CN110470085A - 一种三轴有压冻结制冰方法 - Google Patents

一种三轴有压冻结制冰方法 Download PDF

Info

Publication number
CN110470085A
CN110470085A CN201910693624.9A CN201910693624A CN110470085A CN 110470085 A CN110470085 A CN 110470085A CN 201910693624 A CN201910693624 A CN 201910693624A CN 110470085 A CN110470085 A CN 110470085A
Authority
CN
China
Prior art keywords
pressure
temperature
cooler
temperature control
freezing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910693624.9A
Other languages
English (en)
Other versions
CN110470085B (zh
Inventor
王宝生
杨维好
孙培鑫
付冉
黄家会
杨志江
韩涛
张驰
张涛
王衍森
任彦龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Mining and Technology CUMT
Original Assignee
China University of Mining and Technology CUMT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Mining and Technology CUMT filed Critical China University of Mining and Technology CUMT
Priority to CN201910693624.9A priority Critical patent/CN110470085B/zh
Publication of CN110470085A publication Critical patent/CN110470085A/zh
Application granted granted Critical
Publication of CN110470085B publication Critical patent/CN110470085B/zh
Priority to PCT/CN2020/094367 priority patent/WO2021017639A1/zh
Priority to JP2020564403A priority patent/JP7044418B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • F25D29/005Mounting of control devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

本发明公开了一种三轴有压冻结制冰方法,包括装置组装、获取温控参数、加压冻结以及力学试验四个步骤,装置包括加载系统、温控系统、测温系统,加载系统包括加载框架、压力体积控制器、三轴压力室以及注油泵;本装置及制冰方法相结合实现了试样在加压、冻结、实验的全过程应力场、温度场可控,可以制得不同冻结压力和冻结速度条件下满足三轴试验规范的试样,适合研究冻结压力和冻结速度对冰力学特性的影响;实验效率高,不涉及有毒或易燃易爆材料,安全环保。

Description

一种三轴有压冻结制冰方法
技术领域
本发明涉及冰力学特性研究技术领域,具体涉及一种三轴有压冻结制冰方法。
背景技术
许多年来,各国学者采用三轴试验进行了广泛的冰力学特性的研究,揭示了固态冰在不同加载条件下的变形及破坏规律;但是对于固态冰形成前,即结冰期(相变阶段)物理环境如冻结压力、冻结速度等对冰力学特性的影响尚无人讨论;研究冻结压力和冻结速度对冰力学特性影响,实验技术上需实现未冻水加压、冻结和三轴实验全过程应力状态和温度场可控。
CN108088757A公开了一种纯水有压冻结成冰三轴试验装置,其通过在三轴压力室内加装可溶外壳,用于在冻结过程中保证试样几何精度,可溶外壳在冰样成形一段时间后被彻底溶解,之后再进行三轴力学实验;该方案存在以下问题:1、由于可溶外壳的存在,冻结过程中围压无法直接作用在试样上,所以试样应力状态并非严格可控;2、由于可溶外壳的存在,可能出现试样还未完全冻结外壳已被溶解,造成制样几何精度不达标;3、为保证冻结制样几何精度,试样完全冻结后较长时间外壳才被溶解,产生时间浪费,实验效率低;4、溶剂材料多为有毒或易燃易爆类有机溶剂,存在安全隐患。
发明内容
针对上述存在的技术不足,本发明的目的是提供一种三轴有压冻结制冰方法,其适用于制取不同冻结压力、冻结速度下几何精度满足三轴实验规范的标准圆柱形冰试样,实现了从液态水加压、冻结至三轴力学实验全过程应力状态和温度场可控,所得冰样几何精度满足各类实验规范要求。
为解决上述技术问题,本发明采用如下技术方案:
本发明提供一种三轴有压冻结制冰方法,具体包括以下步骤:
S1、该装置包括加载系统、温控系统、测温系统;加载系统包括加载框架、压力体积控制器、三轴压力室以及注油泵,三轴压力室包括活塞、承压圆筒、法兰盘、底板以及上下对称设置的两个堵头,活塞穿过承压圆筒顶部预设的中心孔,中心孔与活塞密封配合,承压圆筒底部扣合密封有凸型法兰盘并与其螺栓连接,法兰盘放置在底板上,上下两个堵头分别与活塞下端、法兰盘上端螺栓连接,上下两个堵头之间设置试样,试样与两堵头外侧包裹有柔性膜,加载框架内部上下端面分别与活塞上端面、底板下端面接触,压力体积控制器、注油泵通过预设在法兰盘内的进液管连通三轴压力室内;温控系统包括分别与设在承压圆筒侧面的第一循环通道、设在承压圆筒顶面的第二循环通道以及设在法兰盘顶面的第三循环通道连通的第一降温机、第二降温机以及第三降温机,温控系统还包括包覆在承压圆筒和法兰盘外侧的保温层;测温系统包括电性连接的测温计和解调仪,测温计一端穿过承压圆筒并伸入到三轴压力室内部;
S2、获取温控参数;该温控参数为第一降温机、第二降温机以及第三降温机的温度控制参数,在加压冻结制冰前利用有限元数值计算模拟三轴压力室内温度场随时间变化,通过多步计算,找出温度变化满足要求的温度控制参数,用于冻结制冰时调整装置的温控系统;
S3、加压冻结;在冻结制冰过程中调整加载系统和温控系统,首先启动注油泵,将围压加载介质注满三轴压力室内部,然后以相同的加载速率调整加载框架轴向和压力体积控制器,使试样在静水压力作用下被加压,达到目标压力值后停止压力体积控制器动作,同时调整轴向加载框架以目标压力值稳压伺服,完成加载系统调整;在冻结制冰过程中按照步骤S2获取的温度控制参数实时调整温控系统中第一降温机、第二降温机以及第三降温机的温度设定值;
S4、力学试验;冻结制样完成后,根据实验设计继续调整加载系统和温控系统,使得冻结后的冰样受力状态和温度场达到力学实验要求,然后即可进行冰力学实验。
优选地,柔性膜材质选用聚四氟乙烯膜,围压加载介质选用航空液压油。
优选地,步骤S2中有限元数值计算方法包括以下步骤:
1)有限元建模;在有限元软件中建立与原型尺寸相同的三轴压力室有限元几何模型,然后输入模型材料参数,所有参数均与实际值相同,最后划分网格,生成有限元模型,准备计算;
2)数值计算;具体步骤包括:
a、在有限元软件中输入模型初始温度,围压加载介质初始温度为-16~-5℃,根据冻结速度需要选择,温度越低冻结速度越快,其他部分温度为室温16℃;
b、选择初始温控参数,即初始状态下,三轴压力室内第一循环通道、第二循环通道、第三循环通道三条冷媒循环通道中冷媒介质的温度,实际操作时,分别由第一降温机、第二降温机以及第三降温机对冷媒介质控温实现;
