable dielectric material 106 (ie, the remaining portion 106') occurs. For example, if the cavity 105 is filled with borophosphosilicate glass (BPSG), the upper temperature limit of the subsequent semiconductor process can reach about 1100°C.
在一些实施例中,如图1E所示,可选择地在基底102的上表面和可流动介电材料106的剩余部分106’的上表面上全面地形成盖层108,以得到基底结构100’。In some embodiments, as shown in FIG. 1E , a capping layer 108 is optionally fully formed on the upper surface of the substrate 102 and the upper surface of the remaining portion 106 ′ of the flowable dielectric material 106 to obtain the base structure 100 ′. .
与可流动介电材料106相比,盖层108是在高温具有良好热稳定性高质量的膜。在一些实施例,盖层108是透过热成长形成的高质量绝缘层,例如由四乙氧基硅烷(tetraethoxysilane,TEOS)制得的氧化硅。在另一些实施例中,盖层108是透过电浆增强化学气相沉积(PECVD)形成的介电层,例如氧化硅、氮化硅、氮氧化硅、碳化硅、类似材料或前述的组合。盖层108可提供较高质量的表面以形成半导体装置。此外,如果后续半导体工艺使用略高于可流动介电材料106发生二次回流的温度的工艺温度,可避免可流动介电材料106(也即,剩余部分106’)因二次回流而直接影响形成于其上的半导体材料。Capping layer 108 is a high quality film with good thermal stability at high temperatures compared to flowable dielectric material 106 . In some embodiments, the capping layer 108 is a high-quality insulating layer formed by thermal growth, such as silicon oxide made of tetraethoxysilane (TEOS). In some other embodiments, the capping layer 108 is a dielectric layer formed by plasma enhanced chemical vapor deposition (PECVD), such as silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, similar materials or combinations thereof. The capping layer 108 can provide a higher quality surface for forming semiconductor devices. In addition, if the subsequent semiconductor process uses a process temperature slightly higher than the temperature at which the secondary reflow of the flowable dielectric material 106 occurs, the direct impact of the flowable dielectric material 106 (ie, the remaining portion 106 ′) due to the secondary reflow can be avoided. The semiconductor material formed thereon.
在另一些实施例中,盖层108是扩散阻障层,例如钛、氮化钛、氮化钽、类似材料或前述的组合,并且可透过物理气相沉积(physical vapor deposition,PVD)、溅镀(sputter)、类似沉积方法或前述的组合形成扩散阻障层。因此,盖层108可防止来自基底102材料的原子(例如,来自氮化铝基底的铝)扩散至上方的半导体材料。In other embodiments, the capping layer 108 is a diffusion barrier layer, such as titanium, titanium nitride, tantalum nitride, similar materials, or combinations thereof, and can be deposited by physical vapor deposition (PVD), sputtering Sputtering, similar deposition methods, or a combination of the foregoing form the diffusion barrier layer. Capping layer 108 thus prevents atoms from the material of substrate 102 (eg, aluminum from an aluminum nitride substrate) from diffusing into the semiconductor material above.
在本发明实施例中,基底结构100或100’具有平坦的上表面,以形成包含氮化镓系(GaN-based)半导体材料的装置于其上。包含氮化镓系(GaN-based)半导体材料的半导体装置可以是例如发光二极管(LED)、高电子迁移率晶体管(HEMT)、肖特基二极管(SBD)、双载体晶体管(BJT)、接面场效晶体管(JFET)、绝缘栅双极晶体管(IGBT)或类似装置。以下,以高电子迁移率晶体管(HEMT)作为示例,说明形成半导体装置于图1E的基底结构100’上。In an embodiment of the present invention, the base structure 100 or 100' has a planar upper surface for forming devices including GaN-based semiconductor materials thereon. Semiconductor devices containing gallium nitride-based (GaN-based) semiconductor materials can be, for example, light emitting diodes (LEDs), high electron mobility transistors (HEMTs), Schottky diodes (SBDs), dual carrier transistors (BJTs), junction Field Effect Transistors (JFETs), Insulated Gate Bipolar Transistors (IGBTs), or similar devices. Hereinafter, taking a high electron mobility transistor (HEMT) as an example, the formation of a semiconductor device on the base structure 100' in FIG. 1E will be described.
请参考图2,图2是根据本发明的一些实施例,显示使用图1E的基底结构100’所形成的高电子迁移率晶体管的剖面示意图。Please refer to FIG. 2 . FIG. 2 is a schematic cross-sectional view showing a high electron mobility transistor formed using the base structure 100' of FIG. 1E according to some embodiments of the present invention.
高电子迁移率晶体管(HEMT)的崩溃电压(breakdown voltage)主要取决于作为通道层的氮化镓(GaN)半导体层的厚度。举例而言,氮化镓半导体层的厚度增加1微米可提升高电子迁移率晶体管(HEMT)的崩溃电压(breakdown voltage)约100伏特。在形成氮化镓半导体层的磊晶成长工艺期间,需要使用具有高热传导性和高机械强度的基底来沉积氮化镓半导体材料于其上,否则可能造成基底弯曲,甚至破裂。因此,相较于硅基底,氮化铝基底具有较高热传导性和较高机械强度,以形成较厚的氮化镓半导体层在氮化铝基底上。举例而言,在硅基底表面上形成的氮化镓半导体层的厚度约为2至4微米。在氮化铝基底表面上形成的氮化镓半导体层的厚度可达到5微米至15微米。The breakdown voltage of a high electron mobility transistor (HEMT) mainly depends on the thickness of a gallium nitride (GaN) semiconductor layer as a channel layer. For example, increasing the thickness of the GaN semiconductor layer by 1 μm can increase the breakdown voltage of a high electron mobility transistor (HEMT) by about 100 volts. During the epitaxial growth process for forming the GaN semiconductor layer, it is necessary to use a substrate with high thermal conductivity and high mechanical strength to deposit the GaN semiconductor material thereon, otherwise the substrate may be bent or even cracked. Therefore, compared with the silicon substrate, the aluminum nitride substrate has higher thermal conductivity and higher mechanical strength, so as to form a thicker gallium nitride semiconductor layer on the aluminum nitride substrate. For example, the thickness of the gallium nitride semiconductor layer formed on the surface of the silicon substrate is about 2 to 4 microns. The thickness of the gallium nitride semiconductor layer formed on the surface of the aluminum nitride substrate can reach 5 microns to 15 microns.
请参考图2,提供图1E的基底结构100’。图2显示了图1E的基底结构100’的一部分,其中基底结构100’的此部分中具有一些坑洞105,并且高电子迁移率晶体管200形成于基底结构100’的此部分上。在图2所示的实施例中,基底102是氮化铝基底。Referring to FIG. 2 , the base structure 100' of FIG. 1E is provided. FIG. 2 shows a portion of the base structure 100' of FIG. 1E, wherein the portion of the base structure 100' has some cavities 105 therein, and a high electron mobility transistor 200 is formed on the portion of the base structure 100'. In the embodiment shown in FIG. 2, substrate 102 is an aluminum nitride substrate.
由于制造高电子迁移率晶体管的一些工艺的温度可能高于500℃,所以在此实施例中,旋转涂布玻璃(SOG)并不适合应用于填充坑洞105。另外,相较于磷硅酸盐玻璃(PSG)相比,硼磷硅酸盐玻璃(BPSG)的回流性较好。也就是说,相较于磷硅酸盐玻璃(PSG),可沉积较低厚度的硼磷硅酸盐玻璃(BPSG),并且以较短的热处理时间和较低的热处理温度填满坑洞105。因此,在此实施例中,可流动介电材料106是二次回流温度可达到1100℃的硼磷硅酸盐玻璃(BPSG)。Spin-on-glass (SOG) is not suitable for filling the cavity 105 in this embodiment because some processes for manufacturing high electron mobility transistors may have a temperature higher than 500°C. In addition, borophosphosilicate glass (BPSG) has better reflow properties than phosphosilicate glass (PSG). That is, borophosphosilicate glass (BPSG) can be deposited to a lower thickness and fill the cavity 105 with a shorter heat treatment time and lower heat treatment temperature than PSG. . Thus, in this embodiment, the flowable dielectric material 106 is borophosphosilicate glass (BPSG) with a secondary reflow temperature up to 1100°C.
盖层108的材料可以是透过使用四乙氧基硅烷(TEOS)于炉管氧化而形成的氧化硅。盖层108覆盖基底102的上表面和填充坑洞105的可流动介电材料106(或称剩余部分106’)的上表面。The material of the capping layer 108 may be silicon oxide formed by oxidation in a furnace using tetraethoxysilane (TEOS). The capping layer 108 covers the upper surface of the substrate 102 and the upper surface of the flowable dielectric material 106 (or remaining portion 106') filling the cavity 105.
接着,在盖层108的上表面上形成缓冲层110,在缓冲层110上形成氮化镓半导体层112。在氮化镓半导体层112上形成氮化镓铝半导体层114。在一些实施例中,在盖层108与缓冲层110之间可形成晶种层(未显示)。Next, a buffer layer 110 is formed on the upper surface of the cap layer 108 , and a gallium nitride semiconductor layer 112 is formed on the buffer layer 110 . The aluminum gallium nitride semiconductor layer 114 is formed on the gallium nitride semiconductor layer 112 . In some embodiments, a seed layer (not shown) may be formed between the capping layer 108 and the buffer layer 110 .
晶种层的材料可以是氮化铝(AlN)、氧化铝(Al2O3)、氮化铝镓(AlGaN)、碳化硅(SiC)、铝(Al)或前述的组合所形成,且晶种层可为单一或多层结构。晶种层可由磊晶成长工艺形成,例如金属有机化学气相沉积(metal organic chemical vapor deposition,MOCVD)、氢化物气相磊晶法(hydride vapor phase epitaxy,HVPE)、分子束磊晶法(molecular beam epitaxy,MBE)、前述的组合或类似方法。The material of the seed layer can be formed of aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), aluminum gallium nitride (AlGaN), silicon carbide (SiC), aluminum (Al) or a combination of the foregoing, and the crystal The seed layer can be a single or multilayer structure. The seed layer can be formed by epitaxial growth process, such as metal organic chemical vapor deposition (metal organic chemical vapor deposition, MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (molecular beam epitaxy) , MBE), a combination of the foregoing, or similar methods.
缓冲层110可减缓后续形成于缓冲层110上方的氮化镓半导体层112的应变,以防止缺陷形成于上方的氮化镓半导体层112中,应变是由氮化镓半导体层112与基底102之间的不匹配造成。在一些实施例中,缓冲层110的材料可以是AlN、GaN、AlxGa1-xN(其中0<x<1)、前述的组合或类似材料。缓冲层110可由磊晶成长工艺形成,例如金属有机化学气相沉积(MOCVD)、氢化物气相磊晶法(HVPE)、分子束磊晶法(MBE)、前述的组合或类似方法。尽管在如图2所示的实施例中,缓冲层110为单层结构,然而缓冲层110也可以是多层结构。此外,在一些实施例中,缓冲层110的材料是由晶种层的材料和磊晶工艺时通入的气体所决定。The buffer layer 110 can relieve the strain of the gallium nitride semiconductor layer 112 subsequently formed above the buffer layer 110 to prevent defects from forming in the upper gallium nitride semiconductor layer 112. The strain is caused by the relationship between the gallium nitride semiconductor layer 112 and the substrate 102 caused by a mismatch between them. In some embodiments, the material of the buffer layer 110 may be AlN, GaN, AlxGa1 - xN (where 0<x<1), a combination of the foregoing or similar materials. The buffer layer 110 can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), combinations of the foregoing, or similar methods. Although in the embodiment shown in FIG. 2 , the buffer layer 110 is a single-layer structure, the buffer layer 110 may also be a multi-layer structure. In addition, in some embodiments, the material of the buffer layer 110 is determined by the material of the seed layer and the gas introduced during the epitaxy process.
二维电子气(two-dimensional electron gas,2DEG)(未显示)形成于氮化镓半导体层112与氮化镓铝半导体层114之间的异质界面上。在一些实施例中,氮化镓半导体层112和氮化镓铝半导体层114中没有掺杂物。在一些其他实施例中,氮化镓半导体层112和氮化镓铝半导体层114可具有掺杂物,例如n型掺杂物或p型掺杂物。氮化镓半导体层112和氮化镓铝半导体层114可由磊晶成长工艺形成,例如金属有机化学气相沉积(MOCVD)、氢化物气相磊晶法(HVPE)、分子束磊晶法(MBE)、前述的组合或类似方法。A two-dimensional electron gas (2DEG) (not shown) is formed on the heterointerface between the GaN semiconductor layer 112 and the AlGaN semiconductor layer 114 . In some embodiments, there is no dopant in the gallium nitride semiconductor layer 112 and the aluminum gallium nitride semiconductor layer 114 . In some other embodiments, the gallium nitride semiconductor layer 112 and the aluminum gallium nitride semiconductor layer 114 may have dopants, such as n-type dopants or p-type dopants. The gallium nitride semiconductor layer 112 and the aluminum gallium nitride semiconductor layer 114 can be formed by an epitaxial growth process, such as metal organic chemical vapor deposition (MOCVD), hydride vapor phase epitaxy (HVPE), molecular beam epitaxy (MBE), A combination of the foregoing or similar methods.
在图2所示的实施例中,由于基底102为具有高热传导性和高机械强度的氮化铝基底,所以可沉积氮化镓半导体层112的厚度T2约在5微米至15微米。In the embodiment shown in FIG. 2 , since the substrate 102 is an aluminum nitride substrate with high thermal conductivity and high mechanical strength, the thickness T2 of the deposited gallium nitride semiconductor layer 112 is about 5 microns to 15 microns.
接着,在氮化镓半导体层112和氮化镓铝半导体层114中形成隔离结构116,以定义出主动区50。隔离结构116的材料可以是介电材料,例如氧化硅、氮化硅、氮氧化硅、类似材料或前述的组合,并且可透过蚀刻工艺和沉积工艺形成隔离结构116。Next, an isolation structure 116 is formed in the GaN semiconductor layer 112 and the AlGaN semiconductor layer 114 to define the active region 50 . The material of the isolation structure 116 can be a dielectric material, such as silicon oxide, silicon nitride, silicon oxynitride, similar materials or a combination thereof, and the isolation structure 116 can be formed through an etching process and a deposition process.
接着,在主动区50中在氮化镓铝半导体层114上形成源极/漏极电极118和介于源极/漏极电极118之间的栅极电极120,以形成高电子迁移率晶体管200。在一些实施例中,源极/漏极电极118和栅极电极120的材料可以是导电材料,例如金属、金属氮化物或半导体材料。金属可以是金(Au)、镍(Ni)、铂(Pt)、钯(Pd)、铱(Ir)、钛(Ti)、铬(Cr)、钨(W)、铝(Al)、铜(Cu)、类似材料、前述的组合或前述的多层。半导体材料可以是多晶硅或多晶锗。形成源极电极118和栅极电极120的步骤可以包含在氮化镓铝半导体层114上沉积导电材料,并且将导电材料图案化来形成源极/漏极电极118和栅极电极120。源极/漏极电极118与栅极电极120可以在相同工艺中形成,或者也可以在不同工艺中各自形成。Next, a source/drain electrode 118 and a gate electrode 120 interposed between the source/drain electrodes 118 are formed on the AlGaN semiconductor layer 114 in the active region 50 to form a high electron mobility transistor 200 . In some embodiments, the material of the source/drain electrode 118 and the gate electrode 120 may be a conductive material, such as a metal, a metal nitride, or a semiconductor material. Metals can be gold (Au), nickel (Ni), platinum (Pt), palladium (Pd), iridium (Ir), titanium (Ti), chromium (Cr), tungsten (W), aluminum (Al), copper ( Cu), similar materials, combinations of the foregoing, or multiple layers of the foregoing. The semiconductor material can be polycrystalline silicon or polycrystalline germanium. The step of forming the source electrode 118 and the gate electrode 120 may include depositing a conductive material on the AlGaN semiconductor layer 114 and patterning the conductive material to form the source/drain electrode 118 and the gate electrode 120 . The source/drain electrodes 118 and the gate electrodes 120 may be formed in the same process, or may be formed in different processes.
如图2所示,由于可流动介电材料106(也即剩余部分106’)填满基底102上表面的坑洞105,所以形成于基底102上方的材料层不会形成于坑洞105中,因此提升高电子迁移率晶体管200的制造良品率。As shown in FIG. 2, since the flowable dielectric material 106 (that is, the remaining portion 106') fills the cavity 105 on the upper surface of the substrate 102, the material layer formed above the substrate 102 will not be formed in the cavity 105, Therefore, the manufacturing yield of the high electron mobility transistor 200 is improved.
综上所述,本发明实施例提供一种半导体结构的制造方法,其包含将可流动介电材料形成在基底上,透过热处理使可流动介电材料回流(reflow)至且填满坑洞,接着对可流动介电材料执行平坦化工艺,以暴露出基底的上表面,使得基底可提供平坦表面以用于后续的半导体工艺。In summary, the embodiments of the present invention provide a method for manufacturing a semiconductor structure, which includes forming a flowable dielectric material on a substrate, and reflowing the flowable dielectric material to and filling the cavity through heat treatment. , and then perform a planarization process on the flowable dielectric material to expose the upper surface of the substrate, so that the substrate can provide a flat surface for subsequent semiconductor processes.
此外,本发明实施例利用热处理使可流动介电材料回流至坑洞中以将坑洞填满,使得形成可流动介电材料的厚度可以小于坑洞的尺寸。因此,可大幅减少用于填充坑洞的介电材料的沉积厚度和工艺时间,进而降低工艺成本。In addition, the embodiments of the present invention use heat treatment to reflow the flowable dielectric material into the hole to fill the hole, so that the thickness of the flowable dielectric material can be smaller than the size of the hole. Therefore, the deposition thickness and processing time of the dielectric material for filling the pit can be greatly reduced, thereby reducing the processing cost.
以上概述数个实施例,以便在本领域技术人员可以更理解本发明实施例的观点。在本领域技术人员应该理解,他们能以本发明实施例为基础,设计或修改其他工艺和结构,以达到与在此介绍的实施例相同的目的和/或优势。在本领域技术人员也应该理解到,此类等效的工艺和结构并无悖离本发明的精神与范围,且他们能在不违背本发明的精神和范围之下,做各式各样的改变、取代和替换。Several embodiments are summarized above so that those skilled in the art can better understand the viewpoints of the embodiments of the present invention. Those skilled in the art should understand that they can design or modify other processes and structures based on the embodiments of the present invention, so as to achieve the same purpose and/or advantages as the embodiments introduced here. Those skilled in the art should also understand that such equivalent processes and structures do not depart from the spirit and scope of the present invention, and they can make various changes without departing from the spirit and scope of the present invention. Alter, replace and replace.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810447296.XA CN110473919A (en) | 2018-05-11 | 2018-05-11 | Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810447296.XA CN110473919A (en) | 2018-05-11 | 2018-05-11 | Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN110473919A true CN110473919A (en) | 2019-11-19 |
Family
ID=68504131
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810447296.XA Pending CN110473919A (en) | 2018-05-11 | 2018-05-11 | Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110473919A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113539789A (en) * | 2020-04-22 | 2021-10-22 | X-Fab德州公司 | Method for manufacturing silicon carbide device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001097787A (en) * | 1999-10-01 | 2001-04-10 | Murata Mfg Co Ltd | Method for forming flattened film, ceramic substrate, and electronic component |
CN107481982A (en) * | 2017-08-08 | 2017-12-15 | 中国科学院半导体研究所 | AlN substrate efficient heat dissipation HEMT device and its preparation method |
US20180047557A1 (en) * | 2016-06-24 | 2018-02-15 | Quora Technology, Inc. | Polycrystalline ceramic substrate and method of manufacture |
-
2018
- 2018-05-11 CN CN201810447296.XA patent/CN110473919A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001097787A (en) * | 1999-10-01 | 2001-04-10 | Murata Mfg Co Ltd | Method for forming flattened film, ceramic substrate, and electronic component |
US20180047557A1 (en) * | 2016-06-24 | 2018-02-15 | Quora Technology, Inc. | Polycrystalline ceramic substrate and method of manufacture |
CN107481982A (en) * | 2017-08-08 | 2017-12-15 | 中国科学院半导体研究所 | AlN substrate efficient heat dissipation HEMT device and its preparation method |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113539789A (en) * | 2020-04-22 | 2021-10-22 | X-Fab德州公司 | Method for manufacturing silicon carbide device |
US12176207B2 (en) | 2020-04-22 | 2024-12-24 | X-FAB Texas, Inc. | Method for manufacturing a silicon carbide device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI705570B (en) | Semiconductor device and manufacturing method thereof | |
JP7136828B2 (en) | Semiconductor structures, high electron mobility transistors, and methods of making semiconductor structures | |
CN110036485B (en) | Lateral high electron mobility transistor with integrated clamp diode | |
TWI692868B (en) | Semiconductor structure | |
US20200373420A1 (en) | Semiconductor structure and method for forming the same | |
US10453947B1 (en) | Semiconductor structure and high electron mobility transistor with a substrate having a pit, and methods for fabricating semiconductor structure | |
CN104134689A (en) | HEMT device and manufacturing method thereof | |
JP2021506116A (en) | Systems and methods for integrated devices on processed circuit boards | |
CN114303248B (en) | Nitrogen-based semiconductor device and method for manufacturing the same | |
TW201810654A (en) | Semiconductor structure, HEMT structure and forming method thereof | |
TWI676237B (en) | Semiconductor devices, high electron mobility transistors and methods for fabricating semiconductor devices | |
US10790143B1 (en) | Semiconductor structure, high electron mobility transistor, and method for fabricating semiconductor structure | |
CN110098249A (en) | Semiconductor structure and its manufacturing method | |
CN110473919A (en) | Semiconductor structure, high electron mobility transistor and semiconductor structure manufacturing method | |
TWI693716B (en) | Semiconductor devices and methods for fabricating the same | |
CN111785773A (en) | Semiconductor structure, high electron mobility transistor, and method of manufacturing the semiconductor structure | |
CN112640127B (en) | Semiconductor device and method of manufacturing the same | |
TWI692039B (en) | Manufacturing method of semiconductor device | |
CN111276538B (en) | Semiconductor device and method for manufacturing the same | |
TWI740058B (en) | Semiconductor devices and methods for forming same | |
KR20210148834A (en) | Electro-migration reduction | |
CN112242442B (en) | Semiconductor structure and forming method thereof | |
CN111863590B (en) | Substrate structure and method for manufacturing semiconductor structure comprising same | |
TWI726744B (en) | Semiconductor substrate, semiconductor device, and method for forming semiconductor structure | |
CN111863955B (en) | Semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |