CN110457800B - 考虑机械惯性的水平轴风机风速出力折算方法 - Google Patents

考虑机械惯性的水平轴风机风速出力折算方法 Download PDF

Info

Publication number
CN110457800B
CN110457800B CN201910696932.7A CN201910696932A CN110457800B CN 110457800 B CN110457800 B CN 110457800B CN 201910696932 A CN201910696932 A CN 201910696932A CN 110457800 B CN110457800 B CN 110457800B
Authority
CN
China
Prior art keywords
output
wind speed
wind
fan
regression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910696932.7A
Other languages
English (en)
Other versions
CN110457800A (zh
Inventor
杨正瓴
刘丁一
侯谨毅
王迪
张军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201910696932.7A priority Critical patent/CN110457800B/zh
Publication of CN110457800A publication Critical patent/CN110457800A/zh
Application granted granted Critical
Publication of CN110457800B publication Critical patent/CN110457800B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Wind Motors (AREA)

Abstract

本发明涉及一种考虑机械惯性的水平轴风机风速出力折算方法,包括下列步骤:获取风场的风和风机相关历史数据,以及未来的风速风向等预报值;根据历史记录,建立veq和风机出力p之间的关系;步骤三:将风速预报值代入功率曲线,得到风机的未来出力折算值;计算指定采样周期下的风速平方时间序列差分以及出力时间序列差分;建立出力调整模型;步骤六:将未来风速平方差分代入出力调整模型,得到未来的出力调整值;进一步采用偏最小二乘回归PLSR、最小二乘支持向量回归LSSVR、集成学习最小二乘回归LSboost模型,得到各模型对应的输出即出力调整值;采用偏最小二乘回归,优化组合成;得到考虑风机机械惯性的更准确的出力折算值。

Description

考虑机械惯性的水平轴风机风速出力折算方法
技术领域
本发明涉及风电功率预测领域。更具体的说,是一种考虑水平轴风力发电机叶片等机械惯性影响的“风速-出力”转算新方法和系统。
背景技术
风电是一种绿色可再生的低碳能源,是新能源的主要形式之一。我国风能资源的可开发储量,是当前电力消耗总量的数倍。我国东南沿海尤其是未来风电发展的重点区域。由于风能具有明显的波动性和随机性,风电消纳是智能电网和未来能源互联网的主要任务之一。准确的风电功率预测,是目前国内外公认的提高电力系统运行水平的关键基础技术。
目前提高风电功率预测的两类主要任务,一是提高风速风向等的预报,二是提高从风速到风力发电机发出的有功功率(又称“出力”)折算的准确性。“风速-风机有功功率/出力”之间的关系,称作功率曲线。目前提高“风速-出力”折算准确性的研究,主要集中在实际中功率曲线的建模方面。如2017年3月国际标准IEC 61400-12-1建议了功率曲线建模新标准。杨茂、LydiaM等人近年的国内外的综述文献,基本上汇集了近年国内外的主要研究方法与成果。具体的建模方法有离散方法、各种数学曲线的参数拟合法、采用大量原始数据的非参数方法,以及随机方法等。未来的研究方向有采用云模型、可能性理论、粗糙集,以及从单台风机到多台风机的转化等。目前的研究还有异常数据的清除,极大似然建模,聚类算法等。
已有国内外研究发现了风速的变化(上升、下降)、风向的变化等引起实际中的“风速-出力”关系,在一定程度上会偏离根据国际标准IEC建议得出的功率曲线。如,对于某指定的风速,上升风的出力偏小,下降风的出力偏大。采用这些性质,可以提高“风速-出力”折算的准确性。但该类研究的现有方法仅仅依赖于实际数据,对异常数据的抵抗能力有进一步提高的空间。尚未见到依据风速变化对出力影响物理机理的折算方法,即考虑机械惯性的水平轴风机风速功率折算新方法。
发明内容
本发明提出了一种考虑机械惯性的水平轴风机风速出力折算方法。技术方案如下:
一种考虑机械惯性的水平轴风机风速功率折算方法,包括下列步骤:
步骤一:获取风场的风和风机相关历史数据,以及未来的风速风向等预报值;
步骤二:根据历史记录中的水平轴风力发电机偏航角
Figure BDA0002149627280000021
风向角/>
Figure BDA0002149627280000022
将风速观测值vA换算成有效风速/>
Figure BDA0002149627280000023
建立veq和风机出力p之间的关系,即功率曲线pPC=a×(veq-vcutin)b,其中vcutin是切入风速,pPC是多项式拟合后的功率值,a是系数,b是幂次数;
步骤三:将风速预报值代入功率曲线,得到风机的未来出力折算值pPC
步骤四:计算指定采样周期下的风速平方时间序列差分
Figure BDA0002149627280000024
以及出力时间序列差分Δp=pi+1-pi,pi为风机在第i时间点的出力;
步骤五:使用岭回归等回归方法建立出力的差分Δp与风速平方差分
Figure BDA0002149627280000025
之间的分段线性关系,得到出力调整模型;
步骤六:将未来风速平方差分
Figure BDA0002149627280000026
代入出力调整模型,得到未来的出力调整值
Figure BDA0002149627280000027
步骤七:进一步采用偏最小二乘回归PLSR、最小二乘支持向量回归LSSVR、集成学习最小二乘回归LSboost共计M=3种模型,以
Figure BDA0002149627280000028
作为输入变量,参照步骤五、步骤六得到各模型对应的输出即出力调整值/>
Figure BDA0002149627280000029
步骤八:采用偏最小二乘回归,以
Figure BDA00021496272800000210
这(1+3)个出力调整值作为输入,优化组合成一个Δpad
步骤九:利用该Δpad调整步骤三得到的pPC,即得到考虑风机机械惯性的更准确的出力折算值pO=pPC+Δpad
本发明由于采取以上技术方案,其具有以下优点:
1)本发明将物理学中的“刚体定轴转动定律”引入到水平轴风力发电机的“风速-出力”折算中,并发现在指定采样周期下,风速平方的差分
Figure BDA00021496272800000211
与出力的差分Δp之间有较为精确的线性关系。
2)本发明不仅可以进一步提高“风速-出力”折算的准确性,还具有较强的抵抗异常数据的稳健性。
附图说明
图1:折算方法整体流程图
图2:实例风机的实际功率曲线,以及风速-出力之间的散点图
图3:图2的局部拟合细节
图4:实例采用的实际风场风速时间序列
图5:岭回归的效果,P=[10,800]kw,k=14.4784kw/(m/s)2
图6:岭回归的效果,P=(800,1490)kw,k=8.9896kw/(m/s)2
图7:采用偏最小二乘回归组合出最终使用的出力调整值Δpad
图8:本发明的效果示例
具体实施方式
本发吗主要是在“切入风速、额定风速”之间的折算,达到或超过额定风速后,风机出力一般为固定值,本发明不再进一步涉及,低于切入风速时,风机一般不工作。如图1所示,本发明提出了一种采用机械惯性物理原理的水平轴风力发电机的风速-出力折算新方法,下面结合具体的实例进行解释,它包括以下过程:
步骤一:获取风场的风和风机相关历史数据,以及未来的风速风向等预报值;
本实例采用我国北方某风场的2018年1月的实测数据,选取其中连续时间的177701组数据,采样间隔为10秒钟。包括风速、风向、出力、偏航角、桨距角和气温。
步骤二:根据历史记录中的水平轴风力发电机偏航角
Figure BDA0002149627280000031
风向角/>
Figure BDA0002149627280000032
将风速观测值vA换算成有效风速/>
Figure BDA0002149627280000033
参照IEC标准,建立veq和风机出力p之间的关系,即功率曲线pPC=a×(veq-vcutin)b。其中vcutin是切入风速,pPC是多项式拟合后的功率值,a是系数,b是幂次数;
水平轴风机出力的分散性,由“风”(风速、风速的变化、风向及其变化、风切变、空气密度,地形,等),以及“风机”(偏航角、桨距角、机械惯性,等)两大类多种具体因素引起。典型的功率曲线,是该风速下一段时间内分散性出力的平均值。
在本实例中,参照国际标准IEC61400-12-1建议得到的功率曲线请看图2和图3。其中在“切入风速、额定风速”之间的拟合函数为
pPC=30×(veq-vcutin)1.931kw,vcutin=3m/s。这里pPC的单位kw,veq的单位m/s。
以风机额定容量为基准值,采用功率曲线折算出的出力对实际出力的相对误差为:平均误差-0.4127%,均方根误差2.3424%,最大绝对值误差7.9689%。
为方便,本发明没有使用IEC61400-12-1定义的“等效风速”(该“等效风速”与出力之间为严格的3次方关系)。
步骤三:将风速预报值代入功率曲线,得到风机的未来出力折算值pPC
将未来的风速预报值,代入功率曲线,即可得到风机的未来出力折算值pPC
在本实例中,未来的风速请看图4,折算值pPC请看图8。
步骤四:计算指定采样周期下的风速平方时间序列差分
Figure BDA0002149627280000041
以及出力时间序列差分Δp=pi+1-pi,pi为风机在第i时间点的出力,i=1,2,…;
在本实例中,风机在出力p=800kw时,控制特性出现分段。因此p=[10,800]kw,p=(800,1490)kw两种情况下的
Figure BDA0002149627280000042
与Δp之间的散点图,请看图5、图6。
风速平方的差分
Figure BDA0002149627280000043
与出力差分Δp之间近似为线性关系。使用物理学中的“刚体定轴转动定律”来描述风力带动叶片的机械运动:
Figure BDA0002149627280000044
其中,J为风力发电机叶片和转子绕转子轴心转动的等效机械转动惯量,φ为风力发电机转子绕其轴心转动的机械角度,TP为风机出力形成的机械转矩,DP为转子受到的其它等效阻尼转矩。
Figure BDA0002149627280000045
为风产生的动力转矩,当风速变化范围不大时
Figure BDA0002149627280000046
这里ρ为空气密度,R为风机叶片长度,β为桨距角,
Figure BDA0002149627280000051
为叶尖速比,veq为瞬时等效风速,Cp(v,ωr,β)为风能利用系数。
忽略各种次要因素的作用,上式可简化并改写为微分方程的形式:
Figure BDA0002149627280000052
当桨距角β不变时,且风速变化不大时,
Figure BDA0002149627280000053
K是一个实数的系数。微分方程可以改写为一个一阶低通滤波器:
Figure BDA0002149627280000054
并且,由于发电机转速n到出力p可以在一定范围内视为近似的线性函数,有:
Figure BDA0002149627280000055
其中A、B为两个常数。可见,从转矩到出力,可以近似为一个一阶低通滤波器。当风速变化不是很大时,从风速的平方到出力,也可以近似为一个一阶低通滤波器。
从这些公式可知:在指定的采样周期(即,统计风速和出力的时间长度)下,当风速的变化率不太大时,出力的差分Δp近似为风速平方差分
Figure BDA0002149627280000056
的线性函数。Δp对/>
Figure BDA0002149627280000057
的比值,即该一阶低通滤波器的模。在我国通常的15分钟采样周期下,该一阶低通滤波器的相角较小,暂时予以忽略。
这些机理性的分析,表明图5、图6(本发明采用的方法)对异常数据具有较强的抵抗力和稳健性。
目前的水平轴风机,通常在到达和超过额定风速之后才调整桨距角β,以尽力保持出力稳定在额定功率。因此,桨距角一般不参加风速的计算。由于偏航角
Figure BDA0002149627280000058
和风向/>
Figure BDA0002149627280000059
的差值,一般都自动控制在10°以内,因此,只需要对轮毂处的风速观测值vA进行少量调整。
步骤五:使用岭回归等回归方法建立出力的差分Δp与风速平方差分
Figure BDA00021496272800000510
之间的分段线性关系(出力调整模型),确定其比例系数k1、k2
采用线性回归LR、偏最小二乘回归PLSR、Lasso回归(least absolute shrinkageand selection operator,又译最小绝对值收敛和选择算子、套索算法)、岭回归Ridge、逐步回归Stepwise、多重线性或广义线性回归Regstats等多种回归模型,求得从风速平方差分
Figure BDA0002149627280000061
到出力差分Δp之间的拟合效果最佳的比例系数,综合比较本例我们选择使用岭回归方法。
实例中风机转速-出力特性为分段函数关系。即,在出力p=800kw时,特性发生变化。所以分别对p=[10,800]kw、p=(800,1490)kw进行风速平方的差分
Figure BDA0002149627280000062
与出力的差分Δp之间的线性回归。得到如下的表1、表2。
表1 回归方法和比例系数对比,p=[10,800]kw
Figure BDA0002149627280000063
表2 回归方法和比例系数对比,p=(800,1490)kw
Figure BDA0002149627280000064
图5、图6为采用岭回归的效果。图中散点为风速平方差分
Figure BDA0002149627280000065
对出力差分Δp的散点图,粗实线为岭回归得到的直线函数关系。图4对应p=[10,800]kw,比例系数14.478kw/(m/s)2;图5为p=(800,1490)kw,比例系数8.9896kw/(m/s)2
特别说明,本发明采用线性回归类模型,不仅是由于
Figure BDA0002149627280000066
与Δp之间存在近似的线性关系,还主要是因为线性关系具有明显的稳健性。
线性函数关系具有明显的稳健性,可从误差分析得到理论性证明。依据实际测量的“全误差”计算公式:
Figure BDA0002149627280000067
这里,函数y有Z个自变量xi。显然,对于线性模型,上式里的各个偏导数为常数。因此y的误差dy具有确定的范围,而且独立于系统的自变量xi,是dxi的线性组合。因此,线性函数关系具有较强的稳健性,可以有效抵抗异常数据的不利影响。
步骤六:将未来风速平方差分
Figure BDA0002149627280000071
代入出力调整模型,得到未来的出力调整值
Figure BDA0002149627280000072
本实例中,对未来的风速预报值(图4),根据分段p=[10,800]kw、p=(800,1490)kw特性,按照表1、表2对
Figure BDA0002149627280000073
进行比例计算即可。
步骤七:进一步采用偏最小二乘回归PLSR、最小二乘支持向量回归LSSVR、集成学习最小二乘回归LSboost共计M=3种模型,以
Figure BDA0002149627280000074
作为输入变量,参照步骤五、步骤六得到各模型对应的输出即出力调整值/>
Figure BDA0002149627280000075
由岭回归的图5、图6及多种回归结果,可见:
Figure BDA0002149627280000076
与Δp之间尽管有明确的线性关系,但回归的残差仍然可观。
进一步采用智能模型等计算出力调整值。首先建立模型
Figure BDA0002149627280000077
这里F表示从/>
Figure BDA0002149627280000078
和/>
Figure BDA0002149627280000079
到Δp的回归关系。本实例采用PLSR、LSSVR、LSBoost三种性能优良的回归模型建立上述关系。
其中PLSR参考自王惠文教授所著的《偏最小二乘回归方法及其应用》,LSSVR来自网站LS-SVM LAB(网址:https://www.esat.kuleuven.be/sista/lssvmlab/)、LSBoost的源程序来自Matlab内置工具箱。
各种智能回归模型的输入变量
Figure BDA00021496272800000710
的具体形式为:
Figure BDA00021496272800000711
记按照机舱角和风向折算后的风速时间序列为vi(即,第i个veq的简写)、风机出力pi,i=1,2,…,k,…,N。当前时刻为k,时间序列长度为N。类似地,第i个
Figure BDA00021496272800000712
简写为/>
Figure BDA00021496272800000713
这里,m、n分别为两个正整数。即采用最近n个
Figure BDA00021496272800000714
m个/>
Figure BDA00021496272800000715
进行建立折算的模型。
输入各种回归模型的输出变量为Δpk
本例采用的训练模型的样本容量为S,因此输入到模型训练的是矩阵X(m+n)×S和Y1×S
Y1×S=(Δpk-S+1,…,Δpk-1,Δpk)
Figure BDA0002149627280000081
Figure BDA0002149627280000082
Figure BDA0002149627280000083
的格式与/>
Figure BDA0002149627280000084
相同。
对未来的风速预报值(图4),参照步骤六,单独使用各个智能模型得到
Figure BDA0002149627280000085
的误差统计如表3:
表3 智能模型折算出力调整值的相对误差(以风机的额定容量为基准值)
Figure BDA0002149627280000086
步骤八:采用偏最小二乘回归,以
Figure BDA0002149627280000087
这(1+3)个出力调整值作为输入,优化组合成一个Δpad
接着将(1+3)个出力折算调整值
Figure BDA0002149627280000088
再进行组合即可得到实际使用的/>
Figure BDA0002149627280000089
H表示组合预测的模型。本发明移植“组合预测”里可靠的偏最小二乘回归进行组合。
图7是采用偏最小二乘回归组合出最终使用的出力调整值Δpad的范例。
步骤九:利用该Δpad调整步骤三得到的pPC,即得到考虑风机机械惯性的更准确的出力折算值pO=pPC+Δpad
使用偏最小二乘回归PLSR,优化组合上述四种单项模型得到的出力调整值的Δpad。对功率曲线折算得到出力pPC,优化调整pO=pPC+Δpad后的出力误差相对值,如表4:
表4 组合模型优化后的风机出力折算相对误差表(以风机的额定容量为基准值)
Figure BDA00021496272800000810
Figure BDA0002149627280000091
其中用功率曲线从风速折算出的出力pPC,在步骤三完成。Δpad在上面步骤八完成。最终的折算如图8所示。
本例以风机的额定容量为基准值,我们的结果的相对误差,比直接采用功率曲线的结果降低为:平均误差降低约在0.18%,均方根降低约在0.67%的水平,最大误差降低约在1.8%的水平。

Claims (1)

1.一种考虑机械惯性的水平轴风机风速功率折算方法,包括下列步骤:
步骤一:获取风场的风和风机相关历史数据,以及未来的风速风向等预报值;
步骤二:根据历史记录中的水平轴风力发电机偏航角
Figure FDA0004062356930000011
风向角/>
Figure FDA0004062356930000012
将风速观测值vA换算成有效风速/>
Figure FDA0004062356930000013
建立veq和风机出力p之间的关系,即功率曲线pPC=a×(veq-vcutin)b,其中vcutin是切入风速,pPC是多项式拟合后的功率值,a是系数,b是幂次数;
步骤三:将风速预报值代入功率曲线,得到风机的未来出力折算值pPC
步骤四:计算指定采样周期下的风速平方时间序列差分
Figure FDA0004062356930000014
以及出力时间序列差分Δp=pi+1-pi,pi为风机在第i时间点的出力;
步骤五:使用岭回归等回归方法建立出力的差分Δp与风速平方差分
Figure FDA0004062356930000015
之间的分段线性关系,得到出力调整模型;
步骤六:将未来风速平方差分
Figure FDA0004062356930000016
代入出力调整模型,得到未来的出力调整值/>
Figure FDA0004062356930000017
步骤七:进一步采用偏最小二乘回归PLSR、最小二乘支持向量回归LSSVR、集成学习最小二乘回归LSboost共计M=3种模型,以
Figure FDA0004062356930000018
作为输入变量,参照步骤五、步骤六得到各模型对应的输出即出力调整值/>
Figure FDA0004062356930000019
步骤八:采用偏最小二乘回归,以
Figure FDA00040623569300000110
Figure FDA00040623569300000111
这4个出力调整值作为输入,优化组合成一个Δpad
步骤九:利用该Δpad调整步骤三得到的pPC,即得到考虑风机机械惯性的更准确的出力折算值pO=pPC+Δpad
CN201910696932.7A 2019-07-30 2019-07-30 考虑机械惯性的水平轴风机风速出力折算方法 Active CN110457800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910696932.7A CN110457800B (zh) 2019-07-30 2019-07-30 考虑机械惯性的水平轴风机风速出力折算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910696932.7A CN110457800B (zh) 2019-07-30 2019-07-30 考虑机械惯性的水平轴风机风速出力折算方法

Publications (2)

Publication Number Publication Date
CN110457800A CN110457800A (zh) 2019-11-15
CN110457800B true CN110457800B (zh) 2023-06-16

Family

ID=68484132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910696932.7A Active CN110457800B (zh) 2019-07-30 2019-07-30 考虑机械惯性的水平轴风机风速出力折算方法

Country Status (1)

Country Link
CN (1) CN110457800B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111915070B (zh) * 2020-07-17 2022-05-31 天津大学 一种采用大气压的空间相关性k近邻日前风速预测方法
CN113505483A (zh) * 2021-07-09 2021-10-15 天津大学 一种考虑风机转动惯量的风速折算出力的精确方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055188A (zh) * 2011-01-07 2011-05-11 西北电网有限公司 基于时间序列法的超短期风电功率预报方法
WO2014201849A1 (zh) * 2013-06-18 2014-12-24 国网辽宁省电力有限公司电力科学研究院 配有储能电站的分散式风电场有功优化调控方法
CN107507097A (zh) * 2017-07-03 2017-12-22 上海电力学院 一种风电功率短期预测方法
CN108667069A (zh) * 2018-04-19 2018-10-16 河海大学 一种基于偏最小二乘法回归的短期风电功率预测方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103259285B (zh) * 2013-05-03 2015-04-29 国家电网公司 含大规模风电电力系统的短期运行优化方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102055188A (zh) * 2011-01-07 2011-05-11 西北电网有限公司 基于时间序列法的超短期风电功率预报方法
WO2014201849A1 (zh) * 2013-06-18 2014-12-24 国网辽宁省电力有限公司电力科学研究院 配有储能电站的分散式风电场有功优化调控方法
CN107507097A (zh) * 2017-07-03 2017-12-22 上海电力学院 一种风电功率短期预测方法
CN108667069A (zh) * 2018-04-19 2018-10-16 河海大学 一种基于偏最小二乘法回归的短期风电功率预测方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Yang zhenling.etc."Ultra-short term wind speed prediction based on spatial correlation by k-nearest neighbor".《Electric Power Automation Equipment》.2019,全文. *
杨正瓴 ; 刘阳 ; 张泽 ; 朱新山 ; 张军.采用最近历史观测值和PLSR进行空间相关性超短期风速预测.电网技术.2017,(第006期),全文. *

Also Published As

Publication number Publication date
CN110457800A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN105041572B (zh) 用于优化风电场操作的系统和方法
US10605228B2 (en) Method for controlling operation of a wind turbine
CN107909211B (zh) 基于模糊c均值聚类算法的风场等值建模及优化控制方法
CN105894391B (zh) 基于scada运行数据提取的风电机组转矩控制性能评估方法
CN110457800B (zh) 考虑机械惯性的水平轴风机风速出力折算方法
CN111801493A (zh) 确定用于风力涡轮机的控制设置
CN110454329B (zh) 一种风电机组桨距角控制方法
CN107947228B (zh) 基于Markov理论的含风电电力系统随机稳定性分析方法
CN110365053B (zh) 基于延迟优化策略的短期风电功率预测方法
CN107100795A (zh) 一种低风速下风力发电机组mppt自适应控制方法
Tian et al. Active power dispatch method for a wind farm central controller considering wake effect
CN111064190B (zh) 一种基于维纳随机过程的风电场储能系统配置方法
CN110991701A (zh) 一种基于数据融合的风电场风机风速预测方法及系统
Ostergaard et al. Gain-scheduled linear quadratic control of wind turbines operating at high wind speed
CN115030866A (zh) 一种风电场场群控制系统
CN105041584B (zh) 一种风电机组塔体倾斜度计算方法
CN111931967B (zh) 一种风电场短期功率预测方法
CN111120204B (zh) 风力发电机组独立变桨四象限运行控制方法
CN105370495B (zh) 一种采用动态查表控制算法提高风力发电机组出力的方法
CN117251995A (zh) 基于可变遗忘因子最小二乘法的双馈风机惯量评估方法
CN114689237A (zh) 载荷传感器标定方法、装置及计算机可读存储介质
CN115167140B (zh) 风力发电机组多目标随机模型预测控制策略方法及系统
CN114876732A (zh) 一种风电机组变桨的控制方法及装置
EP3406897B1 (en) System and method for determining wind farm wake loss
CN111577540B (zh) 一种风力发电机组等效气动模型实现方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant