CN110462476A - 采用混合纤芯光纤的分布式光纤传感器和系统 - Google Patents

采用混合纤芯光纤的分布式光纤传感器和系统 Download PDF

Info

Publication number
CN110462476A
CN110462476A CN201880007777.7A CN201880007777A CN110462476A CN 110462476 A CN110462476 A CN 110462476A CN 201880007777 A CN201880007777 A CN 201880007777A CN 110462476 A CN110462476 A CN 110462476A
Authority
CN
China
Prior art keywords
fiber
core
signal
optical fiber
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880007777.7A
Other languages
English (en)
Chinese (zh)
Inventor
A·阿图索
V·A·克孜咯吴
M-J·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN110462476A publication Critical patent/CN110462476A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/3537Optical fibre sensor using a particular arrangement of the optical fibre itself
    • G01D5/3538Optical fibre sensor using a particular arrangement of the optical fibre itself using a particular type of fiber, e.g. fibre with several cores, PANDA fiber, fiber with an elliptic core or the like
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35361Sensor working in reflection using backscattering to detect the measured quantity using elastic backscattering to detect the measured quantity, e.g. using Rayleigh backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35338Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using other arrangements than interferometer arrangements
    • G01D5/35354Sensor working in reflection
    • G01D5/35358Sensor working in reflection using backscattering to detect the measured quantity
    • G01D5/35364Sensor working in reflection using backscattering to detect the measured quantity using inelastic backscattering to detect the measured quantity, e.g. using Brillouin or Raman backscattering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/32Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using changes in transmittance, scattering or luminescence in optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/31Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter and a light receiver being disposed at the same side of a fibre or waveguide end-face, e.g. reflectometers
    • G01M11/3109Reflectometers detecting the back-scattered light in the time-domain, e.g. OTDR
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02042Multicore optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03622Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only
    • G02B6/03633Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 2 layers only arranged - -
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/036Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
    • G02B6/03616Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference
    • G02B6/03638Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only
    • G02B6/03644Optical fibres characterised both by the number of different refractive index layers around the central core segment, i.e. around the innermost high index core layer, and their relative refractive index difference having 3 layers only arranged - + -
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0281Graded index region forming part of the central core segment, e.g. alpha profile, triangular, trapezoidal core
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0283Graded index region external to the central core segment, e.g. sloping layer or triangular or trapezoidal layer
    • G02B6/0285Graded index layer adjacent to the central core segment and ending at the outer cladding index
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0286Combination of graded index in the central core segment and a graded index layer external to the central core segment

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optical Transform (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
CN201880007777.7A 2017-01-19 2018-01-17 采用混合纤芯光纤的分布式光纤传感器和系统 Pending CN110462476A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762448053P 2017-01-19 2017-01-19
US62/448,053 2017-01-19
PCT/US2018/013984 WO2018136477A1 (en) 2017-01-19 2018-01-17 Distributed fiber sensors and systems employing hybridcore optical fibers

Publications (1)

Publication Number Publication Date
CN110462476A true CN110462476A (zh) 2019-11-15

Family

ID=61187818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880007777.7A Pending CN110462476A (zh) 2017-01-19 2018-01-17 采用混合纤芯光纤的分布式光纤传感器和系统

Country Status (4)

Country Link
US (1) US10317255B2 (enExample)
JP (1) JP7266525B2 (enExample)
CN (1) CN110462476A (enExample)
WO (1) WO2018136477A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236675A (zh) * 2021-12-27 2022-03-25 中国联合网络通信集团有限公司 光纤及光纤通信系统

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574883B (en) * 2018-06-22 2022-10-19 Fibercore Ltd Optical fiber
EP3847489A1 (en) * 2018-09-04 2021-07-14 Panduit Corp. Smf to mmf coupler
CN111381312B (zh) * 2018-12-29 2025-03-18 中天科技光纤有限公司 新型光纤
US10962408B2 (en) * 2019-03-07 2021-03-30 Saudi Arabian Oil Company Quasi-fundamental-mode operated multimode fiber for distributed acoustic sensing
US11467335B2 (en) * 2019-07-22 2022-10-11 Corning Incorporated Optical fibers for single mode and few mode vertical-cavity surface-emitting laser-based optical fiber transmission systems
US10880007B1 (en) 2019-08-15 2020-12-29 Saudi Arabian Oil Company Simultaneous distributed temperature and vibration sensing using multimode optical fiber
JP2023512347A (ja) * 2020-01-27 2023-03-24 ブドゥ、カロリヌ マルチモード干渉装置および方法
CN111560996A (zh) * 2020-06-03 2020-08-21 宁波亿诺维信息技术有限公司 建筑工程灌注桩缺陷检测以及修复方法
US11519767B2 (en) 2020-09-08 2022-12-06 Saudi Arabian Oil Company Determining fluid parameters
US11920469B2 (en) 2020-09-08 2024-03-05 Saudi Arabian Oil Company Determining fluid parameters
US11644351B2 (en) 2021-03-19 2023-05-09 Saudi Arabian Oil Company Multiphase flow and salinity meter with dual opposite handed helical resonators
US11913464B2 (en) 2021-04-15 2024-02-27 Saudi Arabian Oil Company Lubricating an electric submersible pump
EP4409354A4 (en) * 2021-10-01 2025-08-13 Nlight Inc SELECTABLE GAUSSIAN AND ANNULAR BEAM CHARACTERISTICS
US11994016B2 (en) 2021-12-09 2024-05-28 Saudi Arabian Oil Company Downhole phase separation in deviated wells
US12085687B2 (en) 2022-01-10 2024-09-10 Saudi Arabian Oil Company Model-constrained multi-phase virtual flow metering and forecasting with machine learning
CN115128728B (zh) * 2022-06-01 2023-09-26 长飞光纤光缆股份有限公司 一种分布式声波振动传感光纤及声波振动监测系统
CN117073866B (zh) * 2023-06-30 2024-05-28 南通大学 一种基于七芯光纤和蝴蝶结型的温度传感器及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341223A (zh) * 1999-02-22 2002-03-20 康宁股份有限公司 供激光器和led光源和使用上述器件的系统之用的经激光优化的多模光纤及方法
US20040042759A1 (en) * 2002-08-28 2004-03-04 Park Se Ho Amplifying optical fiber and method for fabricating the same
WO2005070843A1 (en) * 2004-01-20 2005-08-04 Corning Incorporated Double clad optical fiber with rare earth metal doped glass core
US20050271317A1 (en) * 2004-06-04 2005-12-08 Domino Taverner Efficient distributed sensor fiber
US20050271347A1 (en) * 2004-02-20 2005-12-08 Kimball Ronald L Optical fiber and method for making such fiber
WO2007027189A2 (en) * 2004-10-21 2007-03-08 Corning Incorporated Rare earth doped single polarization double clad optical fiber and a method for making such fiber
US20110211796A1 (en) * 2010-02-26 2011-09-01 Dana Craig Bookbinder Low bend loss optical fiber
US20130287353A1 (en) * 2012-04-27 2013-10-31 Draka Comteq B.V. Hybrid Single-Mode and Multimode Optical Fiber
CN105209946A (zh) * 2013-04-08 2015-12-30 康宁股份有限公司 低弯曲损耗光纤

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4726827A (en) * 1982-09-29 1988-02-23 Corning Glass Works Method and apparatus for producing an optical fiber preform
JPS60200208A (ja) * 1984-03-23 1985-10-09 Fujitsu Ltd 光フアイバ
US5191206A (en) 1991-04-16 1993-03-02 Electric Power Research Institute, Inc. Distributed fiber optic sensor using clad material light backscattering
US5627934A (en) 1994-08-03 1997-05-06 Martin Marietta Energy Systems, Inc. Concentric core optical fiber with multiple-mode signal transmission
CA2355819A1 (en) 2000-08-28 2002-02-28 Sumitomo Electric Industries, Ltd. Optical fiber, method of making optical fiber preform, and method of making optical fiber
US6700697B2 (en) * 2002-01-23 2004-03-02 Np Photonics, Inc. Reflective erbium-doped amplifier
US7046888B2 (en) * 2002-12-18 2006-05-16 The Regents Of The University Of Michigan Enhancing fiber-optic sensing technique using a dual-core fiber
US8428415B2 (en) * 2009-01-09 2013-04-23 Corning Incorporated Bend insensitive optical fibers with low refractive index glass rings
GB0912851D0 (en) 2009-07-23 2009-08-26 Fotech Solutions Ltd Distributed optical fibre sensing
JP2013218247A (ja) 2012-04-12 2013-10-24 Shin Etsu Chem Co Ltd 光ファイバ
US9470588B2 (en) 2013-03-15 2016-10-18 Ofs Fitel, Llc Optical sensor having fiduciary marks detected by Rayleigh scattered light
US9321222B2 (en) 2013-08-13 2016-04-26 Baker Hughes Incorporated Optical fiber sensing with enhanced backscattering
CA2926201C (en) 2013-11-15 2019-08-27 Halliburton Energy Services, Inc. Fiber optic rotary joint connecting dual-core fibers
US9964420B2 (en) * 2014-11-03 2018-05-08 Ofs Fitel, Llc Distributed brillouin sensor
JP6363548B2 (ja) * 2015-03-30 2018-07-25 日本電信電話株式会社 ファイバ側方光入出力装置及び光軸調整方法
US10302463B2 (en) 2015-11-19 2019-05-28 Corning Incorporated Distributed fiber sensors and systems employing multicore optical fibers

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1341223A (zh) * 1999-02-22 2002-03-20 康宁股份有限公司 供激光器和led光源和使用上述器件的系统之用的经激光优化的多模光纤及方法
US20040042759A1 (en) * 2002-08-28 2004-03-04 Park Se Ho Amplifying optical fiber and method for fabricating the same
WO2005070843A1 (en) * 2004-01-20 2005-08-04 Corning Incorporated Double clad optical fiber with rare earth metal doped glass core
US20050271347A1 (en) * 2004-02-20 2005-12-08 Kimball Ronald L Optical fiber and method for making such fiber
US20050271317A1 (en) * 2004-06-04 2005-12-08 Domino Taverner Efficient distributed sensor fiber
WO2007027189A2 (en) * 2004-10-21 2007-03-08 Corning Incorporated Rare earth doped single polarization double clad optical fiber and a method for making such fiber
US20110211796A1 (en) * 2010-02-26 2011-09-01 Dana Craig Bookbinder Low bend loss optical fiber
US20130287353A1 (en) * 2012-04-27 2013-10-31 Draka Comteq B.V. Hybrid Single-Mode and Multimode Optical Fiber
CN103492918A (zh) * 2012-04-27 2014-01-01 德拉卡康泰克私营有限责任公司 单模多模混合式家用网络光纤
CN105209946A (zh) * 2013-04-08 2015-12-30 康宁股份有限公司 低弯曲损耗光纤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏计林等: "《光信息科学与技术基础理论及实验》", 31 July 2010 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236675A (zh) * 2021-12-27 2022-03-25 中国联合网络通信集团有限公司 光纤及光纤通信系统

Also Published As

Publication number Publication date
US10317255B2 (en) 2019-06-11
JP7266525B2 (ja) 2023-04-28
WO2018136477A1 (en) 2018-07-26
US20180202843A1 (en) 2018-07-19
JP2020514724A (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
JP7266525B2 (ja) ハイブリッドコア光ファイバを採用した分布型ファイバセンサ及びシステム
JP6971981B2 (ja) 光ファイバおよびファイバセンサシステム
US10591666B2 (en) Two-core optical fibers for distributed fiber sensors and systems
US7947945B2 (en) Fiber optic sensing system, method of using such and sensor fiber
JP5948368B2 (ja) 光ファイバの特性評価方法
CN102778306A (zh) 光子晶体光纤折射率温度传感器、制作方法及测量系统
US20200378864A1 (en) Monitorable hollow core optical fiber
CN109959403B (zh) 一种多参量大容量传感系统
US20220334007A1 (en) Broad bandwidth graded index multimode optical fiber for distributed temperature sensing in the 1550 nm region
Kawa et al. Single-end-access strain and temperature sensing based on multimodal interference in polymer optical fibers
Ujihara et al. Measurement of large-strain dependence of optical propagation loss in perfluorinated polymer fibers for use in seismic diagnosis
US10837804B2 (en) Enhanced microbend sensor
CN101799304A (zh) 反射式差动强度调制光纤传感装置及其方法
CN212722604U (zh) 一种光纤折射率传感器
CN118696222A (zh) 针对空芯光纤的光时域反射计量
Lebang et al. Detection of displacement using glass optical fiber sensor with various configuration
CN114111642B (zh) 一种双空气孔三芯光纤弯曲传感器
US20250172747A1 (en) Uncoupled multicore optical fiber with alkali doped cores
Kremp et al. Continuous optical fiber gratings for distributed sensing
US20250172746A1 (en) Uncoupled multicore optical fiber
JP2511999B2 (ja) 液体検知用光ファイバおよびこれを用いた液体検知システム
Lebang et al. Indonesian Physical Review
GAUTAM A Design of High Temperature High Bandwidth Fiber Optic Pressure Sensors
Al-Masri Reflective and Beam-Through Types of Fiber Optic Sensor for Displacement Measurement
Kawa et al. Single-End-Access Strain and Temperature Sensing Based on Multimodal Interference in Plastic Optical Fibers

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20220311

AD01 Patent right deemed abandoned