CN110465170A - 一种脱硫塔和烟气除尘、脱硫及废水处理方法 - Google Patents

一种脱硫塔和烟气除尘、脱硫及废水处理方法 Download PDF

Info

Publication number
CN110465170A
CN110465170A CN201810440436.0A CN201810440436A CN110465170A CN 110465170 A CN110465170 A CN 110465170A CN 201810440436 A CN201810440436 A CN 201810440436A CN 110465170 A CN110465170 A CN 110465170A
Authority
CN
China
Prior art keywords
flue gas
area
zone
pipeline
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810440436.0A
Other languages
English (en)
Other versions
CN110465170B (zh
Inventor
刘淑鹤
齐慧敏
李磊
刘忠生
王学海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinopec Dalian Petrochemical Research Institute Co ltd
China Petroleum and Chemical Corp
Original Assignee
China Petrochemical Corp
Sinopec Dalian Research Institute of Petroleum and Petrochemicals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petrochemical Corp, Sinopec Dalian Research Institute of Petroleum and Petrochemicals filed Critical China Petrochemical Corp
Priority to CN201810440436.0A priority Critical patent/CN110465170B/zh
Publication of CN110465170A publication Critical patent/CN110465170A/zh
Application granted granted Critical
Publication of CN110465170B publication Critical patent/CN110465170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D50/00Combinations of methods or devices for separating particles from gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/48Sulfur compounds
    • B01D53/50Sulfur oxides
    • B01D53/501Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound
    • B01D53/504Sulfur oxides by treating the gases with a solution or a suspension of an alkali or earth-alkali or ammonium compound characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)

Abstract

本发明公开了一种脱硫塔和烟气除尘、脱硫及废水处理方法。一种脱硫塔,由上至下依次为烟气排放区、除雾区、塔盘区、喷淋区和废水处理区;所述的烟气排放区与除雾区通过锥体形变径相连,塔盘区与喷淋区通过倒锥体形变径相连;所述的废水处理区中央通过一块竖直隔板I分为氧化絮凝区和循环清液区,循环清液区顶部通过隔板II将循环清液区与氧化絮凝区及喷淋区完全隔开;所述的竖直隔板I设置过滤介质。本发明在一个塔内进行烟气除尘、脱硫及废水处理,利用烟气对废水进行搅拌实现氧化絮凝浓缩操作,利用竖直隔板两侧的液位差作为推动力实现了脱硫废水的过滤操作,大幅降低占地面积,显著降低装置建设、改造所需的费用及装置的操作费用。

Description

一种脱硫塔和烟气除尘、脱硫及废水处理方法
技术领域
本发明属于工业废气净化领域,涉及一种脱硫塔和烟气除尘、脱硫及废水处理方法。
背景技术
燃煤锅炉烟气及催化裂化催化剂再生烟气中含有二氧化硫及粉尘,二氧化硫及粉尘均是大气污染物的主要组成粉尘,二氧化硫是形成酸雨的主要原因,粒径较小的粉尘是形成的雾霾罪魁祸首之一。
环境污染日益严重,雾霾事件频发,国家对环保的重视程度也越来越高,近年来出台了一系列环境保护的法律法规、国家标准、管理办法。GB 13223-2011 《火电厂大气污染物排放标准》规定:燃煤锅炉烟气粉尘≯30mg/Nm3,新建燃煤锅炉烟气的SO2≯100mg/Nm3;重点地区燃煤锅炉烟气粉尘≯20mg/Nm3,SO2≯50mg/Nm3。《全面实施燃煤电厂超低排放和节能改造工作方案》(环发[2015]164号)中规定燃煤电厂烟气超低排放指标为:烟气粉尘≯10mg/Nm3, SO2≯25mg/Nm3。GB 31570-2015《石油炼制工业污染物排放标准》规定:催化裂化催化剂再生烟气颗粒物≯50mg/Nm3,SO2≯100mg/Nm3;重点地区颗粒物≯30mg/Nm3, SO2≯50mg/Nm3
燃煤锅炉烟气及催化裂化催化剂再生烟气二氧化硫的净化技术分为干法、半干法和湿法三种。湿法脱硫具有脱硫率高、装置运行可靠、操作简单等优点,因而世界各国现有的烟气脱硫技术主要以湿法脱硫为主。传统的湿法脱硫技术主要有石灰石-石膏法、双碱法脱硫、钠碱法脱硫、氨法脱硫法等,大部分采用单塔或双塔进行烟气脱硫,净化后的烟气从塔顶烟囱排放,脱硫废水从塔底抽出进行氧化处理达标后排放或进行脱硫废水再生后返回脱硫塔循环使用。上述烟气脱硫技术主要采用逆流喷淋,碱性浆液从脱硫塔上方进行喷淋,在重力作用下自由沉降与烟气逆流接触实现脱硫反应,但由于喷淋出的液滴直径相对较大,单个液滴与烟气的接触面积很小,为了提高脱硫效率,需要提高浆液循环喷淋的次数,使液滴多次与烟气接触以提高液滴对二氧化硫的吸收效果,因而塔底浆液循环泵的流量很大,电机功率也很大,浆液循环泵的电耗很大,操作费用较高。
烟气中粉尘的粒径较小,大部分在0.1~200µm之间,普通的重力除尘器、惯性除尘器、旋风分离器等除尘设备难以满足烟气除尘的需要,目前烟气除尘技术主要是布袋式除尘技术、静电除尘技术、湿式除尘技术。由于烟气中含有水分,粉尘在布袋式除尘器的滤袋上吸湿黏结,堵塞滤袋的孔隙,因而需频繁对滤袋进行清理或更换,布袋式除尘器的应用受到极大的限制;静电除尘器的主要缺点是造价偏高,安装、维护、管理要求严格,需要高压变电及整流控制设备,电耗较高,且占地面积较大;湿式除尘技术主要通过喷淋水除去烟气中携带的粉尘,粒径较小的液滴与粉尘结合后仍然会随烟气排出烟囱。
CN201110153423.3、CN201310338193.7、CN201310421183.X所公开的脱硫废水处理工艺均设置有絮凝池和氧化罐,絮凝池和氧化罐均需设置搅拌器,并且浆液需要通过机泵输送。CN201310338193.7、CN201310421183.X所公开的除尘脱硫废水处理工艺采用旋液分离器进行固液分离。上述脱硫废水处理工艺流程较长,设备较多,能耗也较大。
由于国家制定的污染排放指标越来越严格,拥有燃煤锅炉的企业及拥有催化装置的炼油厂需对燃煤锅炉、催化裂化装置进行不断改造以满足烟气达标排放。由于大部分燃煤锅炉和催化裂化装置按照以前的旧标准进行建设,在建设时未考虑到烟气需进一步深度除尘脱硫,因而在建设时没有给烟气除尘脱硫改造留出足够的建设用地,均需在现有有限的区域内新建烟气除尘脱硫装置或对旧装置进行改造。上述湿法脱硫技术包含烟气脱硫、脱硫废水氧化处理或再生单元,流程较长,设备较多,占地面积较大,严重制约着除尘脱硫装置的建设和升级改造,部分催化装置和燃煤锅炉因为缺乏足够的空间无法升级改造,导致烟气排放指标无法满足现行国家标准被迫停工或拆毁重建。因而,亟待开发流程短、设备少、占地面积少的烟气脱硫技术。
随着湿式脱硫技术在我国的大规模推广应用,湿式脱硫技术的一个明显且难以克服的缺点逐渐显露出来,该缺点就是排放烟气在烟囱口会产生“白烟”现象,甚至会形成数公里的“白烟长龙”,给人带来强烈的视觉冲击,有时地面还会出现“尘雨”现象。所以,如何能够消除“白烟”现象是目前亟待解决的一个问题。
发明内容
针对现有技术的不足,本发明提供一种脱硫塔和烟气除尘、脱硫及废水处理方法,本发明的脱硫塔集烟气除尘、脱硫及废水处理于一体,本发明方法流程短、设备少、占地面积少,具有广阔的应用前景。
本发明的脱硫塔,由上至下依次为烟气排放区、除雾区、塔盘区、喷淋区和废水处理区;所述的废水处理区中央通过一块竖直的隔板I分为氧化絮凝区和循环清液区,其中氧化絮凝区与喷淋区连通,循环清液区顶部通过隔板II将循环清液区与氧化絮凝区及喷淋区完全隔开。
所述的隔板I设置至少一个开口,优选1~20个,更优选为1~4个,开口面积为隔板I面积的10%~90%,优选为50%~70%;隔板I的开口上固定过滤介质;所述的过滤介质为天然纤维、合成纤维、玻璃丝、金属丝制成的网状结构,网孔大小为0.1~1000µm,优选为5~100µm。
所述的隔板II两端分别与隔板I及循环清液区塔壁连接,隔板I与隔板II连接处的夹角一般为45~165°,优选为120~150°。所述的隔板I和隔板II与塔壁之间密封,避免分隔板两侧的气、液短路。
所述的烟气排放区与除雾区优选通过锥体形变径相连,所述的除雾区与烟气排放区的塔径比为1.2~5;塔盘区与喷淋区优选通过倒锥体形变径相连,喷淋区下方为废水处理区;所述的塔盘区与喷淋区的塔径比为1.2~3。
所述的烟气排放区一般为常规的烟气湿法脱硫工艺中的烟囱结构,所述的烟囱底部与除雾区塔体相连,优选通过锥体形变径与除雾区塔体相连,烟囱顶部设置烟气出口;优选在烟囱顶部设置外套筒,所述的外套筒为上下开口的筒状结构,可以为圆筒状或锥筒状,外套筒上沿高出烟囱顶部一定距离,一般为0.2~10m,优选为0.5~5m,外套筒的下沿低于烟囱的上沿,优选低于烟囱上沿0.5~5m;所述的外套筒与烟囱之间为环形空间,优选底部开口直径为烟囱顶部开口直径的1.01~1.2倍。所述的烟气从烟囱顶部进入外套筒,从外套筒顶部排出,烟气的气速较高,在流经外套筒时会在烟囱与外套筒之间产生负压,空气在负压的吸力作用下流经烟囱与外套筒之间的环形空间进入外套筒上部,空气在外套筒内与烟气混合后一起从外套筒顶部排放,烟气在离开外套筒顶部排放之前就已与空气充分混合,大幅降低了“白烟”生成量。
所述的除雾区设置除雾设备,用于除去烟气携带的液滴,所述的除雾设备可以为旋流除雾器、湿式静电除雾器、丝网除雾器或折流式除雾器等中的一种或几种。
所述的塔盘区可设置一层或多层塔盘,优选塔盘层数为2~6层;所述的塔盘可为一种类型的塔盘或多种类型组合塔盘,包括浮阀塔盘、筛孔型塔盘、导向筛孔型塔盘、固舌塔盘、浮舌塔盘或立体传质塔盘等,用于气液充分接触强化传质实现烟气的深度脱硫,将烟气中的0.1µm~5µm之间的微小粉尘颗粒捕捉下来实现烟气的深度除尘,并将烟气携带的大量微小雾滴捕捉下来降低除雾区的分离负荷。
所述的塔盘区与除雾区之间设置液体分布器,液体分布器连接循环清液管线I,用于将循环清液均匀的分布到塔盘上。
所述的喷淋区上部设置一层或多层喷淋管线,设置多层喷淋管线时,喷淋管线之间的距离为0.5~5m,优选距离为1~2.5m;所述的喷淋管线连接循环清液管线II,喷淋管线上设置有多个雾化喷嘴;所述的喷淋区用于将循环清液雾化,雾化后的小液滴与烟气逆流接触,脱除烟气中携带的粉尘和二氧化硫;所述的喷淋区下部设置烟气入口I,用于连接烟气管线I。
所述的氧化絮凝区靠近塔壁一侧分别连接冲洗水管线、碱性溶液管线I、氧化剂管线、絮凝剂管线和液位计I;所述的冲洗水管线延伸到氧化絮凝区的隔板I一侧,与冲洗水喷淋管相连,冲洗水喷淋管上设置有若干喷嘴,对隔板I上的过滤介质进行冲洗;所述的碱性溶液管线I上设置流量调节阀,用于向脱硫废水中加注碱性溶液调节其pH值;所述的氧化剂管线上设置流量调节阀,用于调节氧化剂的加注量,使脱硫废水中的亚硫酸盐氧化为硫酸盐,使脱硫废水的COD达标;所述的絮凝剂管线用于向脱硫废水中加注絮凝剂,使脱硫废水中的小颗粒粉尘凝聚成大颗粒。
所述的氧化絮凝区底部连接烟气管线II和外排浆液管线;所述的烟气管线II延伸至氧化絮凝区的部分上设置有若干喷嘴,用于对氧化絮凝区的浆液进行搅拌;所述的外排浆液管线用于将氧化絮凝后的浆液外排至后续处理单元,外排浆液管线上设置流量调节阀和pH计;所述的流量调节阀根据液位计I反馈的信号调节外排浆液的流量,用于控制液化絮凝区的液位;所述的pH计用于测量外排浆液的pH值,并将信号经控制器反馈给碱性溶液管线I上的流量调节阀。
所述的循环清液区靠近塔壁一侧连接有新鲜水管线、碱性溶液管线II和液位计II;所述的新鲜水管线上设置流量调节阀,根据液位计II反馈的信号调节新鲜水的流量,用于控制循环清液区的液位;所述的碱性溶液管线II上设置有流量调节阀,用于调节向循环清液区加注的碱性溶液的流量。
所述的循环清液区顶部塔壁上设置通气口,用于保证循环清液区压力平稳,避免压力波动过大对过滤介质造成损害。
所述的循环清液区底部连接清液引出管线,引出管线分为两路,一路管线连接外排清液管线,另一路管线连接循环清液泵,该管线上设置有pH计,循环清液泵经冷却器连接循环清液管线I和循环清液管线II;所述的pH计用于测量循环清液的pH值,并将测量信号经控制器反馈给碱性溶液管线II的调节阀。
本发明的烟气除尘、脱硫及废水处理的方法,包括如下内容:
(1)烟气分两路进入脱硫塔,一路经烟气管线I从脱硫塔的喷淋区下部进入,另一路经烟气管线II从脱硫塔的氧化絮凝区底部进入并穿过氧化絮凝区内的浆液,两路烟气汇合后与喷淋区的循环清液逆流接触脱除烟气中携带的大部分粉尘和二氧化硫,穿过喷淋区的烟气进入塔盘区,在塔盘区与循环清液进行深度除尘脱硫,净化后的烟气经过除雾区除雾后进入烟气排放区,从烟囱顶部进入外套筒与空气充分混合后从烟气排放区顶部排放;
(2)吸收了粉尘和二氧化硫的脱硫浆液进入氧化絮凝区,在经烟气管线II进入的烟气的搅拌作用下与氧化剂、絮凝剂和碱性溶液充分混合,脱硫浆液中的亚硫酸盐被氧化为硫酸盐,脱硫浆液中的小颗粒粉尘絮凝成大颗粒,同时具有一定温度的烟气使脱硫浆液中的水分不断挥发,盐浓度逐渐增加;
(3)脱硫浆液在隔板I两侧液位差的作用下,流经隔板I上的过滤介质实现固液分离,脱硫浆液中的粉尘颗粒被过滤下来留在氧化絮凝区,清液进入循环清液区,氧化絮凝后的浆液从氧化絮凝区底部引出经外排管线进入后续处理单元,冲洗水喷淋管定时对隔板I上的过滤介质进行冲洗,以防粉尘颗粒阻塞过滤介质的孔径;
(4)经过滤介质过滤后进入循环清液区的清液与新鲜水及碱性溶液在循环清液区混合后从循环清液区底部引出,少量清液直接外排以降低循环清液的盐浓度,其余清液经循环清液泵增压后进入冷却器,经冷却器冷却后的清液一部分进入喷淋区,经雾化喷嘴雾化后与烟气逆流接触对烟气进行除尘脱硫,另一部分清液流经液体分布器进入塔盘区,在塔盘上与烟气充分接触强化传质效果实现烟气的深度脱硫,并将烟气中的0.1µm~5µm之间的微小粉尘颗粒捕捉下来,实现烟气的深度除尘,烟气经过喷淋区所携带的大量微小雾滴也被塔盘上的清液捕捉下来,降低了除雾区的分离负荷。
本发明方法中,步骤(1)所述的烟气为燃煤锅炉烟气、燃煤电厂烟气、催化裂化催化剂再生烟气、工艺加热炉烟气、焦化烟气或钢铁烧结烟气等。所述的烟气管线I与烟气管线II进入烟气的量的比例为20~500;喷淋区内循环清液与烟气的比例为5~50L/Nm3,优选比例为8~25L/Nm3,塔盘区内循环清液与烟气的比例3~15L/Nm3
本发明方法中,步骤(1)、(2)和(4)所述的碱性溶液选自氢氧化钠溶液、氢氧化钙溶液、氢氧化镁溶液、碳酸钠溶液、亚硫酸钠溶液、柠檬酸钠溶液、石灰石浆液、氨水或海水等中的一种或几种。
本发明方法中,步骤(2)所述的氧化剂为双氧水、高锰酸钾、重铬酸钾、氯酸钾、硝酸、漂白粉、过氧乙酸、过氧化钠、过氧化钾、过硫酸铵或氯化铁等中的一种或几种,优选为双氧水,氧化剂采用。氧化剂采用溶解于水中或用水稀释后加入氧化絮凝区。
本发明方法中,步骤(2)所述的氧化剂流量根据絮凝浓缩后的浆液化学需氧量(COD)进行调节,COD控制指标为≯60mg/L。
本发明方法中,步骤(2)所述的絮凝剂为硫酸铝、明矾、铝酸钠、三氯化铁、硫酸亚铁、硫酸铁、聚合氯化铝、聚合硫酸铝、聚合磷酸铝、聚合氯化铁、聚合硫酸铁、聚合磷酸铁、聚磷氯化铁、聚磷氯化铝、聚硅酸铁、聚硅酸硫酸铁、聚硅酸硫酸铝、聚合硫酸氯化铁铝、聚合聚铁硅絮凝剂、铝铁共聚复合絮凝剂、聚硅酸絮凝剂、聚丙烯酰胺类絮凝剂等中的一种或几种,絮凝剂的加入量为0.05~2kg/m3
本发明方法中,步骤(3)所述的絮凝浓缩后的浆液pH值控制在7~9,pH在线检测仪位于浆液外排管线上,通过调节碱性溶液管线I上的调节阀来控制脱硫浆液的pH值。
本发明方法中,步骤(3)所述的隔板I两侧的液位差为0.5~6m,并且氧化絮凝区的液位高于循环清液区的液位。
本发明方法中,步骤(3)所述的氧化絮凝区液位高度由外排浆液管线上的调节阀进行控制。
本发明方法中,步骤(3)所述的氧化絮凝区的冲洗水喷淋管定期对隔板I上的过滤介质进行冲洗,冲洗时间间隔一般为0.5~2h。
本发明方法中,步骤(3)所述的循环清液区液位高度由新鲜水管线上的调节阀进行控制。
本发明方法中,步骤(4)所述的循环清液区pH值控制在6~11,优选pH值的控制范围为7~8,pH在线检测仪位于塔底循环泵入口管线上,通过调节碱性溶液管线II上的调节阀来控制循环清液的pH值。
本发明方法中,步骤(3)所述的外排浆液和步骤(4)所述的外排清液进入后续处理单元,可用于制备或生产石膏、亚硫酸钠、亚硫酸氢钠、亚硫酸镁、硫酸镁、氧化镁、硫酸钠、硫酸铵、硫酸氢铵等产品,也可经过滤后达标排放。
与现有技术相比,本发明的优点在于:
1、本发明在脱硫塔下部设置废水处理区,通过两块隔板将废水处理区分为氧化絮凝区和循环清液区,在氧化絮凝区实现了脱硫废水的氧化、絮凝及浓缩;废水处理区中央的竖直隔板上设置过滤介质,利用竖直隔板两侧的液位差作为推动力实现了脱硫浆液的过滤操作。过滤得到的循环清液作为除尘脱硫的循环介质,由于循环清液中不含有粉尘或粉尘含量很低,相比于现有除尘脱硫技术使用含粉尘的浆液作为除尘脱硫的循环介质,该方法除尘效率高。本发明将入口烟气分为两路,其中由氧化絮凝区底部进入的高温烟气对除尘脱硫废液进行搅拌,使氧化絮凝区内的物料充分混合接触,有利于氧化絮凝反应的进行,烟气中的粉尘及含硫氧化物也得到一定的吸收,同时也充分利用了高温烟气余热,使除尘脱硫废水中的水分大量汽化,在氧化絮凝区实现了脱硫废水的初步提浓,降低了后续单元的能耗。本发明省去了常规的搅拌设备和过滤设备,废水处理过程无需耗费额外的能源,极大的降低了装置投资及操作费用。
2、本发明在塔盘区与喷淋区之间设置倒锥体形变径,有利于降低塔盘区气速,强化气液传质效果,提高烟气在塔盘区的除尘效率和脱硫效率,减少雾沫夹带,以降低除雾区的负荷;烟气排放区与除雾区设置锥体形变径,有利于提高烟气的流速,烟气的气速越大,烟气离开烟气排放区后的抬升高度越高,越有利于烟气的扩散,因而烟羽越短。
3、本发明的烟气脱硫除尘塔烟气排放区采用“烟囱+外套筒”的结构,烟气经过除雾区及锥体形变径的加速后,烟气流经外套筒时产生负压将外界空气吸入,烟气与空气在外套筒内充分混合后从外套筒顶部排放,大幅降低了“白烟”生成量。
4、本发明在一个塔内完成了烟气除尘、烟气脱硫及废水处理,实现了烟气深度除尘、脱硫和废水COD达标排放的三重功能,各功能区域协同配合,工艺流程短,大幅降低占地面积,显著降低装置建设、改造所需的费用。
附图说明
图1为本发明脱硫塔结构示意图。
图2为本发明隔板A向结构示意图。
图3为本发明隔板B向结构示意图。
图4为本发明工艺流程示意图。
图中:1-烟气排放区;2-锥体形变径;3-除雾区;4-塔盘区;5-倒锥体形变径;6-喷淋区;6-1-循环清液管线II;6-2-烟气管线I;7-废水处理区;8-氧化絮凝区;8-1-液位计I;8-2 -冲洗水管线;8-3 -碱性溶液管线I;8-4 -氧化剂管线;8-5 -絮凝剂管线;8-6 -外排浆液管线;8-7 -烟气管线II;9-循环清液区;9-1 -液位计II;9-2 -新鲜水管线;9-3-碱性溶液管线II;9-4 -清液引出管线;9-5 -外排清液管线;10-烟气入口;11-除雾器;12-液体分布器;12-1-循环清液管线I;13-塔盘;14-喷淋管线;15-雾化喷嘴;16-通气口;17-冲洗水喷淋管;18-烟气分布管;19-隔板II;20-隔板I;21-过滤介质;22-密封条;23-紧固螺丝;24-加固板;25-冷却器;26-循环清液泵;27-烟囱;28-外套筒。
具体实施方式
下面将结合附图和实施例对本发明进行详细描述。
本发明的脱硫塔,由上至下依次为烟气排放区1、除雾区3、塔盘区4、喷淋区6和废水处理区7;所述的烟气排放区1与除雾区3通过锥体形变径2相连,除雾区3下方为塔盘区4,塔盘区4与喷淋区6通过倒锥体形变径5相连,喷淋区6下方为废水处理区7;所述的废水处理区7中央通过一块竖直的隔板I 20分为氧化絮凝区8和循环清液区9,其中氧化絮凝区8与喷淋区6连通,循环清液区9顶部通过隔板II 19将循环清液区9与氧化絮凝区8及喷淋区6完全隔开。
所述的隔板I 20设置至少一个开口,优选1~20个,更优选为1~4个,开口面积为隔板I 20面积的10%~90%,优选为50%~70%;隔板I 20的开口上固定过滤介质21;所述的过滤介质21为天然纤维、合成纤维、玻璃丝、金属丝制成的网状结构,网孔大小为0.1~1000µm,优选为5~100µm;过滤介质21通过密封条22、紧固螺丝23和加固板24固定于隔板20开口上。
所述的隔板II 19两端分别与隔板I 20及循环清液区9塔壁连接,隔板I 20与隔板II 19连接处的夹角一般为45~165°,优选为120~150°。所述的隔板I 20和隔板II 19与塔壁之间密封,避免分隔板两侧的气、液短路。
所述的除雾区3与烟气排放区1的塔径比为1.2~5;所述的塔盘区4与喷淋区6的塔径比为1.2~3。
所述的烟气排放区1一般为常规的烟气湿法脱硫工艺中的烟囱27结构,所述的烟囱27底部与除雾区3塔体相连,优选通过锥体形变径2与除雾区10塔体相连,烟囱27顶部设置烟气出口;优选在烟囱27顶部设置外套筒28,所述的外套筒28为上下开口的筒状结构,可以为圆筒状或锥筒状,外套筒28上沿高出烟囱27顶部一定距离,一般为0.2~10m,优选为0.5~5m,外套筒28的下沿低于烟囱27的上沿,优选低于烟囱27上沿0.5~5m;所述的外套筒28底部开口的直径大于烟囱27顶部开口直径,优选为烟囱27顶部开口直径的1.01~1.2倍;所述的烟气从烟囱27顶部进入外套筒28,从外套筒28顶部排出,烟气的气速较高,在流经外套筒28时会在烟囱27与外套筒28之间产生负压,空气在负压的吸力作用下流经烟囱27与外套筒28之间的环形空间进入外套筒28上部,空气在外套筒28内与烟气混合后一起从外套筒28顶部排放,烟气在离开外套筒28顶部排放之前就已与空气充分混合,大幅降低了“白烟”生成量。
所述的除雾区3设置除雾设备,用于除去烟气携带的液滴,所述的除雾设备可以为旋流除雾器、湿式静电除雾器、丝网除雾器或折流式除雾器等中的一种或几种。
所述的塔盘区4可设置一层或多层塔盘13,优选塔盘层数为2~6层;所述的塔盘可为一种类型的塔盘或多种类型组合塔盘,包括浮阀塔盘、筛孔型塔盘、导向筛孔型塔盘、固舌塔盘、浮舌塔盘或立体传质塔盘等,用于气液充分接触强化传质实现烟气的深度脱硫,将烟气中的0.1µm~5µm之间的微小粉尘颗粒捕捉下来实现烟气的深度除尘,并将烟气携带的大量微小雾滴捕捉下来降低除雾区3的分离负荷。
所述的塔盘区4与除雾区3之间设置液体分布器12,液体分布器12连接循环清液管线I 12-1,用于将循环清液均匀的分布到塔盘13上。
所述的喷淋区6上部设置一层或多层喷淋管线14,设置多层喷淋管线14时,喷淋管线14之间的距离为0.5~5m,优选距离为1~2.5m;所述的喷淋管线14连接循环清液管线II 6-1,喷淋管线14上设置有多个雾化喷嘴15;所述的喷淋区6用于将循环清液雾化,雾化后的小液滴与烟气逆流接触,脱除烟气中携带的粉尘和二氧化硫;所述的喷淋区6下部设置烟气入口10,用于连接烟气管线I 6-2。
所述的氧化絮凝区8靠近塔壁一侧分别连接冲洗水管线8-2、碱性溶液管线I 8-3、氧化剂管线8-4、絮凝剂管线8-5和液位计I 8-1;所述的冲洗水管线8-2延伸到氧化絮凝区8的隔板I 20一侧,与冲洗水喷淋管17相连,冲洗水喷淋管管线17上设置有若干喷嘴,对隔板I 20上的过滤介质21进行冲洗;所述的碱性溶液管线I 8-3上设置流量调节阀,用于向脱硫废水中加注碱性溶液调节其pH值;所述的氧化剂管线8-4上设置流量调节阀,用于调节氧化剂的加注量,使脱硫废水中的亚硫酸盐氧化为硫酸盐,使脱硫废水的COD达标;所述的絮凝剂管线8-5用于向脱硫废水中加注絮凝剂,使脱硫废水中的小颗粒粉尘凝聚成大颗粒。
所述的氧化絮凝区8底部连接烟气管线II 8-7和外排浆液管线8-6;所述的烟气管线II 8-7延伸至氧化絮凝区8的部分上设置有若干喷嘴,用于对氧化絮凝区8的浆液进行搅拌;所述的外排浆液管线8-6用于将氧化絮凝后的浆液外排至后续处理单元,外排浆液管线8-6上设置流量调节阀和pH计;所述的流量调节阀根据液位计I 8-1反馈的信号调节外排浆液的流量,用于控制液化絮凝区的液位;所述的pH计用于测量外排浆液的pH值,并将信号经控制器反馈给碱性溶液管线I 8-3上的流量调节阀。
所述的循环清液区9靠近塔壁一侧连接有新鲜水管线9-2、碱性溶液管线II9-3和液位计II9-1;所述的新鲜水管线9-2上设置流量调节阀,根据液位计II 9-1反馈的信号调节新鲜水的流量,用于控制循环清液区9的液位;所述的碱性溶液管线II 9-3上设置有流量调节阀,用于调节向循环清液区9加注的碱性溶液的流量。
所述的循环清液区9顶部塔壁上设置通气口16,用于保证循环清液区9压力平稳,避免压力波动过大对过滤介质21造成损害。
所述的循环清液区9底部连接清液引出管线9-4,引出管线分为两路,一路管线连接外排清液管线9-5,另一路管线连接循环清液泵26,该管线上设置有pH计,循环清液泵26经冷却器25连接循环清液管线I 12-1和循环清液管线II 6-1;所述的pH计用于测量循环清液的pH值,并将测量信号经控制器反馈给碱性溶液管线II 9-3的调节阀。
实施例1
一种脱硫塔,由上至下依次为烟气排放区1、除雾区3、塔盘区4、喷淋区6和废水处理区7,烟气排放区1与除雾区3通过锥体形变径2相连,除雾区3下方为塔盘区4,塔盘区4与喷淋区6通过倒锥体形变径5相连,喷淋区6下方为废水处理区7。
除雾区3内设置湿式静电除雾器11,液体分布器12设置于湿式静电除雾器11下方,塔盘区4设置于液体分布器12下方,塔盘区4共设置4层塔盘,选用筛孔塔盘;喷淋区6共设置3层喷淋管线14,喷淋管线14之间的距离为2m,雾化喷嘴15均匀的布置在喷淋管线14上。
废水处理区7中央通过一块竖直的隔板I 20分为氧化絮凝区8和循环清液区9,其中氧化絮凝区8与喷淋区6连通,循环清液区9顶部通过隔板II 19将循环清液区9与氧化絮凝区8及喷淋区6完全隔开,隔板I 20与隔板II 19通过焊接方式相连,隔板I 20、隔板II 19与塔壁之间通过焊接方式相连。在隔板I20上设置有一个开口,位于氧化絮凝区8一侧的开口区域固定有孔径为100µm的滤布21,滤布21通过密封条22和紧固螺丝23固定于分隔板I20上;位于循环清液区9一侧的开口区域通过加固板24对滤布21进行加固。氧化絮凝区8设置冲洗水喷淋管17,面向滤布21一侧的冲洗水喷淋管17上设置有喷嘴;氧化絮凝区8下部设置有烟气分布管18;循环清液区9上部的塔壁上设置有通气口16。
一种烟气除尘、脱硫及废水处理的方法,本实施例处理的烟气为含有粉尘、二氧化硫的催化裂化催化剂再生烟气,但并不仅限于此类烟气。本实施例的烟气除尘、脱硫及废水处理的方法具体包括以下内容:
(1)烟气分两路进入脱硫塔,一路经烟气管线I 6-2从脱硫塔的喷淋区6下部进入,另一路经烟气管线II 8-7从脱硫塔的氧化絮凝区8底部进入并穿过氧化絮凝区8内的浆液,其中烟气管线I 6-2与烟气管线II 8-7中烟气流量比为20,两路烟气汇合后与喷淋区6的循环清液逆流接触脱除烟气中携带的大部分粉尘和二氧化硫,穿过喷淋区6的烟气进入塔盘区4,在塔盘区4与循环清液进行深度除尘脱硫,净化后的烟气经过除雾区3除雾后进入烟气排放区1,从烟囱27顶部进入外套筒28,在外套筒28内与空气混合后从烟气排放区1顶部排出;
(2)吸收了粉尘和二氧化硫的脱硫浆液进入氧化絮凝区8,通过调节氢氧化钠溶液(32wt%)的流量来控制氧化絮凝区8脱硫废水的pH值为7.5~8,脱硫浆液在经烟气管线II 8-7进入的烟气的搅拌作用下与双氧水、聚硅酸絮凝剂和氢氧化钠溶液充分混合,脱硫浆液中的亚硫酸盐被氧化为硫酸盐,脱硫浆液中的小颗粒粉尘絮凝成大颗粒,同时具有一定温度的烟气使脱硫浆液中的水分不断挥发,盐浓度逐渐增加;
(3)通过调节外排浆液8-6的流量控制氧化絮凝区8的液位高度,通过调节新鲜水9-2的流量控制循环清液区9的液位高度,使氧化絮凝区8的液位与循环清液区9的液位差保持在1.5~2.5m,脱硫浆液在隔板I20两侧液位差的作用下,流经隔板I 20上的滤布21实现固液分离,脱硫浆液中的粉尘颗粒被过滤下来留在氧化絮凝区8,清液进入循环清液区9,氧化絮凝后的浆液从氧化絮凝区8底部引出经外排管线进入后续处理单元,冲洗水喷淋管17每隔0.5小时对隔板I 20上的滤布21进行冲洗,以防粉尘颗粒阻塞滤布21的孔径;
(4)通过调节进入循环清液区9的氢氧化钠溶液(32wt%)流量来控制循环清液区9脱硫废水的pH值为7.0~7.5,经滤布21过滤后进入循环清液区9的清液与新鲜水及氢氧化钠溶液在循环清液区9混合后从循环清液区9底部引出,少量清液直接外排以降低循环清液的硫酸钠含量,其余清液经循环清液泵26增压后进入冷却器25冷却至40℃,经冷却器25冷却后的清液一部分进入喷淋区6,经雾化喷嘴15雾化后与烟气逆流接触对烟气进行除尘脱硫,另一部分清液流经液体分布器12进入塔盘区4,在塔盘13上与烟气充分接触强化传质效果实现烟气的深度脱硫,并将烟气中的0.1µm~5µm之间的微小粉尘颗粒捕捉下来,实现烟气的深度除尘,烟气经过喷淋区6所携带的大量微小雾滴也被塔盘13上的清液捕捉下来,降低了除雾区3的分离负荷。
实施例2
某石化企业催化裂化烟气量烟气温度为140℃,其中SO2浓度为950mg/Nm3、粉尘浓度为210mg/Nm3,采用本发明所述的脱硫塔,烟囱27直径为3m,外套筒直径为3.5m,塔上部壳体3直径为9m,塔下部壳体7的直径为6m。从烟气排放区1排放的烟气温度为53℃,粉尘含量为8.6mg/Nm3,SO2含量为15mg/Nm3,优于GB 31570-2015《石油炼制工业污染物排放标准》的规定(催化裂化催化剂再生烟气颗粒物≯50mg/Nm3,SO2≯100mg/Nm3;重点地区颗粒物≯30mg/Nm3,SO2≯50mg/Nm3);在环境温度为10℃、环境风速3m/s、环境湿度为80%的情况下,烟囱口的“白烟”长度约为105m。
实施例3
脱硫塔未设置外套筒28,其余同实施例1,烟囱口的“白烟”长度约为150m。

Claims (25)

1.一种脱硫塔,其特征在于:由上至下依次为烟气排放区、除雾区、塔盘区、喷淋区和废水处理区;所述的烟气排放区顶部设置烟气出口;所述的除雾区设置除雾设备;所述的塔盘区设置一层或多层塔盘;所述的废水处理区中央通过一块竖直的隔板I分为氧化絮凝区和循环清液区,其中氧化絮凝区与喷淋区连通,循环清液区顶部通过隔板II将循环清液区与氧化絮凝区及喷淋区完全隔开,循环清液区顶部塔壁上设置通气口;所述的隔板I设置至少一个开口,开口面积为隔板I面积的10%~90%;隔板I的开口上固定过滤介质;所述的烟气排放区为烟囱结构,烟囱底部与除雾区塔体相连,烟囱顶部设置烟气出口;在烟囱顶部设置外套筒,所述的外套筒为上下开口的筒状结构,外套筒上沿高出烟囱顶部一定距离,外套筒的下沿低于烟囱的上沿,所述的外套筒和烟囱之间为环形空间。
2.按照权利要求1所述的脱硫塔,其特征在于:所述的过滤介质为网状结构,过滤介质材质为天然纤维、合成纤维、玻璃丝或金属丝中的一种或多种,网孔大小为0.1~1000µm。
3.按照权利要求1所述的脱硫塔,其特征在于:所述的隔板II两端分别与隔板I及循环清液区塔壁连接,隔板I与隔板II连接处的夹角一般为45~165°。
4.按照权利要求1所述的脱硫塔,其特征在于:所述的烟气排放区与除雾区通过锥体形变径相连,所述的除雾区与烟气排放区的塔径比为1.2~5。
5.按照权利要求1所述的脱硫塔,其特征在于:外套筒上沿高出烟囱顶部0.2~10m;外套筒的下沿低于烟囱的上沿0.5~5m;所述的外套筒底部开口直径为烟囱顶部开口直径的1.01~1.2倍。
6.按照权利要求1所述的脱硫塔,其特征在于:所述的除雾设备为旋流除雾器、湿式静电除雾器、丝网除雾器或折流式除雾器中的一种或几种。
7.按照权利要求1所述的脱硫塔,其特征在于:所述的塔盘为浮阀塔盘、筛孔型塔盘、导向筛孔型塔盘、固舌塔盘、浮舌塔盘或立体传质塔盘中的一种或多种组合。
8.按照权利要求1所述的脱硫塔,其特征在于:所述的塔盘区与除雾区之间设置液体分布器,液体分布器连接循环清液管线I,用于将循环清液均匀的分布到塔盘上。
9.按照权利要求1所述的脱硫塔,其特征在于:所述的喷淋区上部设置一层或多层喷淋管线;设置多层喷淋管线时,喷淋管线之间的距离为0.5~5m;所述的喷淋管线连接循环清液管线II,喷淋管线上设置有多个雾化喷嘴;所述的喷淋区下部设置烟气入口I,连接烟气管线I。
10.按照权利要求1所述的脱硫塔,其特征在于:所述的氧化絮凝区靠近塔壁一侧分别连接冲洗水管线、碱性溶液管线I、氧化剂管线、絮凝剂管线和液位计I;所述的冲洗水管线延伸到氧化絮凝区的隔板I一侧,与冲洗水喷淋管相连,冲洗水喷淋管上设置有若干喷嘴,对隔板I上的过滤介质进行冲洗;所述的碱性溶液管线I上设置流量调节阀,用于向脱硫废水中加注碱性溶液调节其pH值;所述的氧化剂管线上设置流量调节阀,用于调节氧化剂的加注量,使脱硫废水中的亚硫酸盐氧化为硫酸盐,使脱硫废水的COD达标;所述的絮凝剂管线用于向脱硫废水中加注絮凝剂,使脱硫废水中的小颗粒粉尘凝聚成大颗粒。
11.按照权利要求1所述的脱硫塔,其特征在于:所述的氧化絮凝区底部连接烟气管线II和外排浆液管线;所述的烟气管线II延伸至氧化絮凝区的部分上设置有若干喷嘴,用于对氧化絮凝区的浆液进行搅拌;外排浆液管线上设置流量调节阀和pH计;所述的流量调节阀根据液位计I反馈的信号调节外排浆液的流量,控制液化絮凝区的液位;所述pH计测量外排浆液的pH值,并将信号经控制器反馈给碱性溶液管线I上的流量调节阀。
12.按照权利要求1所述的脱硫塔,其特征在于:所述的循环清液区靠近塔壁一侧连接有新鲜水管线、碱性溶液管线II和液位计II;所述的新鲜水管线上设置流量调节阀,根据液位计II反馈的信号调节新鲜水的流量,控制循环清液区的液位;所述的碱性溶液管线II上设置有流量调节阀,用于调节向循环清液区加注的碱性溶液的流量。
13.按照权利要求1所述的脱硫塔,其特征在于:所述循环清液区底部连接清液引出管线,引出管线分为两路,一路管线连接外排清液管线,另一路管线连接循环清液泵,该管线上设置有pH计,循环清液泵经冷却器连接循环清液管线I和循环清液管线II;所述的pH计用于测量循环清液的pH值,并将测量信号经控制器反馈给碱性溶液管线II的调节阀。
14.一种烟气除尘、脱硫及废水处理的方法,其特征在于包括如下内容:(1)烟气分两路进入脱硫塔,一路经烟气管线I从脱硫塔的喷淋区下部进入,另一路经烟气管线II从脱硫塔的氧化絮凝区底部进入并穿过氧化絮凝区内的浆液,两路烟气汇合后与喷淋区的循环清液逆流接触脱除烟气中携带的大部分粉尘和二氧化硫,穿过喷淋区的烟气进入塔盘区,在塔盘区与循环清液进行深度除尘脱硫,净化后的烟气经过除雾区除雾后进入烟气排放区,从烟囱顶部进入外套筒与空气充分混合后从烟气排放区顶部排放;(2)吸收了粉尘和二氧化硫的脱硫浆液进入氧化絮凝区,在经烟气管线II进入的烟气的搅拌作用下与氧化剂、絮凝剂和碱性溶液充分混合,脱硫浆液中的亚硫酸盐被氧化为硫酸盐,脱硫浆液中的小颗粒粉尘絮凝成大颗粒,同时具有一定温度的烟气使脱硫浆液中的水分不断挥发,盐浓度逐渐增加;(3)脱硫浆液在隔板I两侧液位差的作用下,流经隔板I上的过滤介质实现固液分离,脱硫浆液中的粉尘颗粒被过滤下来留在氧化絮凝区,清液进入循环清液区,氧化絮凝后的浆液从氧化絮凝区底部引出经外排管线进入后续处理单元,冲洗水喷淋管定时对隔板I上的过滤介质进行冲洗;(4)经过滤介质过滤后进入循环清液区的清液与新鲜水及碱性溶液在循环清液区混合后从循环清液区底部引出,少量清液直接外排以降低循环清液的盐浓度,其余清液经循环清液泵增压后进入冷却器,经冷却器冷却后的清液一部分进入喷淋区,经雾化喷嘴雾化后与烟气逆流接触对烟气进行除尘脱硫,另一部分清液流经液体分布器进入塔盘区,在塔盘上与烟气充分接触,并将烟气中的0.1~5µm之间的微小粉尘颗粒和经过喷淋区所携带的大量微小雾滴捕捉下来。
15.按照权利要求14所述的方法,其特征在于:步骤(1)所述的烟气为燃煤锅炉烟气、燃煤电厂烟气、催化裂化催化剂再生烟气、工艺加热炉烟气、焦化烟气或钢铁烧结烟气中的一种或多种。
16.按照权利要求14所述的方法,其特征在于:所述的烟气管线I与烟气管线II进入烟气的量的比例为20~500;喷淋区内循环清液与烟气的比例为5~50L/Nm3,塔盘区内循环清液与烟气的比例3~15L/Nm3
17.按照权利要求14所述的方法,其特征在于:所述的碱性溶液选自氢氧化钠溶液、氢氧化钙溶液、氢氧化镁溶液、碳酸钠溶液、亚硫酸钠溶液、柠檬酸钠溶液、石灰石浆液、氨水或海水中的一种或几种。
18.按照权利要求14所述的方法,其特征在于:步骤(2)所述的氧化剂为双氧水、高锰酸钾、重铬酸钾、氯酸钾、硝酸、漂白粉、过氧乙酸、过氧化钠、过氧化钾、过硫酸铵或氯化铁中的一种或几种;所述的氧化剂流量根据絮凝浓缩后的浆液化学需氧量(COD)进行调节,COD控制指标为≯60mg/L。
19.按照权利要求14所述的方法,其特征在于:步骤(2)所述的絮凝剂为硫酸铝、明矾、铝酸钠、三氯化铁、硫酸亚铁、硫酸铁、聚合氯化铝、聚合硫酸铝、聚合磷酸铝、聚合氯化铁、聚合硫酸铁、聚合磷酸铁、聚磷氯化铁、聚磷氯化铝、聚硅酸铁、聚硅酸硫酸铁、聚硅酸硫酸铝、聚合硫酸氯化铁铝、聚合聚铁硅絮凝剂、铝铁共聚复合絮凝剂、聚硅酸絮凝剂或聚丙烯酰胺类絮凝剂中的一种或几种。
20.按照权利要求14所述的方法,其特征在于:步骤(3)所述的絮凝浓缩后的浆液pH值控制在7~9,pH在线检测仪位于浆液外排管线上,通过调节碱性溶液管线I上的调节阀来控制脱硫浆液的pH值。
21.按照权利要求14所述的方法,其特征在于:步骤(3)所述的隔板I两侧的液位差为0.5~6m,氧化絮凝区的液位高于循环清液区的液位。
22.按照权利要求14所述的方法,其特征在于:步骤(3)所述的氧化絮凝区液位高度由外排浆液管线上的调节阀进行控制。
23.按照权利要求14所述的方法,其特征在于:步骤(3)所述的氧化絮凝区的冲洗水喷淋管定期对隔板I上的过滤介质进行冲洗,冲洗时间间隔为0.5~2h。
24.按照权利要求14所述的方法,其特征在于:所述的循环清液区液位高度由新鲜水管线上的调节阀进行控制。
25.按照权利要求14所述的方法,其特征在于:所述的循环清液区pH值控制在6~11,pH在线检测仪位于塔底循环泵入口管线上,通过调节碱性溶液管线II上的调节阀来控制循环清液的pH值。
CN201810440436.0A 2018-05-10 2018-05-10 一种脱硫塔和烟气除尘、脱硫及废水处理方法 Active CN110465170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810440436.0A CN110465170B (zh) 2018-05-10 2018-05-10 一种脱硫塔和烟气除尘、脱硫及废水处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810440436.0A CN110465170B (zh) 2018-05-10 2018-05-10 一种脱硫塔和烟气除尘、脱硫及废水处理方法

Publications (2)

Publication Number Publication Date
CN110465170A true CN110465170A (zh) 2019-11-19
CN110465170B CN110465170B (zh) 2021-10-08

Family

ID=68503737

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810440436.0A Active CN110465170B (zh) 2018-05-10 2018-05-10 一种脱硫塔和烟气除尘、脱硫及废水处理方法

Country Status (1)

Country Link
CN (1) CN110465170B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253925A (ja) * 2001-03-01 2002-09-10 Babcock Hitachi Kk 湿式排煙脱硫装置
CN200975683Y (zh) * 2006-11-16 2007-11-14 田国仁 一种防风、引风烟囱
CN101862587A (zh) * 2010-05-10 2010-10-20 上海电气石川岛电站环保工程有限公司 一种隔板布风湿法烟气脱硫塔装置
US20120189522A1 (en) * 2011-01-20 2012-07-26 Foster Wheeler North America Corp. Method of Desulfurizing Flue Gas, an Arrangement for Desulfurizing Flue Gas, and a Method of Modernizing a Desulfurization Arrangement
CN103041690A (zh) * 2013-01-25 2013-04-17 上海龙净环保科技工程有限公司 协同脱硫及脱除烟气中pm2.5的脱除塔及方法
CN203075827U (zh) * 2012-09-04 2013-07-24 中国石油天然气股份有限公司 一种低阻力、节水催化裂化烟气吸收塔
CN204247036U (zh) * 2014-11-27 2015-04-08 山东碧空环保科技股份有限公司 电厂烟气脱硫吸收塔直排烟囱
CN105056679A (zh) * 2015-08-11 2015-11-18 中国五环工程有限公司 湿法脱硫过程中pm2.5脱除方法及其装置
CN106582248A (zh) * 2016-12-30 2017-04-26 浙江天蓝环保技术股份有限公司 一种烟气湿法脱硫、除尘一体化装置及工艺
CN107413176A (zh) * 2017-09-26 2017-12-01 航天环境工程有限公司 一种氨法脱硫除尘烟气超低排放系统和应用

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002253925A (ja) * 2001-03-01 2002-09-10 Babcock Hitachi Kk 湿式排煙脱硫装置
CN200975683Y (zh) * 2006-11-16 2007-11-14 田国仁 一种防风、引风烟囱
CN101862587A (zh) * 2010-05-10 2010-10-20 上海电气石川岛电站环保工程有限公司 一种隔板布风湿法烟气脱硫塔装置
US20120189522A1 (en) * 2011-01-20 2012-07-26 Foster Wheeler North America Corp. Method of Desulfurizing Flue Gas, an Arrangement for Desulfurizing Flue Gas, and a Method of Modernizing a Desulfurization Arrangement
CN203075827U (zh) * 2012-09-04 2013-07-24 中国石油天然气股份有限公司 一种低阻力、节水催化裂化烟气吸收塔
CN103041690A (zh) * 2013-01-25 2013-04-17 上海龙净环保科技工程有限公司 协同脱硫及脱除烟气中pm2.5的脱除塔及方法
CN204247036U (zh) * 2014-11-27 2015-04-08 山东碧空环保科技股份有限公司 电厂烟气脱硫吸收塔直排烟囱
CN105056679A (zh) * 2015-08-11 2015-11-18 中国五环工程有限公司 湿法脱硫过程中pm2.5脱除方法及其装置
CN106582248A (zh) * 2016-12-30 2017-04-26 浙江天蓝环保技术股份有限公司 一种烟气湿法脱硫、除尘一体化装置及工艺
CN107413176A (zh) * 2017-09-26 2017-12-01 航天环境工程有限公司 一种氨法脱硫除尘烟气超低排放系统和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄成群等: "《电力环境保护》", 28 February 2012, 机械工业出版社 *

Also Published As

Publication number Publication date
CN110465170B (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
CN102974185B (zh) 一种模块化集成脱除多种污染物的烟气净化系统及方法
CN108619872B (zh) 一种烟气脱硫塔和烟气脱硫及废水处理方法
CN201454396U (zh) 集吸收、氧化、结晶、除雾和降温一体化的喷淋脱硫塔
RU2149679C1 (ru) Способ мокрой очистки и устройство для удаления оксидов серы из продуктов сгорания
CN101219331A (zh) 燃煤锅炉烟气高效脱硫除尘净化系统
CN202951399U (zh) 氧化镁法脱硫系统
CN206965484U (zh) 一种烟气脱硫装置及烟气脱硫除尘系统
CN108786398B (zh) 烟气脱硫再生一体塔及可再生湿法烟气脱硫方法
CN108686490A (zh) 一种烟气脱硫除尘塔及脱硫除尘方法
CN2808276Y (zh) 大烟气量高浓度的烟气净化设备
CN108619885A (zh) 一种烟气脱硫塔和烟气除尘、脱硫及废水处理方法
CN110559837B (zh) 烟气脱硫塔和烟气脱硫及废水处理工艺
CN101306319A (zh) 直排式烟气处理方法
CN110465176A (zh) 烟气除尘脱硫塔和烟气脱硫及废水处理方法
CN108854499A (zh) 一种糠醛渣锅炉烟气氧化镁脱硫净化装置
CN205886585U (zh) 一种脱硫除尘系统
CN210206434U (zh) 一种半干法脱硫灰资源化利用的湿法脱硫装置
CN110559817B (zh) 一种烟气脱硫塔和烟气除尘、脱硫及废水处理工艺
CN102949923A (zh) 脱除烧结工业烟气中二氧化硫、回收石膏的方法及装置
CN110465170A (zh) 一种脱硫塔和烟气除尘、脱硫及废水处理方法
CN205461680U (zh) 一种脱硫除尘装置
CN110935287B (zh) 一种脱硫装置和烟气除尘、脱硫及废水处理方法
CN108619884A (zh) 烟气脱硫塔和烟气除尘、脱硫及废水处理方法
CN100558450C (zh) 一种烟气脱硫方法及装置
CN106984124A (zh) 一种分离式喷淋循环脱硫除尘方法及其装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231010

Address after: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee after: CHINA PETROLEUM & CHEMICAL Corp.

Patentee after: Sinopec (Dalian) Petrochemical Research Institute Co.,Ltd.

Address before: 100728 No. 22 North Main Street, Chaoyang District, Beijing, Chaoyangmen

Patentee before: CHINA PETROLEUM & CHEMICAL Corp.

Patentee before: DALIAN RESEARCH INSTITUTE OF PETROLEUM AND PETROCHEMICALS, SINOPEC Corp.