CN1104640C - 用于旋光性化合物的改进型旋光度检测器 - Google Patents

用于旋光性化合物的改进型旋光度检测器 Download PDF

Info

Publication number
CN1104640C
CN1104640C CN97191902A CN97191902A CN1104640C CN 1104640 C CN1104640 C CN 1104640C CN 97191902 A CN97191902 A CN 97191902A CN 97191902 A CN97191902 A CN 97191902A CN 1104640 C CN1104640 C CN 1104640C
Authority
CN
China
Prior art keywords
mentioned
chute
signal
optical activity
detecting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97191902A
Other languages
English (en)
Other versions
CN1209873A (zh
Inventor
加里W·亚尼克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GARY W YANIK
Original Assignee
GARY W YANIK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GARY W YANIK filed Critical GARY W YANIK
Publication of CN1209873A publication Critical patent/CN1209873A/zh
Application granted granted Critical
Publication of CN1104640C publication Critical patent/CN1104640C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes

Abstract

一种用于对样品溶液中旋光性分子化合物进行检测的改进型旋光度检测器包括:一激光二极管(12)并且利用一根光纤或透镜(14)来提高激光光束的质量,一频率为f的参考振荡器(18),一第一偏振器(16),一特制的流槽(20),它可使其光学窗中的机械二次折射和泄漏达到最小,一第二偏振器(80)以及一经改进的检测装置(84)。该检测装置包括一个用于读出第一和第二信号的第一及第二光检测器,其中第一信号与通过第二偏振器的光相关,而第二信号则与第二偏振器的反射光相关。一补偿电路可对两信号进行低通滤波处理,它能将其中一个信号反相,并将此反相信号与另一个信号相加,然后它将对不需要的信号元素进行陷波处理以产生经补偿后的信号。该经补偿后的信号将与参考振荡器一起驱动锁相放大器,以读出频率为f的幅度调制信号。这个经补偿后的信号可以说明了样品的旋光度,并且还不受激光功率波动的影响。

Description

用于旋光性化合物的改进型旋光度检测器
本发明涉及一种旋光度检测设备。具体来说,本发明涉及一种光学检测系统,它可在样品流过检测器时对该样品的旋光度进行测量,其检测器由含有光束发生装置的激光二极管、偏振棱镜、流槽以及可对信号中激光波动进行衰减的装置构成。
称为手性化合物的化学物质以两种差别极小的分子形式出现。这些分子形式被称为左旋和右旋,因为它们可以使通过其自身的光束的偏振面顺时针(向右旋转)以形成右旋,或逆时针(向左旋转)以形成左旋。其旋转量与特定化学物质的旋光量以及偏振光和化学物质相互之间的光路长度成正比。两种类型手性分子其构成原子的几何形状和相对位置一般被认为是互成镜像关系。所以,它们具有相同的化学组成并且很难分辨。不幸的是,这两种分子形式能够以完全不同的方式影响人类的生理功能。在特例情况下,病人会因为被注射的药物含有太多错误类型的手性分子而造成损伤或死亡。
对映结构比指的是特定手性化合物中右旋分子和左旋分子的比例。在较少出现的严重情况中,病人不能对药物治疗作出良好反应,因为给他们注射的药物具有不正确的对映结构比。简而言之,根据特定的手性药物及一定量度手性药物的对映结构比,且对于特定的病人来说,注射手性药物可能得不到正面的效果,而且还有可能产生很大的负面影响。这种结果十分值得警惕,因为目前仍没有一种有效的方法来测量和控制特定手性药物的对映结构比。
在美国专利No.4,498,774中揭示了一种利用气体激光器作为辐射源的色谱检测器。它的高功率辐射源可以提供出非常高的极限信噪比(S/N)。要想完全发挥其优点,则需要使用质量非常高的棱镜对以提供大约10+10的衰减比。这些棱镜对是通过测试及误差技术而由手工筛选出来的,因此当把人工费用考虑在内时,其成本将非常昂贵。一般进行手工筛选并找出用于特定棱镜的最高品质区的这项工作需要花费5~25个小时。另外,为了减小闪烁噪声,在激光器的输出端加有一个强度稳定单元。而且,为了保持高衰减比,还采用了气基调制器。这种气基调制器需要使用大量的电流,所以还需要在功率源和调制器单元上增加冷却源。这个专利于1985年2月12日被提出,现已放弃。本发明在此专利的基础上做了多种改进,并用它作为参考资料。
美国专利No.5,012,101中揭示的一种旋光度检测器,它利用了美国专利No.4,498,774中的许多原理,但它采用的是激光二极管用以提高稳定性和信噪比。该专利还采用了一种调制装置,它可通过调制辐射源的偏振旋转来产生载波。这样,光束路径中的旋光性样品就可在载波信号中产生一个可检测的幅度调制。但是,由于整体幅度调制非常小,所以需要提高检测系统的灵敏度。
此外,系统还需要更加稳固以易于设定、安装及适于普及化的大容量使用。这些增强将通过改进各个单元(如:流槽)的结构而得以实现,从而减少造成消偏或错位的因素。其它的改进包括:将系统部件加工成易于精确对接的形状,以便对它们进行最小的安装固定调节。另外,检测系统也可以含有多个传感器和补偿系统,以用于消除激光源中功率波动的影响。
本发明是对先前工作的一个改进。在本发明中,旋光度检测器更加小型、更加稳固,而且比先前系统更易于设定和操作。与先前系统不同,本系统采用了一种二极管激光器,其光束首先穿过一根光纤缆,从而首先被保证为一近高斯光束。另外,该激光器也可含有一个柱状聚焦透镜,它被直接粘在激光二极管的出射孔上,并位于密封窗之下。
接下来,系统利用一个格朗—汤普逊棱镜来提高激光输出的线性偏振比。但是,与先前系统所不同的是,该棱镜不需要手工筛选(如上所述)。与先前系统还不同的是,本发明所使用的法拉第旋转器含有一个置于螺线管内部的铽镓石榴石(TGG)棒。光束的偏振可根据参考振荡频率(f)而改变。这种TGG调制器所用的电流比先前工作中其它法拉第旋转器所使用的电流要小得多。
本发明所做的其它改进包括一个特制的流槽。通过对结构和密封技术的改进,使得光束可以以最小的反射和色散而通过样品材料。如果样品具有旋光性,它将改变光束偏振面的角度,进而导致检测信号出现周期性的幅度变化。为了进一步提高对幅度变化的检测,本发明采用了一个低成本的电路,它可对激光幅度的波动以及与待测信号幅度调制频率f有关的2f信号进行衰减。利用本发明不受激光波动影响的特点,就可以更好地检测手性化合物。
目前,本发明已经被采用作为高效液相色谱(HPLC)系统中的检测器。在一个典型的HPLC系统中,液体样品首先被注入一高压溶剂流中,然后被压入一个紧密封装的色谱柱内。色谱柱由圆柱形耐压外壳构成,其中填充有许多很小的含有涂层的石英球。由于样品和填充材料中不同类型分子之间的亲和力存在差异,而且在溶剂的作用下,样品中不同的化学分子就可以被及时地从色谱柱中分离出来。
HPLC是一种分离技术,它可将从样品中分离出的各种化学物质一次一个地提供给下游的检测器。因此,人们就可以在样品流过检测器的流槽时,对该样品中各成分的多种物理参数(对不同波长的吸收率、折射率、传导率、旋光度,等等)进行测量。一般来说,各检测器都有自己的流槽,而且只能测量一种类型的物理参数。为了更好地对待测样品进行定量分析,串联使用两个或多个检测器/流槽也是十分普遍的。
一个采用HPLC和本发明内容的典型系统将能够对样品进行分离,而且对各分离物来说,该系统可利用光吸收率检测器来测量样品的光吸收率,从而确定样品各析出成分的总量。然后,采用本发明所述的旋光度检测器可确定净旋光度。知道了各析出成分的具体旋光度,就可以计算出对映结构比。这种过程在用于研究和质量控制的分析系统中得到了普遍使用。
另外,如果使用一个特殊的手性分离柱来分离对映体,本发明也可用于鉴别旋光方向并由此鉴别对映体。这种手段是属于典型的制备应用,它能够采集和/或浓缩所需的对映体。此外,过程控制系统也可采用本发明来帮助优化用于产生优选对映体的条件。与之相反,本发明所述的检测器也可用于使不需要的对映体达到最少。
在一般实践中,分析应用是最为困难的,而且其重点都放在仪器设计上。这是因为它们需要较小容量的流槽,而且还必须有足够的灵敏度来检测非常稀释的样品。而制备及过程控制应用一般则使用较大的流槽,而且经常具有样品浓度较高的优点。本发明所提供的检测器能够立刻应用于任何一个上述建议的应用。
因此,本发明是一种光学仪器,它可使一束很窄的激光束通过流槽窄长的腔体。分析应用(例如)一般可采用内径0.762毫米(0.030英寸)、长度50.8毫米(2英寸)的流槽。当光束穿过格朗-汤普逊棱镜之后,它将具有很高的线性偏振比(一般为100,000∶1)。流槽被设计成可使液体连续流过其窄长的腔体,因此就使得液体和光束相互作用。随着液体流过流槽的腔体,光束线性偏振面的旋转将被测量。由于样品在流槽中流动而造成的旋光一般远远小于±1度。通过本发明所揭示的技术,在检测器通电打开30~45分钟后就可对样品进行精确的测量。而在先前系统中,为了进行全部必要的对位和调节,从通电到采样所需的典型时间最多将达到25小时。
因此,本发明的一个目的就是提供一种改进型旋光度检测器,它尤其适用于在高性能系统中进行检测、分离以及测量手性化合物和/或有关医用药物的对映结构比。
本发明的一个有关目的是提供一种改进型光学检测器,它可利用一根光纤或透镜来将激光二极管的光束调节为近高斯分布。
本发明的另一个目的是提供一种含有一个经改进的流槽的改进型光学检测器,此流槽可以使通过手性物质的激光束具有最小的机械双折射。
本发明还有另外一个目的就是提供一种含有补偿电路的改进型光学检测器,此电路能够检测到被反射的光检测器信号,且将其从主光检测器信号中减去,从而使最后得到的幅度调制信号具有较高的可检测分辨率,而且它还能防止由于激光波动所造成的影响。
本发明的另一个目的是提供一种含有流槽和安装块部件的光学检测器,这些流槽和安装块部件被加工成更具方便可互换性,因而它们不会对整体调整造成很大的损失。
本发明的一个有关目的是提供一种改进型光学检测器,它能够在比先前系统所用时间少很多的时间内进行设定和使用。
通过以下说明及附图,参照图解及例证以及本发明的具体实例,将使本发明的其它目的和优点变得更加清楚。这些附图构成了本说明书的一部分,并包含有本发明的优选实例。它可用于说明本发明的多种目的和特点。
图1是一种旋光度检测器结构的侧视图,它画出了底座和其上安装的激光器、第一棱镜,法拉第旋转器、流槽,第二棱镜以及检测器。
图2是流槽组件的部件分解侧视图。
图2A是流槽体的端视图。
图2B是流槽体的侧视图。
图2C是流槽密封垫圈的端视图
图2D是流槽环形端垫圈的端视图。
图2E是流槽端帽的端视图。
图2F是流槽端帽的侧视图。
图2G是另一个实例中所描述的流槽,它含有一个用于安装光学窗替代结构。
图2H是用于图2G所示流槽的端帽的端视图。
图2I是图2H所示端帽的侧视图。
图3A是位于安装固定装置中法拉第旋转器的侧视图。
图3B是法拉第旋转器的侧视图,它画出了盘绕的螺线管的中心部分。
图4(4A~4F)是一个机械图,它显示了V形块安装固定件的主视图(4A),俯视图(4B)和侧视图(4C),以及用于将流槽支撑在安装固定件上的顶部安装条的主视图(4D),俯视图(4E)和侧视图(4F)。
图5是一个电子框图,它显示了对检测信号的处理过程。该过程能够去除激光的幅度波动,它还能对2f频率信号进行陷波处理,因此可以减低非样品干扰波动且提高测量频率信号的分辨率和稳定性。
图5A显示了2f幅度调制信号的曲线,非2f幅度信号曲线以及频率为f的幅度调制结果信号。
图6显示了相对于激光幅度的锁相放大器输出。当使用能够去除激光幅度波动的补偿电路后,激光幅度的变化将不会严重影响锁相放大器的输出结果。
图7是一个波谱图,它记录了对含有混合光取向的分子的样品所做检测的结果,以及计算实际对映结构比所得的检测结果。
尽管对本发明所作的说明是参考具体优选实例而进行的,但是本领域普通技术人员可以立刻明白,任何对本发明的修改、重组及替换都不会脱离本发明的精神。本发明的范围由附加权利要求来决定。
现在参看图1,其中显示了一个光学底座10。该底座一般由固体铝制成,它可以稳固地支撑检测器组件中的各个元件。各元件一旦安装到位后,一般不需要用户重新调节(如:激光器、棱镜、检测器,等等)。先前系统允许太多的调节,所以常常造成对位不准。在本系统中,流槽十分独特,它经常需要改变和/或清洗,可拆卸性是它必须有的一个设计特点,即,使用户在此单元重新安装后无需重新对这个底座进行对位。本系统的优点在于,一整套系统组装、垫补及对位所需的时间远远小于先前系统。被安装元件的总长M1为480.31毫米(18.91英寸),激光器组件的聚焦长度M2为200毫米(7.874英寸)。安装孔8和9之间的长度M3为431.8毫米(17.000英寸)。
检测器组件包括一个激光器单元12,它含有一可见激光二极管,其典型地工作波长为690纳米,功率输出为10毫瓦。该激光二极管与一根单模光纤(未示出)相耦合,光纤的长度一般为2米。光纤的输出被耦合至一个聚焦透镜14,此透镜可将光束聚焦至流槽20中。采用这种结构是因为激光二极管的输出一般在两个扩散角的形状上具有像散性和不对称性。但是,通过一定长度的光纤后,光束已基本上完全对称而且没有像散,因而可被聚焦形成一束很好的近高斯光束。
另一种使光束达到满意形状的方法是,在密封窗下放置一个柱状透镜,并使其直接面向激光二极管的出射孔。还有一种方法,即,利用多个透镜组和棱镜来实现近高斯光束。光束的形状十分重要,例如,因为任何被流槽壁反射回来的光都会造成消偏并增加系统的噪声。因此,为了获得最大的灵敏度,让全部光束都没有反射地通过流槽是非常重要的。
格朗一汤普逊棱镜16可将激光输出的线性偏振比从100∶1提高到100,000∶1。法拉第旋转器18用于将偏振面旋转到旋转器的中心轴线上,该轴线与光束共轴。图3A显示了位于安装固定件19上的法拉第旋转器18,此固定件可将旋转器固定在光学底座10上。法拉第旋转器含有一根TGG棒,该TGG棒置于一个螺线管中,其直径和长度一般分别为5毫米和30毫米,参看图3B,螺线管21一般由4000圈30#磁线均匀缠绕在40毫米长、内孔直径为7毫米的非磁性卷轴(如:聚甲醛树脂)上而构成。法拉第旋转器的螺线管由基准振荡器以频率为f(一般为500Hz)的正弦信号驱动(见图5)。
现在参看图2,其中流槽20(图1中)被以部件分解的形式显示出来。如上所述,该流槽用于使溶剂和样品流过线性偏振光束。流槽20的流槽体22一般由316不锈钢制成,它被加工成适合于安装到V形块安装固定件中(见图4)。当然,它也可采用其它合适的材料。具体来说,对流槽体22和固定件24的加工应满足使不同的流槽都可用于相同的V形块而无需重新对位。进行这种柱状加工必须十分精确,而且V形块的形成也必须非常精确。这两种形状合起来就产生了一个唯一的界面,该界面允许拆卸而无需重新对位。这是流槽安装的一个重要特征,因为流槽可能需要被周期性地移动、清洗或者放置在一起。而在上面揭示的系统中,每当流槽被更换或清洗后都要进行困难的对位处理。
现在参看图2A和2B,其中显示了本实例所述流槽的各向尺寸。流槽体的长度L1在组装和打磨后为50.01毫米(1.969英寸),其误差为0.127毫米(±0.005英寸)。槽体边缘与中心线1(CL1)的距离R1为13.97毫米(0.550英寸)。流槽的最大直径D1为30.48毫米(1.200英寸)。胶孔46(见以下的流槽组装细节)位于与端面36距离为18.54毫米(0.73英寸)的地方,其直径D3为1.27毫米(0.05英寸)。从端面34到端面36沿流槽体22的顶部有一个剪截平面口45。如下所述,此缺口可使顶部横穿部件置于流槽之上以使流槽支撑在固定件内。
在流槽20的端视图2A中,显示了一个φ4.50毫米(0.177英寸)的通孔52,它贯穿了流槽体22。另外,图2A还显示出两个零件对位孔54、56(沿CL1 180°分布),其标称直径为3.175毫米(0.125英寸),深7.62毫米(0.3英寸),其中心与流槽中心之间的半径R2为24.13毫米(0.950英寸)。四个其它零件通孔58、60、62和64用来固定螺丝,它们与中心线CL1和CL2相互间隔45°,并被钻成#4-4×7.62毫米(0.3英寸)深的孔,其中心与流槽中心之间的半径也为24.13毫米(0.950英寸)。
参看图2、2A和2B,在流槽体的中心处用环氧树脂粘接有一根熔石英毛细管27(4毫米外径×0.75毫米内径)。这个主腔体内的厚毛细管可以减少漫散射及其造成的消偏,因为那些不能穿过腔体的激光束部分(如:一部分碰到熔石英毛细管固体部分的激光束)不太可能散射进检测器。光束散射越小,系统噪声就越低。
另外,在流槽体22的凹槽44上缠绕有一个入口管26和一个出口管26’。在本实例中,凹槽宽10.16毫米(0.40英寸),深1.778毫米(0.07英寸)。凹槽的深度和宽度可随具体使用时所需管子总量而变化。入口管26终止于入口孔28,出口管26’则终止于出口孔30。
另外,在流槽体22的两端34和36上分别钻有小孔。小孔48’和50’起始处刚好位于熔石英毛细管的外部并与流槽的中心轴线成45°角向外延伸至埋头孔48(输入)和50(输出)。将入口孔28(从点48处进入槽体)置于槽体底部而将出口孔30(位于槽体的埋头孔50上)置于槽体顶部,此举便于使气泡(如空气泡)涌入流槽。此外,每个45°孔48’、50’都是从流槽体22的直径外侧钻出的孔,它们用于接纳管26和26’。适用于分析应用的优选实例使用1.5875毫米(1/16英寸)外径的管子,其入口管26的内径为0.254毫米(0.010英寸),出口管26’的内径为0.762毫米(0.030英寸)。45°锥口孔48’和50’的直径为0.762毫米(0.030英寸),而埋头孔的直径D2则为1.5748毫米(0.062英寸),深度L4为6.35毫米(0.25英寸)。
管26和26’被卷绕在流槽体的中间部分32上,并且它们被钎接在45°锥口孔48’、50’以及中间部分32上。在中间部分卷绕和钎接可以大大减少流槽的温度变化率。在流槽的各端面34和36上分别盖有密封垫圈38和48。这些垫圈可由多种材料制成,它们包括:三氟氯乙烯(Kel-f)、氟乙烯丙烯(FEP)、四氟乙烯(TFE),或其它合适的材料。现在参看图2C,其中各密封垫圈都有一个槽42,它允许液体在熔石英毛细管的中心孔和入口28或出口30之间流动。在本实例中,槽42高4.826毫米(0.190英寸),宽1.524毫米(0.060英寸),其端半径为0.7862毫米(0.030英寸)。另外,密封垫圈38、48的厚度都为0.762毫米(0.030英寸)而且含有一套对位孔55(两个)和螺丝孔59(四个),这些孔与流槽体22上的孔58-64相互对应。
再参看图2,各密封垫圈外盖有光学窗66、68。在本实例中,柱状光学窗直径为12.497毫米(0.492英寸),其长度L5为5.994毫米(0.236英寸)。它由平行度为5弧度的熔石英制成且涂有680纳米的V涂层(在670~690纳米时的反射率<5%——单面)。这种材料可以从如美国加里福尼亚州的Melles Griot of Irvine实验室中获得。
各光学窗由长度L8为8.509毫米(0.335英寸)的端帽74和76固定。如图2E和2F所示,每个端帽上也都含有一套对位孔79(两个)和螺丝孔77(四个),它们与流槽体22上的螺丝孔58、60、62、64和密封垫圈38、48上的孔59相对应。该端帽的外部直径D6为30.48毫米(1.200英寸),其通孔的直径D8为5.08毫米(0.200英寸)。该端帽上较小部分的长度L7为5,969毫米(0.235英寸),直径D7为17.78毫米(0.700英寸)。另外,该端帽上还有一个面向流槽的内部柱状空腔78,其直径为12.7毫米(0.500英寸)、深度L6为12.7毫米(0.500英寸),它用于接纳光学窗的突出端。一般来说,该端帽由聚醚醚酮(PEEK)制成,也可采用其它类似的适合材料。
如图2和2D所示,在各端帽74、76和光学窗66、68之间都放置有一个环形端垫圈70、72。与上述垫圈一样,这些垫圈也可以由以下材料制成,如:三氟氯乙烯(Kel-f)、氟乙烯丙烯(FEP)、四氟乙烯(TFE),或其它合适的材料。在本实例中,此垫圈的厚度为0.508毫米(0.020英寸),其外部直径D4为12.446毫米(0.490英寸),其内部孔径D5为5.08毫米(0.200英寸)。
固然,在本实施例里示出了端垫圈,但也可以不用这些端垫圈。安装这些端垫圈的原因之一是提供与光学窗66、68接触的光滑表面,从而尽量消除二次机械折射。通常,抛光端帽的内接触表面比由本已光滑的物质来制作垫圈更加困难,于是就用端垫圈来提供光滑的接触表面(如图2所示);作为替代,若端帽的内表面确已被充分加工抛光,则毋需端垫圈也可安装流槽了。
现在参看图2G,其中显示了另一种流槽的结构。在本实例中,流槽200与前面一样使用了交替卷绕在中心凹槽32上的入口管26和出口管26’。入口管26进入流槽的底部,其另一端为入口28。出口管26’位于流槽的顶部,其另一端为出口30。同样,本实例也在流槽体22的两端使用了密封垫圈38和48。但是,光学窗66、68却以与上面不同的方式安装在流槽上。其端帽202、204与上述端帽的不同之处在于,它们被直接安装在密封垫圈38和48上而没有用于接纳光学窗的空腔78。光学窗66、68直接粘在端帽的外侧端204和206上。
再参看图2H和2I,其中显示了端帽202、204的主视图和侧视图。每个端帽的直径D6都为30.48毫米(1.200英寸),其长度L3为5.08毫米(0.200英寸)。如图所示,各端帽上也都含有一套对位孔208(两个)和螺丝孔210(四个),它们与流槽体22和密封垫圈38、48上的孔58~64相对应。其中心通孔的直径D9为2.54毫米(0.100英寸)。在端帽朝外的侧面216上,形成了一个柱状缺口212,其外径为10.16毫米(0.40英寸)、内径为5.08毫米(0.20英寸)、深度为2.54毫米(0.10英寸)。因此在中心孔的周围形成了一个环形岛214,其外径为5.08毫米(0.20英寸)。
要安装光学窗,首先将它夹在凹槽处并使其紧贴侧面216。然后,通过胶孔218向内注入硅胶,硅胶将穿过端帽的另一侧并进入凹槽212。实际上,可将胶注入一个孔,直到它充满凹槽212从另一个孔中溢出为止。光学窗66、68的外径比缺口的外径稍大一些,胶沿着凹槽与光学窗相接触,从而使光学窗固定在环形岛214上。当胶变干后,它将收缩并紧紧地拉住光学窗使其安全地固定在环形岛214上。这种安装技术的优点在于,不会有外界拉力施加在光学窗上以造成机械二次折射和对位不准。但是,对这种结构十分重要的是,必须在流槽使用过后对其进行彻底的清洗,以防止固定用的胶发生结晶并造成光学窗松脱。
现在参看图4,其中画出了一个实例V形固定件24的俯视图、主视图、仰视图和侧面投影图。对本实例来说,“V”形块由316不锈钢精确制成。其中心131内的两个“V”形部分都与两侧成45°角,并且它能够在其30.48毫米(1.2000英寸)的外表直径点上精确地放置流槽体的中心——该点距固定件底部的高度H1为39.878±0.0254毫米(1.570±0.001英寸)。这里,只有“V”形块接触到流槽体的30.48毫米(1.2000英寸)外侧直径处是最重要的。例如,“V”形块的底部就不需要精确加工。
图4A显示了高度为H1的“V”形块的主视图。俯视图4B显示了沿着CL4和CL7的对位安装孔132(两个),每个对位安装孔132的直径都为7.112毫米(0.280英寸)。通过这些孔,就可利用1/4-20内六角螺钉将“V”形固定件24紧固在光学底座10上。中心位于CL3、CL5和CL6、CL8的交点处的四个螺丝孔134被钻入12.7毫米(0.5英寸)深以用于接纳#8-32螺丝。固定件的长度L9为48.26毫米(1.90英寸),其中各“V”形块的长度L10为7.62毫米(0.30英寸)。固定件的宽度W1为68.58毫米(2.70英寸),螺丝孔中心的间距W2为57.15毫米(2.250英寸)。因此,各螺丝孔134与CL4的距离都为28.575毫米(1.125英寸)。图4C显示了固定件的侧视图,其长度L11为48.26毫米(1.90英寸)、高度H2为17.78毫米(0.70英寸)。在图4D、4E和4F中显示出一个顶部安装条25,它可从顶部向下夹住流槽。中心位于CL3、CL5和CL6的交点处的两个通孔136,其直径都为4.4958毫米(0.177英寸),它允许螺丝穿过顶部安装条并拧入固定件24的螺丝孔134中。顶部安装条的尺寸为H3=10.16毫米(0.40英寸),L12=7.62毫米(0.30英寸),W4=7.62毫米(0.30英寸)。如图所示,这种顶部安装件含有两个独立的“V”形块,每个块都单独使用一个顶部安装条。
这种实例化的流槽和安装设置是有好处的,因为人们发现,如果光学窗受力,则机械引入的二次折射将造成大量的系统噪声。也就是说,组装流槽过程中所产生的机械应力会造成光束的消偏,而这也可表现为是检测出的噪声。通过上述说明,采用以下步骤组装流槽可减少或消除这种二次折射问题:
(1)加工流槽体22,但在全部组装步骤结束之前不要对端面进行打磨;
(2)将入口管26和出口管26’卷绕在流槽体22的凹槽44中。管子的卷绕应该沿流槽体的轴向按照入口管/出口管/入口管/出口管的交替顺序进行。各管都应整齐地紧贴流槽轮廓排列并且至少绕1.5圈。然后将各管子插入相应的埋头孔48、50中。应再次注意,入口位于与截平面45相对的另一侧,而出口则邻近该截平面;
(3)在两个埋头孔处以及凹槽中的卷绕处钎焊不锈钢管。为了进行正确的测量,就应避免它在钎焊期间被堵塞。钎焊完成后,组装人员应确认管端未被堵塞;
(4)将一根熔石英毛细管(0.75毫米内径×4毫米外径)放入流槽体22,使管内径的中心与流槽体22的30.48毫米(1.2000英寸)外径的中心轴之间的差在0.0254毫米(±0.001英寸)之内。通过使用“V”形块固定件来支撑流槽体并用锥销来支撑熔石英毛细管的伸出部分,可以更容易地完成这项工作;
(5)通过将环氧树脂压入胶孔46直到多余的环氧树脂从两端滴出,并且使所有的内部空隙都被充满,就可以封住所有露孔并将玻璃直毛细管粘结在流槽体内;
(6)当环氧树脂完全凝固后,对流槽体的两端进行打磨,直到它们十分平滑并且与玻璃直毛细管的轴线相互垂直为止。而其还要使φ0.762毫米(0.030英寸)的通孔与包围在玻璃直毛细管周围的环氧树脂之间断开的缝隙为0.2032±0.1016毫米(0.008±0.004英寸)。
(7)按下四个定位或对位脚(直径3.175毫米(0.125英寸),长12.7毫米(0.5英寸)),使它们从端帽面上突出5.08毫米(0.2英寸)。对齐端帽和密封垫圈,然后用四个4#-40的螺丝将端帽固定。
其它的光学窗安装方案也曾得到过尝试,其中就包括图2G所示的另一种结构。虽然这种方案有某些优点(如:低机械二次折射),但它没有第一个优选实例所述方案那么牢固。另外,此方案中,在注入硅胶并使胶处于光学窗和安装面之间时,胶常常不能保持为正确的液体状态,其结果将造成胶失效并导致流槽泄漏。在本方案中,泄漏问题——还有机械二次折射问题——都达到最小程度。
再参看图1,其中显示了一个第二格朗—汤普逊棱镜80,它被作为分析器而安装在光学底座10上的流槽20之后,棱镜80由安装固定件82支撑,并且与通过流槽20的光束对准。棱镜80的通过轴与第一格朗-汤普逊棱镜的通过轴成90°角。其结果使得只有很少的光能通过这个分析棱镜。法拉第旋转器振荡旋转的作用是将偏振面从标称零位或最小通过率条件(当两棱镜互成90°角时)转移开。振荡以频率f进行。这种振荡旋转一般很小,即,小于±1°。还有,当与零位或最小通过率有关的对称振荡操作处于正常工作条件时,这种对称性不是操作所必需的。
通过分析单元的光将照射在硅光检测器84上(它位于振荡光束直线之上)。检测器84被安装固定件86保持在固定位置上。因此,主光检测器的输出信号是以2f或两倍于参考振荡频率的频率而调制的幅度。其原因是,当法拉第旋转器以任一方向转动时,穿过第二格朗—汤普逊棱镜并照射在光检测器84上的光都会增强。光强之所以增加,是因为法拉第旋转器的转动将使光束的偏振面从两个棱镜16和18之间的最小通过率关系中转移开。当一个旋光性样品通过流槽时,将产生另一个处于参考振荡频率f的调制分量(一般很小)。这个调制信号的幅度可以被探知并量化,从而说明了由样品造成的偏振面转动的净转动角。这种检测方案已经普遍应用于先前工作中。
现在参考图5,通过引入一个补偿电路,本发明大大提高了这种检测方案的可靠性。该电路需要放置一个第二光检测器(与第一光检测器类似或相同),它用于捕获分析棱镜80的入射面所反射的光。这个反射光束不会因偏振的变化(由通过流槽20并影响光束偏振的旋光性样品造成)而被调幅,它也不会法拉第旋转器的转动而调制(类似于图5A中的曲线90具有的幅度范围88)。但是,此反射光束却可被激光幅度的任何变化所调制。
图5的框图显示了补偿电路101及其相关的信号处理。主检测器100的信号(类似于图5A中的曲线92)和反射光检测器102的信号分别送入有源低通滤波器104和106。在本实例中,这些滤波器都采用了运算放大器(op-amp)元件,它们首先将输入电流转换为相应的电压,然后有效地进行信号过滤,其衰减响应频率为750Hz。低通滤波器可以消除较高频率的一般噪声,还可以衰减一些2f信号。
补偿电路101还利用了连接成反相器的运算放大器108及求和反相器110,它们可将主信号反相并将反相结果与反射信号相加。可变电阻器109用于调节主信号与反射信号的平衡,从而使两信号抵消。这些调节过程可由厂家来完成,其做法是,在激光输出中引入调制并调节电阻109,直到检测到平坦信号为止。这种信号的“相减”可以衰减任何由于激光束功率的波动而造成的幅度波动。由于主信号和反射信号都会受波动的影响,所以将两信号相减就可以产生一个稳定的信号。这个稳定信号将只体现出由于旋光性样品通过流槽并影响光束的偏振面而形成的幅度调制。
可采用一多阶有源陷波滤波器112作为附加装置来进一步衰减与f信号有关的2f信号。此陷波滤波器也类似地由低成本运算放大器元件构成。因此,从整体来看,低成本运算放大器补偿电路101(由虚线表示)可被设计用来衰减由激光功率波动造成的影响,并且还可用来衰减2f频率。
频率为f的结果信号(类似于图5A中的曲线94和幅度范围96)将由一个锁相放大器来处理,该锁相放大器由参考振荡器116驱动。锁相放大器(有时也称相敏检波器)能够输出一直流电压,该电压与补偿信号中频率为f的信号的幅度和相位成正比。锁相放大器具有极强的选择性,并且主要受与参考振荡频率相同的信号的幅度及相位调制的影响。此参考振荡器同时还以频率f来驱动法拉第旋转器118。锁相放大器的输出可用来驱动谱图记录仪或计算机化的数据采集系统。
另一个替代实例也采用了补偿电路,但是它没有第二光检测器102。在图5中,去除掉单元102、106、108、109和110就可以表示该替代实例。其结果是,有源低通滤波器104和有源陷波滤波器112仍可对主光检测器信号中的2f信号进行衰减。因此,使用相对“安静”的激光器的系统可以从该补偿电路中受益,因为此补偿电路可以衰减不需要的信号因素。
现在参看图6,其中显示了因使用补偿电路而受益的一个实例。锁相放大器的输出的由曲线140表示,它与激光幅度142处于同一时刻。如图所示,在时刻144,激光幅度中的波动增加并变得更不稳定。但是,信号140中的相对噪声电平141却不受激光幅度输出中尖峰145的影响。要是激光幅度曲线里的尖峰145波及到信号140的话,则会导致检测限的下降。
所以,补偿电路是很重要的,因为所有的激光都有“闪烁”噪声或短期的幅度变化。目前,很难制作或购买到“闪烁”噪声小于0.1%的激光器。锁相放大器(相敏检波器)的输出对“闪烁”噪声十分敏感。为了使系统噪声低于几百个微度的旋度,则“闪烁”噪声必须好于0.05%,或者必须使用一些补偿装置。这种补偿的办法已经被广泛地应用于激光技术上。本发明揭示了一种技术,它能够消除信号中的“闪烁”噪声。其优点在于,例如,降低了成本和复杂性。
综上所述,随着旋光性样品通过流槽,锁相放大器的输出将根据样品所造成的偏振面旋转的方向和量度,向正方向或负方向偏离标称溶剂的基线。锁相放大器的输出所漂移的方向和量度与由样品造成的旋光成正比。据此,手性化合物的状态和/或总量和/或净旋光度就可被检测出来。如上所述,这种稳定且灵敏的检测器可用于分析性应用、制备性应用或过程控制应用。还有可能用旋光性溶剂来检测由于样品没有旋光性而造成的旋光减少。建议其它的分析或处理方案也采用它们作为当前应用。
图7是上述系统输出的一个实例。其中,蜜三糖(R)和果糖(F)被稀释至浓度为0.1毫克/毫升并被直接注入流槽之前的溶剂流(无色谱柱)。在长度为2厘米、浓度为0.1毫克/毫升的情况下,蜜三糖的旋光度为+526,000微度,而果糖则为-447,500微度。其相应峰值被标注为R和F。现注入比例为50∶50的两种溶液的混合液,并将其峰值标注为R+F。如图所示,其结果峰值等于净旋光度526,000-447,500=78,500微度。另外,激光幅度的波动(图中用160表示)不会过分地影响本系统的输出。因此,本发明所述的系统不但具有较低的噪声电平,而且还有更加灵敏的检测限。该图表的速度=1厘米/分钟,而且检测器使用了可注入20毫升液体的20毫升流槽。锁相放大器的输出在图中用162来表示,其对应的激光幅度为160。
实际上,锁相放大器的输出经常与质量检测器(如:吸收检测器)一起使用,当测得质量和净旋光度之后,就可计算出对映结构比。如上所述,不精确的比例有可能在药物和医学应用中造成灾难性的后果。
很明显,尽管对本发明所做的说明是以确定的形式而进行的,但本发明并不仅限于本文所述的特定形式或结构。熟悉本领域的人员应该懂得,各种对本发明所作的修改都不会脱离它的精神,而且本发明也决不仅限于本说明书及附图所述的内容。

Claims (16)

1.一种改进型旋光度检测器,其光学底座上固定安装并对准有多个元件,上述元件的特征在于包括:
(i)激光二极管光源系统,其带有一用于产生近高斯激光束的装置,该装置选自由光纤缆、柱状聚焦透镜或多个透镜及棱镜组成的组;
(ii)第一格朗—汤普逊偏振棱镜,它可将上述激光束的线性偏振比从100∶1至少提高到100,000∶1;
(iii)采用铽镓石榴石(TGG)棒的法拉第旋转器,它可改变上述光束的偏振状态,上述旋转器被一频率f的交变电流源、或参考振荡器驱动;
(iv)流槽,它可使溶剂和样品沿上述线性偏振光束流动,上述流槽包含:
一个具有中心空腔的流槽体;
一对制作材料从三氟氯乙烯、氟乙烯丙烯、四氟乙烯之中选择出来的一对密封垫圈;
一对由合成熔石英制成的密封光学窗;
一对用来容纳上述垫圈和光学窗的端帽装置,每个端帽装置上都有安装孔和对位孔,以及用于将上述端帽和流槽体各端密封连接的固定装置,其中上述端帽和固定装置提供了一种改进型的流槽,使得上述激光束能以最小二次机械反射通过旋光性物质;
(v)第二格朗-汤普逊偏振棱镜,它相对于上述第一偏振装置可使偏振光通过的方向成90°角,上述第二偏振装置的特征在于,它可衰减通过其本身的大部分偏振激光束;
(vi)光检测器,它可对从上述第二偏振装置出射的由幅度调制光构成的信号进行检测;
(vii)补偿电路装置,它可产生一补偿信号以衰减频率不为f的信号;以及
(viii)被上述f频率振荡器驱动的相敏检波器或锁相放大器,它可读出频率为f的补偿信号的幅度调制。
2.如权利要求1所述的改进型旋光度检测器,其特征在于上述补偿电路装置用于滤除频率不为f的干扰和噪声,上述电路包括用于过滤上述光检测器信号的低通滤波器和陷波滤波器。
3.如权利要求1所述的改进型旋光度检测器,其特征在于上述用于产生近高斯激光束的装置是一段光纤缆。
4.如权利要求1所述的改进型旋光度检测器,其特征在于上述用于产生近高斯激光束的装置包括一个位于含端帽的密封光学窗之下并处于激光二极管出射孔上的柱状聚焦透镜。
5.如权利要求1所述的改进型旋光度检测器,其特征在于上述端帽含有一个带有周围凹槽的同心环形岛,其中上述光学窗被夹在上述端帽内并被注入上述凹槽的胶所固定,其中上述夹子在上述胶凝固后将被移走。
6.如权利要求1所述的改进型旋光度检测器,其特征在于一个用于精确安装固定流槽的固定件包括:“V”形块固定件,它可接触地支撑着上述柱状流槽;和顶部安装条,它与上述固定件相连接并可将上述流槽保持在固定位置;通过对上述“V”形块和上述流槽之间接触面的加工,使得对流槽的移动和更换不需要与上述各检测器元件重新对位。
7.如权利要求1所述的改进型旋光度检测器,其特征在于上述各元件被牢固安装并经过预先对位,从而使此系统能够在启动后30~45分钟内进行样品检测工作。
8.如权利要求1所述的改进型旋光度检测器,其特征在于上述的一对端帽装置由聚醚醚酮制成。
9.一种改进型旋光度检测器,其光学底座上固定安装并对准有多个元件,上述元件的特征在于包括:
(i)激光光源系统,其带有产生近高斯激光束的装置;
(ii)第一偏振装置,它可将上述激光束的线性偏振比从100∶1至少提高到100,000∶1;
(iii)法拉第旋转器,它可改变上述光束的偏振状态,上述旋转器被频率f的交变电流源、或参考振荡器驱动;
(iv)含有一对密封光学窗的流槽,该流槽可使溶剂和样品沿着上述线性偏振光束流动;
(v)第二偏振装置,它相对于上述第一偏振装置可使偏振光通过的方向成90°角,上述第二偏振装置的特征在于,它可衰减通过其本身的大部分偏振激光束;
(vi)第一光检测器,它可对从上述第二偏振装置出射的由幅度调制光构成的信号进行检测;
(vii)补偿电路装置,它可产生一补偿信号,该补偿信号能够衰减频率不为f的信号;以及
(viii)被上述f频率振荡器驱动的相敏检波器或锁相放大器,它可读出频率为f的补偿信号的幅度调制。
(ix)第二光检测器,其定位在可检测从所述第二偏振装置入射口反射的光;而上述补偿电路装置则用于从激光光源中减去幅度波动并滤除频率不为f的干扰和噪声,此电路的特征在于包括:
(I)至少一个可对上述第一和第二光检测器信号进行滤波的低通滤波器;
(II)求和装置,它可对上述第一和第二光检测器信号进行相减运算;以及
(III)至少一个用于从结果中滤除不需要的信号分量的陷波滤波器。
10.如权利要求9所述的改进型旋光度检测器,其特征在于上述补偿电路装置由运算放大器组成,该运算放大器被设置成可以过滤并处理上述光检测器信号。
11.如权利要求10所述的改进型旋光度检测器,其特征在于上述补偿电路还包括至少一个可变电阻器件,该器件允许对上述第一和第二光检测器信号所做的相减操作进行平衡控制。
12.一种改进型旋光度检测器,其特征在于包括:
激光二极管光源系统;
第一偏振装置,它用于提高上述激光束的线性偏振比;
法拉第旋转器;
流槽;
第二偏振装置,它与上述第一偏振装置可使偏振光通过的方向成90°角,上述第二偏振装置的特征在于,它可衰减通过其本身的大部分偏振激光束;
光检测器,它可对从上述第二偏振装置出射的含有幅度调制光的信号进行检测;
被上述f频率振荡器驱动的相敏检波器或锁相放大器,它可读出频率为f的信号;
其改进包括:
(i)与激光二极管相连接的装置,它用于产生近高斯光束;
(ii)柱状流槽装置,其结构可使机械二次折射和光的像散达到最小;
(iii)经过加工的“V”形块,它用于使上述柱状流槽精确对位;
(iv)第二光检测器,它用于检测含有从上述第二偏振装置的入射面反射回来的光的信号;
(v)补偿电路装置,它可产生一补偿信号以衰减频率不为f的干扰和噪声。
13.如权利要求12所述的改进型旋光度检测器,其特征在于上述补偿电路装置包括:
(i)至少一个可对上述第一和第二光检测器信号进行滤波的低通滤波器;
(ii)求和装置,它可对上述第一和第二光检测器信号进行相减运算;以及
(iii)至少一个用于从求和结果中滤除不需要的信号分量的陷波滤波器。
14.一种改进型旋光度检测器,有多个元件被固定安装并准直于它的光学底座上,上述元件的特征在于包括:
(i)激光二极管光源系统,其带有一用于产生近高斯激光束的装置,该装置可从光纤缆、柱状聚焦透镜或多个透镜及棱镜的组中选出;
(ii)第一格朗—汤普逊偏振棱镜,它用于将上述激光束的线性偏振比从100∶1至少提高到100,000∶1;
(iii)采用铽镓石榴石(TGG)棒的法拉第旋转器,它可改变上述光束的偏振状态,上述旋转器被一频率f的交变电流源、或参考振荡器驱动;
(iv)可替换的柱状流槽装置,它被精确安装在固定件上,上述流槽可使溶剂和样品沿着上述线性偏振光束流动,上述流槽利用一熔石英管穿过其轴线中心,上述管采用一毛细管作为其主腔体,而且上述毛细管的尺寸使得上述光束的散射以及由此造成的消偏达到最小;
(v)第二格朗—汤普逊偏振棱镜,它与上述第一偏振装置可使偏振光通过的方向成90°角,上述第二偏振装置的特征在于,它可衰减通过其本身的大部分偏振激光束;
(vi)检测器装置,它用于检测通过上述第二偏振棱镜的光束;以及
(vii)补偿装置,它用于处理上述检测信号。
15.如权利要求14所述的改进型旋光度检测器,其特征在于上述检测器装置含有一个光检测器,而且上述补偿装置含有用于从上述检测信号中滤除不需要的分量的电路。
16.如权利要求15所述的改进型旋光度检测器,其特征在于上述检测器装置包括第一和第二光检测器,上述补偿装置包括用于从上述检测信号中滤除不需要的分量的电路,以及用于从上述第二信号中减去上述光检测器第一信号的电路。
CN97191902A 1996-01-31 1997-01-27 用于旋光性化合物的改进型旋光度检测器 Expired - Fee Related CN1104640C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US59452996A 1996-01-31 1996-01-31
US08/594,529 1996-01-31

Publications (2)

Publication Number Publication Date
CN1209873A CN1209873A (zh) 1999-03-03
CN1104640C true CN1104640C (zh) 2003-04-02

Family

ID=24379264

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97191902A Expired - Fee Related CN1104640C (zh) 1996-01-31 1997-01-27 用于旋光性化合物的改进型旋光度检测器

Country Status (12)

Country Link
US (1) US5822067A (zh)
EP (1) EP0880688B1 (zh)
JP (1) JP2000504116A (zh)
KR (1) KR100481201B1 (zh)
CN (1) CN1104640C (zh)
AT (1) ATE248365T1 (zh)
AU (1) AU716900B2 (zh)
BR (1) BR9707315A (zh)
DE (1) DE69724415T2 (zh)
DK (1) DK0880688T3 (zh)
IL (1) IL125392A (zh)
WO (1) WO1997028435A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19815932C2 (de) * 1998-04-09 2000-06-21 Glukomeditech Ag Verfahren zur Miniaturisierung eines Polarimeters zur Analyse niedrig konzentrierter Komponenten im flüssigen Meßgut auf optischer Basis sowie Vorrichtung zu seiner Durchführung
AU3996299A (en) * 1998-05-14 1999-11-29 Luminex Corporation Diode laser based measurement apparatus
US6188813B1 (en) * 1999-02-10 2001-02-13 Waters Investments Limited Flow cell, analyte measurement apparatus and methods related thereto
US6678051B2 (en) 2001-01-18 2004-01-13 Systec, Inc. Flow cells utilizing photometric techniques
JP2005524052A (ja) * 2001-10-01 2005-08-11 ジョージア テック リサーチ コーポレイション 高スループットキラル検出器およびその使用方法
GB0206011D0 (en) * 2002-03-14 2002-04-24 Farfield Sensors Ltd Polarimetery
US7079249B2 (en) * 2002-06-21 2006-07-18 Therma-Wave, Inc. Modulated reflectance measurement system with fiber laser technology
GB0214617D0 (en) * 2002-06-25 2002-08-07 Applied Photophysics Ltd Separation of chiral compounds
US7411675B2 (en) * 2003-03-28 2008-08-12 Citizen Holdings Co., Ltd. Optical rotation angle measuring apparatus
EP1676107A4 (en) 2003-10-10 2008-03-26 Stheno Corp OPTICAL DIFFERENTIAL TECHNOLOGY FOR CHIRAL ANALYSIS
JP2007536519A (ja) * 2004-05-04 2007-12-13 ステノ コーポレイション ダブルリファレンスロックイン検出器
US20060001509A1 (en) * 2004-06-30 2006-01-05 Gibbs Phillip R Systems and methods for automated resonant circuit tuning
JP2008505316A (ja) * 2004-06-30 2008-02-21 ステノ コーポレイション カイロオプティカル・ヘテロダインシステム及び方法
US7298472B2 (en) * 2004-12-28 2007-11-20 Rheodyne, Llc Fluid analysis apparatus
US7259840B1 (en) 2004-12-28 2007-08-21 Systec, Llc Fluid analysis apparatus
US7468788B2 (en) * 2005-06-21 2008-12-23 Stheno Corporation Systems and methods for chiral detection and analysis
JP2007034149A (ja) * 2005-07-29 2007-02-08 Fujifilm Holdings Corp 回転検出方法及び装置、及び写真フイルムパトローネのフイルム係止検出方法及び装置
JP2009002861A (ja) * 2007-06-22 2009-01-08 Kansai Electric Power Co Inc:The 液体の検査装置
JP5783342B1 (ja) * 2014-03-20 2015-09-24 富士ゼロックス株式会社 光学活性物質の濃度算出システム、光学活性物質の濃度算出システムの製造方法及びプログラム
CN110596013B (zh) * 2019-09-19 2021-10-12 南京邮电大学 一种高旋光率材料旋光率检测装置
JP2023183253A (ja) * 2022-06-15 2023-12-27 新東工業株式会社 ガス測定器及びガス測定方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2753479A (en) * 1953-04-08 1956-07-03 Du Pont Spark cell assembly
US3510226A (en) * 1969-02-17 1970-05-05 Cary Instruments Polarimeter with regulated photomultiplier tube
US4019372A (en) * 1974-05-16 1977-04-26 E. I. Dupont De Nemours And Company Chromatographic detector system
US4192614A (en) * 1975-02-06 1980-03-11 The Perkin-Elmer Corporation L/C detector cell assembly
DE2944113A1 (de) * 1979-10-31 1981-05-14 Arno Dipl.-Phys. Dr. 7900 Ulm Müller Verfahren und vorrichtung zur quantitativen absolutbestimmung optisch aktiver substanzen
US4498774A (en) * 1981-07-22 1985-02-12 Iowa State University Research Foundation, Inc. Micro-polarimeter for high performance liquid chromatography
GB8625530D0 (en) * 1986-10-24 1986-11-26 Goodall D M Optical apparatus
US5408322A (en) * 1993-04-26 1995-04-18 Materials Research Corporation Self aligning in-situ ellipsometer and method of using for process monitoring
US5477327A (en) * 1993-12-15 1995-12-19 Bergman Research Group, Inc. High resolution low noise optical polarimeter

Also Published As

Publication number Publication date
EP0880688B1 (en) 2003-08-27
AU2113197A (en) 1997-08-22
WO1997028435A1 (en) 1997-08-07
EP0880688A1 (en) 1998-12-02
JP2000504116A (ja) 2000-04-04
DE69724415D1 (de) 2003-10-02
CN1209873A (zh) 1999-03-03
KR19990082130A (ko) 1999-11-15
AU716900B2 (en) 2000-03-09
BR9707315A (pt) 1999-12-28
US5822067A (en) 1998-10-13
ATE248365T1 (de) 2003-09-15
DK0880688T3 (da) 2003-12-22
DE69724415T2 (de) 2004-03-18
IL125392A (en) 2000-10-31
IL125392A0 (en) 1999-03-12
KR100481201B1 (ko) 2005-08-31

Similar Documents

Publication Publication Date Title
CN1104640C (zh) 用于旋光性化合物的改进型旋光度检测器
US4909990A (en) Immunoassay apparatus
JPH08285775A (ja) 化学物質の分析測定のための光学的検出器
JP3186375B2 (ja) キャピラリディテクタセル及びその性能の最適化方法
US5423513A (en) Method of and a capillary flow cell for analysing fluid samples
US4498774A (en) Micro-polarimeter for high performance liquid chromatography
EP0182564B1 (en) Infrared spectrophotometric apparatus
JPH076910B2 (ja) 集束光オプトロード
Li et al. On-the-fly frequency-domain fluorescence lifetime detection in capillary electrophoresis
JPS6337339B2 (zh)
EP0602070B1 (en) Fiber optic probe and method for detecting optically active materials
EP0597552A1 (en) An improved method of and a capillary flow cell for analysing fluid samples
US5046850A (en) Driving mechanism for driving an oscillating polarizer
FR2503369A1 (fr) Spectrophotometre a fluorescence
Ewbank et al. Real-time electron diffraction. Part III: Image transfer via fiber optics
CA2244218C (en) Improved optical activity detector for use with optically active compounds
US6859581B1 (en) Optical fiber multiplexer for Raman spectroscopy
US3937581A (en) Analytic cell for use in high-speed ultra centrifuges
US20230332995A1 (en) A method to produce a matched pair of polarizing filters and a method and apparatus to determine the concentration of birefringent particles using a pair of polarizing filters
Skogerboe et al. Stray light rejection in fiber-optic probes
CN219842340U (zh) 一种特定蛋白分析仪的光路检测结构
SU1610410A1 (ru) Оптическа чейка к жидкостному хроматографу
Kawabata et al. Fiber optic pH sensor based on laser fluorimetry
Skogerboe Improved chromatographic detection methods based on absorbance and ultrasonic measurements
CA1267546A (en) Infra-red spectrophotometric apparatus

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20030402

Termination date: 20100301