c、求解设置并开始计算;
d、试算判断;
e、数值计算完成;不断重复上述试算过程步骤d,直至数值计算中试样完全结冰,计算完成;
3)温控参数提取:数值计算完成后,提取计算过程中控温参数随时间变化,用以在实际操作中调整温控系统中的第一降温机、第二降温机以及第三降温机。
优选地,步骤c求解设置并开始计算的具体方法为:计算前先进行求解设置,设置单次求解步长为30秒,i表示计算步数,即当i=40时,数值计算模拟1200秒时压力室内温度场分布,然后开始第一步计算。
优选地,步骤d试算判断的方法为:当前步即第i步计算完成后,判断该步计算结果是否满足围压加载介质平均温度较初始温度变化<1℃和试样一维单向冻结两个条件,若满足,继续进行下一步计算,若不满足,调整温控参数后重新进行本步计算。
本发明的有益效果在于:本发明实现了试样在加压、冻结、实验的全过程应力场、温度场可控,可以制得不同冻结压力和冻结速度条件下满足三轴试验规范的试样,适合研究冻结压力和冻结速度对冰力学特性的影响;实验效率高,不涉及有毒或易燃易爆材料,安全环保。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种三轴有压冻结制冰方法中各结构连接图;
图2为本发明实施例提供的三轴压力室的结构示意图;
图3为本发明实施例提供的承压圆筒的结构示意图;
图4为本发明实施例提供的第三循环通道的结构示意图;
图5为本发明实施例提供的第一循环通道的结构示意图;
图6为本发明实施例提供的法兰盘的结构示意图;
图7为本发明实施例提供的有限元数值计算方法流程图。
附图标记说明:
1、加载框架;2、活塞;3、保温层;4、围压加载介质;5、柔性膜;6、测温计;7、试样;8、进液管;9、法兰盘;10、第一循环通道;11、堵头;12、承压圆筒、第二循环通道;14、第三循环通道;15、第一降温机;152、第二降温机;153、第三降温机;16、注油泵;17、底板;18、解调仪;19、压力体积控制器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1至图6所示,一种三轴有压冻结制冰方法,具体包括以下步骤:
S1、装置组装;该装置包括加载系统、温控系统、测温系统;加载系统包括加载框架1、压力体积控制器19、三轴压力室以及注油泵16,三轴压力室包括活塞2、承压圆筒12、法兰盘9、底板17以及上下对称设置的两个堵头11,活塞2穿过承压圆筒12顶部预设的中心孔,中心孔与活塞2密封配合,承压圆筒12底部扣合密封有凸型法兰盘9并与其螺栓连接,法兰盘9放置在底板17上,上下两个堵头11分别与活塞2下端、法兰盘9上端螺栓连接,上下两个堵头11之间设置试样7,试样7与两堵头11外侧包裹有柔性膜5,加载框架1内部上下端面分别与活塞2上端面、底板17下端面接触,压力体积控制器19、注油泵16通过预设在法兰盘9内的进液管8连通三轴压力室内;温控系统包括分别与设在承压圆筒12侧面的第一循环通道10、设在承压圆筒12顶面的第二循环通道13以及设在法兰盘9顶面的第三循环通道14连通的第一降温机15、第二降温机152以及第三降温机153,温控系统还包括包覆在承压圆筒12和法兰盘9外侧的保温层3;测温系统包括电性连接的测温计6和解调仪18,测温计6一端穿过承压圆筒12并伸入到三轴压力室内部;
S2、获取温控参数;该温控参数为第一降温机15、第二降温机152以及第三降温机153的温度控制参数,在加压冻结制冰前利用有限元数值计算模拟三轴压力室内温度场随时间变化,通过多步计算,找出温度变化满足要求的温度控制参数,用于冻结制冰时调整装置的温控系统;
S3、加压冻结;在冻结制冰过程中调整加载系统和温控系统,首先启动注油泵16,将围压加载介质4注满三轴压力室内部,然后以相同的加载速率调整加载框架1轴向和压力体积控制器19,使试样7在静水压力作用下被加压,达到目标压力值后停止压力体积控制器19动作,同时调整轴向加载框架1以目标压力值稳压伺服,完成加载系统调整;在冻结制冰过程中按照步骤S2获取的温度控制参数实时调整温控系统中第一降温机15、第二降温机152以及第三降温机153的温度设定值;
S4、力学试验;冻结制样完成后,根据实验设计继续调整加载系统和温控系统,使得冻结后的冰样受力状态和温度场达到力学实验要求,然后即可进行冰力学实验。
柔性膜5材质选用聚四氟乙烯膜,围压加载介质4选用航空液压油。
如图7所示,步骤S2中有限元数值计算方法包括以下步骤:
1)有限元建模;在有限元软件中建立与原型尺寸相同的三轴压力室有限元几何模型,然后输入模型材料参数,所有参数均与实际值相同,最后划分网格,生成有限元模型,准备计算;
2)数值计算;具体步骤包括:
a、在有限元软件中输入模型初始温度,围压加载介质4初始温度为-16~-5℃,根据冻结速度需要选择,温度越低冻结速度越快,其他部分温度为室温16℃;
b、选择初始温控参数,即初始状态下,三轴压力室内第一循环通道10、第二循环通道13、第三循环通道14三条冷媒循环通道中冷媒介质的温度,实际操作时,分别由第一降温机15、第二降温机152以及第三降温机153对冷媒介质控温实现;
c、求解设置并开始计算;
d、试算判断;
e、数值计算完成;不断重复上述试算过程步骤d,直至数值计算中试样7完全结冰,计算完成;
3)温控参数提取:数值计算完成后,提取计算过程中控温参数随时间变化,用以在实际操作中调整温控系统中的第一降温机15、第二降温机152以及第三降温机153。
步骤c求解设置并开始计算的具体方法为:计算前先进行求解设置,设置单次求解步长为30秒,i表示计算步数,即当i=40时,数值计算模拟1200秒时压力室内温度场分布,然后开始第一步计算。
步骤d试算判断的方法为:当前步即第i步计算完成后,判断该步计算结果是否满足围压加载介质平均温度较初始温度变化<1℃和试样一维单向冻结两个条件,若满足,继续进行下一步计算,若不满足,调整温控参数后重新进行本步计算。
本发明将圆柱形水样装入三轴压力室内加压冻结直接形成标准圆柱形冰样,实现了加压、冻结、试验三阶段全过程应力状态和温度场可控;本发明技术原理如下:
1、冻胀控制技术
水样冻结成冰的过程中,体积会发生膨胀,称之为“冻胀”;为实现该技术方案,首先要解决冻胀问题。本方案采用侧向变形限制、冻胀量轴向释放的冻结方式,即冻结时,停止压力体积控制器19动作,利用三轴压力室内围压加载介质4体积不变来限制试样7径向尺寸不变;轴向加载设置为稳压伺服状态,当试样7发生冻胀时,未冻水压增大,同时活塞2下端压力增大,加载框架1让压使活塞2相对承压圆筒12上移,试样7长度增大,水压下降至设定值;整个冻结过程不断重复让压,直至试样7中的水完全结冰,制样完成。
2、冻胀控制技术的实现
冻胀控制技术利用三轴压力室内围压加载介质4体积不变来限制试样7径向尺寸不变;因此,在冻结过程中需保持围压加载介质4平均温度不变,否则围压加载介质4体积随平均温度变化而变,无法达到限制试样7径向尺寸的要求,进而难以保证制样几何精度。
冻胀控制技术采用轴向稳压伺服引导冻胀沿轴向发展,该方案可行的前提为试样7在冻结过程中要保证一维单向冻结;若试样7多维多向冻结,将会出现多条冻结锋面;试样7完全冻结前,冻结锋面相互结合,出现冰包水;继续冻结便会出现轴向无法让压、冰样侧面局部鼓胀的现象。
上述两个情况为温度场问题,即要求三轴压力室内温度场发展满足以下两个条件:(1)冻结过程中围压加载介质4平均温度不变;(2)试样7一维单向冻结;本方案可通过温控系统控制三轴压力室内温度场发展,但由于目前尚无能够精确测量高压密封三轴压力室内平均温度的手段,且试样7内部难以布设传感器,无从获取试样7冻结发展状态,故无法通过实时测量反馈的方法调整温控系统;为此,本方案采用有限元数值计算模拟预测三轴压力室内温度场发展,通过多次试算找出满足上述两个条件的温度控制方式,用以在实际操作中控制制样装备的温控系统;需要说明的是,保证冻结过程中围压加载介质4平均温度完全不变是不现实的,通过理论计算,当平均温度变化<1℃时即能保证制样几何精度,因此在数值计算中围压加载介质4平均温度以波动<1℃为标准。
本发明优点:1、压力控制精度高:本方案无可溶外壳,利用围压加载介质体积不变限制试样径向变形,围压直接作用在试样侧面,试样应力状态严格可控;2、本方案不存在溶解外壳问题,试样冻结完全后可立即开展力学实验,实验效率明显提高;3、本方案围压加载介质采用航空液压油,无毒且不可燃,属于常规液压物质,安全性高。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (5)

1.一种三轴有压冻结制冰方法,其特征在于,具体包括以下步骤:
S1、装置组装;该装置包括加载系统、温控系统、测温系统;加载系统包括加载框架、压力体积控制器、三轴压力室以及注油泵,三轴压力室包括活塞、承压圆筒、法兰盘、底板以及上下对称设置的两个堵头,活塞穿过承压圆筒顶部预设的中心孔,中心孔与活塞密封配合,承压圆筒底部扣合密封有凸型法兰盘并与其螺栓连接,法兰盘放置在底板上,上下两个堵头分别与活塞下端、法兰盘上端螺栓连接,上下两个堵头之间设置试样,试样与两堵头外侧包裹有柔性膜,加载框架内部上下端面分别与活塞上端面、底板下端面接触,压力体积控制器、注油泵通过预设在法兰盘内的进液管连通三轴压力室内;温控系统包括分别与设在承压圆筒侧面的第一循环通道、设在承压圆筒顶面的第二循环通道以及设在法兰盘顶面的第三循环通道连通的第一降温机、第二降温机以及第三降温机,温控系统还包括包覆在承压圆筒和法兰盘外侧的保温层;测温系统包括电性连接的测温计和解调仪,测温计一端穿过承压圆筒并伸入到三轴压力室内部;
S2、获取温控参数;该温控参数为第一降温机、第二降温机以及第三降温机的温度控制参数,在加压冻结制冰前利用有限元数值计算模拟三轴压力室内温度场随时间变化,通过多步计算,找出温度变化满足要求的温度控制参数,用于冻结制冰时调整装置的温控系统;
S3、加压冻结;在冻结制冰过程中调整加载系统和温控系统,首先启动注油泵,将围压加载介质注满三轴压力室内部,然后以相同的加载速率调整加载框架轴向和压力体积控制器,使试样在静水压力作用下被加压,达到目标压力值后停止压力体积控制器动作,同时调整轴向加载框架以目标压力值稳压伺服,完成加载系统调整;在冻结制冰过程中按照步骤S2获取的温度控制参数实时调整温控系统中第一降温机、第二降温机以及第三降温机的温度设定值;
S4、力学试验;冻结制样完成后,根据实验设计继续调整加载系统和温控系统,使得冻结后的冰样受力状态和温度场达到力学实验要求,然后即可进行冰力学实验。
2.如权利要求1的三轴有压冻结制冰方法,其特征在于,步骤S1中,柔性膜材质选用聚四氟乙烯膜,步骤S3中,围压加载介质选用航空液压油。
3.如权利要求1的三轴有压冻结制冰方法,其特征在于,步骤S2中有限元数值计算方法包括以下步骤:
1)有限元建模;在有限元软件中建立与原型尺寸相同的三轴压力室有限元几何模型,然后输入模型材料参数,所有参数均与实际值相同,最后划分网格,生成有限元模型,准备计算;
2)数值计算;具体步骤包括:
a、在有限元软件中输入模型初始温度,围压加载介质初始温度为-16~-5℃,根据冻结速度需要选择,温度越低冻结速度越快,其他部分温度为室温16℃;
b、选择初始温控参数,即初始状态下,三轴压力室内第一循环通道、第二循环通道、第三循环通道三条冷媒循环通道中冷媒介质的温度,实际操作时,分别由第一降温机、第二降温机以及第三降温机对冷媒介质控温实现;
c、求解设置并开始计算;
d、试算判断;
e、数值计算完成;不断重复上述试算过程步骤d,直至数值计算中试样完全结冰,计算完成;
3)温控参数提取:数值计算完成后,提取计算过程中控温参数随时间变化,用以在实际操作中调整温控系统中的第一降温机、第二降温机以及第三降温机。
4.如权利要求3的三轴有压冻结制冰方法,其特征在于,步骤c求解设置并开始计算的具体方法为:计算前先进行求解设置,设置单次求解步长为30秒,i表示计算步数,即当i=40时,数值计算模拟1200秒时压力室内温度场分布,然后开始第一步计算。
5.如权利要求3的三轴有压冻结制冰方法,其特征在于,步骤d试算判断的方法为:当前步即第i步计算完成后,判断该步计算结果是否满足围压加载介质平均温度较初始温度变化<1℃和试样一维单向冻结两个条件,若满足,继续进行下一步计算,若不满足,调整温控参数后重新进行本步计算。
CN201910693624.9A 2019-07-30 2019-07-30 一种三轴有压冻结制冰方法 Active CN110470085B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201910693624.9A CN110470085B (zh) 2019-07-30 2019-07-30 一种三轴有压冻结制冰方法
PCT/CN2020/094367 WO2021017639A1 (zh) 2019-07-30 2020-06-04 一种三轴有压冻结制冰方法
JP2020564403A JP7044418B2 (ja) 2019-07-30 2020-06-04 3軸加圧凍結製氷方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910693624.9A CN110470085B (zh) 2019-07-30 2019-07-30 一种三轴有压冻结制冰方法

Publications (2)

Publication Number Publication Date
CN110470085A true CN110470085A (zh) 2019-11-19
CN110470085B CN110470085B (zh) 2020-05-26

Family

ID=68509140

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910693624.9A Active CN110470085B (zh) 2019-07-30 2019-07-30 一种三轴有压冻结制冰方法

Country Status (3)

Country Link
JP (1) JP7044418B2 (zh)
CN (1) CN110470085B (zh)
WO (1) WO2021017639A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111693345A (zh) * 2020-06-09 2020-09-22 中国矿业大学 液体试样柔性外壳及其制造辅助工装、制造方法
WO2021017639A1 (zh) * 2019-07-30 2021-02-04 中国矿业大学 一种三轴有压冻结制冰方法
CN113049396A (zh) * 2021-03-26 2021-06-29 中国矿业大学 一种适用于ct三维重建的有压冻结三轴试验系统及方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112836387A (zh) * 2021-03-01 2021-05-25 西北工业大学 一种水下航行器壳体冷凝器的设计方法
CN113933337B (zh) * 2021-10-13 2024-07-02 中国矿业大学 一种边界主动约束双向冻结冻胀试验装置及其使用方法
CN113984808B (zh) * 2021-10-28 2023-07-21 中国科学院西北生态环境资源研究院 冻结法扩展岩石裂隙的试验方法
CN115420666A (zh) * 2022-09-29 2022-12-02 西南石油大学 一种正冻融土壤气体渗透系数动态连续测试系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004005991U1 (de) * 2004-04-12 2004-10-07 Stiftung Alfred-Wegener-Institut Für Polar- Und Meeresforschung Vorrichtung zur Durchführung eines Analyseverfahrens zur Detektion von räumlichen Spurenelementen-Verteilungsmustern in einer gefrorenen Probe
CN103885496A (zh) * 2014-03-28 2014-06-25 黄斌 一种高低温三轴试验温控装置
CN104764689A (zh) * 2015-04-07 2015-07-08 中国科学院广州能源研究所 一种天然气水合物合成和力学测试一体化压力室
CN108088757A (zh) * 2018-02-02 2018-05-29 中国矿业大学 一种模拟高压水冻结成冰过程的三轴力学试验装置及方法
CN108344643A (zh) * 2018-02-02 2018-07-31 中国矿业大学 一种能模拟深埋人工冻土形成条件的三轴力学试验装置及方法
CN108519405A (zh) * 2018-05-02 2018-09-11 中国科学院寒区旱区环境与工程研究所 一套用于研究土体冻胀过程中力与变形关系的试验设备
CN109695452A (zh) * 2019-01-07 2019-04-30 中国矿业大学 一种能够轴向让压的单层井筒及其施工方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005091229A (ja) 2003-09-18 2005-04-07 Taisei Corp メタンハイドレートの弾性波測定装置およびメタンハイドレートの弾性波測定方法
JP5769107B2 (ja) * 2011-03-30 2015-08-26 国立研究開発法人産業技術総合研究所 ガスハイドレートペレットの破壊強度の試験方法
JP6756512B2 (ja) 2016-03-31 2020-09-16 清水建設株式会社 凍結工法の凍結膨張圧算出方法
CN106644750B (zh) * 2016-12-07 2019-07-05 凌贤长 开放系统冻融土动静三轴测试仪
CN106769563A (zh) * 2016-12-12 2017-05-31 中国科学院武汉岩土力学研究所 土体冻融循环‑动荷载耦合的三轴试验装置及其方法
CN107169236B (zh) * 2017-06-15 2020-09-22 中国水利水电科学研究院 一种基于有限元与离散元耦合的虚拟三轴试验仿真方法
CN108982228B (zh) * 2018-07-14 2020-07-31 中国石油大学(华东) 一种可燃冰沉积物真三轴试验装置
CN109827856A (zh) 2019-02-25 2019-05-31 浙江交通职业技术学院 一种煤矿深井饱和冻结粉砂质泥岩抗压峰值强度确定方法
CN110470085B (zh) * 2019-07-30 2020-05-26 中国矿业大学 一种三轴有压冻结制冰方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202004005991U1 (de) * 2004-04-12 2004-10-07 Stiftung Alfred-Wegener-Institut Für Polar- Und Meeresforschung Vorrichtung zur Durchführung eines Analyseverfahrens zur Detektion von räumlichen Spurenelementen-Verteilungsmustern in einer gefrorenen Probe
CN103885496A (zh) * 2014-03-28 2014-06-25 黄斌 一种高低温三轴试验温控装置
CN104764689A (zh) * 2015-04-07 2015-07-08 中国科学院广州能源研究所 一种天然气水合物合成和力学测试一体化压力室
CN108088757A (zh) * 2018-02-02 2018-05-29 中国矿业大学 一种模拟高压水冻结成冰过程的三轴力学试验装置及方法
CN108344643A (zh) * 2018-02-02 2018-07-31 中国矿业大学 一种能模拟深埋人工冻土形成条件的三轴力学试验装置及方法
CN108519405A (zh) * 2018-05-02 2018-09-11 中国科学院寒区旱区环境与工程研究所 一套用于研究土体冻胀过程中力与变形关系的试验设备
CN109695452A (zh) * 2019-01-07 2019-04-30 中国矿业大学 一种能够轴向让压的单层井筒及其施工方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
单仁亮,白瑶,隋顺猛,杨昊,段俊铭: "《淡水冰三轴压缩力学特性试验研究》", 《应用基础与工程科学学报》 *
孟闻远,郭颍奎: "《冰体力学本构模型的构建》", 《水利水电科技进展》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021017639A1 (zh) * 2019-07-30 2021-02-04 中国矿业大学 一种三轴有压冻结制冰方法
CN111693345A (zh) * 2020-06-09 2020-09-22 中国矿业大学 液体试样柔性外壳及其制造辅助工装、制造方法
CN113049396A (zh) * 2021-03-26 2021-06-29 中国矿业大学 一种适用于ct三维重建的有压冻结三轴试验系统及方法

Also Published As

Publication number Publication date
JP2021534372A (ja) 2021-12-09
CN110470085B (zh) 2020-05-26
JP7044418B2 (ja) 2022-03-30
WO2021017639A1 (zh) 2021-02-04

Similar Documents

Publication Publication Date Title
CN110470085A (zh) 一种三轴有压冻结制冰方法
CN106596297B (zh) 一种能源桩桩-土界面力学行为特性试验设备及方法
CN102590468B (zh) 深部土冻融过程试验系统
CN108956937A (zh) 多参数动态采集的人工地层冻结的实验装置与实验方法
CN207020004U (zh) 一种压裂过程应力冻结实验装置
WO2019148745A1 (zh) 一种能模拟深埋人工冻土形成条件的三轴力学试验装置及方法
CN104749044B (zh) 温度渗流应力(thm)耦合模拟试验系统及其使用方法
CN105784755B (zh) 深海高压条件下岩石热物性测试系统与方法
CN109372499A (zh) 一种地质储层径向流模拟系统
CN105604106A (zh) 长期水平循环荷载下海洋工程桩基础试验模拟设备及方法
CN106645261A (zh) 大型多功能人工冻结平台
CN109236243A (zh) 三维综合性储层水合物模拟分析系统及分析方法
CN109884110A (zh) 一种模拟路基工程冻融破坏现象的室内试验装置及方法
CN111691881B (zh) 含水合物地层受热沉降模拟实验装置及方法
CN106596283A (zh) 一种可精确测量非饱和土变形规律的温控三轴系统
CN112326921A (zh) 多功能冻胀试验系统及其试验方法
CN114216785A (zh) 一种大尺寸真三轴煤岩体多场多相变频压裂试验装置
CN212540400U (zh) 多功能冻胀试验系统
CN109932249A (zh) 堆石料三轴试验装置
Hu et al. Displacement of liquid droplets on micro-grooved surfaces with air flow
CN112326920A (zh) 可分别进行恒应力和无限刚度冻胀试验的试验装置及其试验方法
CN112083025A (zh) 一种伺服式土体冻胀、融沉试验装置及其试验方法
CN110118666A (zh) 一种环保型寒区隧道冻害仿真室内实验系统及其实验方法
Wieberdink Increasing efficiency and power density of a liquid piston air compressor/expander with porous media heat transfer elements
CN116448620A (zh) 考虑温度效应的透明孔隙地层动水注浆试验系统及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant