CN110455284B - 一种基于mems-imu的行人运动模式识别方法及装置 - Google Patents

一种基于mems-imu的行人运动模式识别方法及装置 Download PDF

Info

Publication number
CN110455284B
CN110455284B CN201910611372.0A CN201910611372A CN110455284B CN 110455284 B CN110455284 B CN 110455284B CN 201910611372 A CN201910611372 A CN 201910611372A CN 110455284 B CN110455284 B CN 110455284B
Authority
CN
China
Prior art keywords
acceleration
axis direction
value
angular velocity
pedestrian
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910611372.0A
Other languages
English (en)
Other versions
CN110455284A (zh
Inventor
张伦东
吕志伟
李军正
高扬骏
何劢航
徐基伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Information Engineering University of PLA Strategic Support Force
Original Assignee
Information Engineering University of PLA Strategic Support Force
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Information Engineering University of PLA Strategic Support Force filed Critical Information Engineering University of PLA Strategic Support Force
Priority to CN201910611372.0A priority Critical patent/CN110455284B/zh
Publication of CN110455284A publication Critical patent/CN110455284A/zh
Application granted granted Critical
Publication of CN110455284B publication Critical patent/CN110455284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/10Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • G01C21/206Instruments for performing navigational calculations specially adapted for indoor navigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Navigation (AREA)

Abstract

本发明涉及一种基于MEMS‑IMU的行人运动模式识别方法及装置,通过至少采集MEMS‑IMU中x轴方向上的加速度和y轴方向上的角速度;将采集的x轴方向上的加速度与加速度初始值作差,大于零的极值为加速度波峰值,小于零的极值为加速度波谷值;将采集的y轴方向上的角速度与角速度初始值作差,大于零的极值为角速度波峰值,小于零的极值为角速度波谷值;判断行人的运动状态,即从行人静止状态解除开始,若x轴方向上的加速度先出现加速度波谷值,则判断为上楼状态;若y轴方向上的角速度先出现角速度波谷值,则判断为下楼状态;即本发明提供的对活动于建筑物内的人群的运动模式状态进行检测的方法,能够识别人的运动状态。

Description

一种基于MEMS-IMU的行人运动模式识别方法及装置
技术领域
本发明属于行人运动检测技术领域,具体涉及一种基于MEMS-IMU的行人运动模式识别方法及装置。
背景技术
随着技术的发展,利用微机电系统(Micro Electromechanical Systems,MEMS)的惯性测量单元(Inertial Measurement Unit,IMU)对行人进行导航定位成为行人自主导航的主要手段。其中,惯性测量单元(Inertial Measurement Unit,IMU)是一种微机电系统,包括微型陀螺仪、微型加速度计、专用集成电路(ASIC)、嵌入式微机和相应的导航软件,能够实现定位和检测的功能。
现如今,对于户外运动,如跑步、行走的监测,已经有了成熟的技术;目前,针对人的运动的自动检测方法,主要是利用MEMS-IMU对行人行走的步数进行计数,并且对行人的步长进行估计,使用户能够掌握自身的运动信息,合理安排运动、锻炼的活动时间。
但是,对于大部分仅活动于办公室、写字楼等建筑物内的人群,如果将现有技术中的对于户外运动的检测的技术用于室内的人的活动的监测上,其实际上意义并不大,因此,其并没有一种合理的判断室内人的运动模式的方式。
同时,随着活动于室内人群数量的不断增大,其希望能够掌握自身的运动信息,因此对于室内人的运动模式状态检测的需求也越来越大,这是亟需解决的问题。
发明内容
本发明的目的在于提供一种基于MEMS-IMU的行人运动模式识别方法及装置,用于解决如何对活动于建筑物内的人群的运动模式状态进行检测。
为解决上述技术问题,本发明的技术方案为:
一种基于MEMS-IMU的行人运动模式识别方法,根据MEMS-IMU在鞋中的位置,确定三维坐标系,其中鞋的前后方向为x轴方向,垂直于鞋底面的方向为z轴方向,y轴垂直于x轴和z轴;包括以下步骤:
1)至少采集MEMS-IMU中x轴方向上的加速度和y轴方向上的角速度;
2)将采集的x轴方向上的加速度与加速度初始值作差,大于零的极值为加速度波峰值,小于零的极值为加速度波谷值;将采集的y轴方向上的角速度与角速度初始值作差,大于零的极值为角速度波峰值,小于零的极值为角速度波谷值;
其中,所述加速度初始值为行人静止时x轴方向上的加速度;所述角速度初始值为行人静止时y轴方向上的角速度;
3)从行人静止状态解除开始,若x轴方向上的加速度先出现加速度波谷值,则判断为上楼状态;若y轴方向上的角速度先出现角速度波谷值,则判断为下楼状态。
本发明还提供了一种基于MEMS-IMU的行人运动模式识别装置,包括处理器和存储器,处理器连接有用于获取MEMS-IMU数据的通讯接口;所述处理器执行存储在存储器中的如下方法指令:
1)至少采集MEMS-IMU中x轴方向上的加速度和y轴方向上的角速度;
2)将采集的x轴方向上的加速度与加速度初始值作差,大于零的极值为加速度波峰值,小于零的极值为加速度波谷值;将采集的y轴方向上的角速度与角速度初始值作差,大于零的极值为角速度波峰值,小于零的极值为角速度波谷值;
其中,所述加速度初始值为行人静止时x轴方向上的加速度;所述角速度初始值为行人静止时y轴方向上的角速度;
3)从行人静止状态解除开始,若x轴方向上的加速度先出现加速度波谷值,则判断为上楼状态;若y轴方向上的角速度先出现角速度波谷值,则判断为下楼状态。
本发明的上述识别方法及装置的效果:
本发明利用MEMS-IMU对行人的运动模式进行识别,将MEMS-IMU固定在鞋后跟里,x轴方向上的加速度和y轴方向上的角速度,将采集的x轴方向上的加速度与加速度初始值作差,将采集的y轴方向上的角速度与角速度初始值作差,以零值为界限,进行分段,大于零的记为波峰段,小于零的记为波谷段,并分别计算加速度和角速度的波峰值与波谷值;只要MEMS-IMU与鞋的关系固定,则每种运动状态与加速度计和陀螺仪信号波峰波谷的逻辑关系相对应,分别通过x轴方向上的加速度和y轴方向上的角速度的波峰波谷的逻辑关系判断行人的运动状态;本发明提供了一种能够对活动于建筑物内的人群的运动模式状态进行检测的识别方法,能够识别人的运动状态。
进一步的,对于上述识别方法及装置,为了更准确地实现行人运动状态的识别,所述加速度初始值和角速度初始值是通过计算得到的:
(1)分别采集MEMS-IMU中x轴、y轴、z轴三个方向上的加速度和角速度;
(2)根据采集的x轴、y轴、z轴三个方向上的加速度,计算加速度方差,所述加速度方差的计算方式为:
Figure GDA0002762840940000031
式中,ak=[akx aky akz]T为采集的k时刻的加速度;
Figure GDA0002762840940000032
为滑动窗口N时间段内的计算的加速度平均值;
Figure GDA0002762840940000033
为加速度方差;
(3)将计算的加速度方差与加速度方差检测阈值thresholdσ比较,若加速度方差小于加速度方差检测阈值thresholdσ,则将采集的x轴方向上的加速度作为加速度初始值,将y轴方向上的角速度作为角速度初始值。
进一步的,对于上述识别方法及装置,步骤2)中,x轴方向上的加速度波峰值的计算方式为:
Figure GDA0002762840940000034
Figure GDA0002762840940000035
x轴方向上的加速度波谷值的计算方式为:
Figure GDA0002762840940000036
Figure GDA0002762840940000037
式中,akx为k时刻x轴方向上的加速度,a(k-1)x为k-1时刻x轴方向上的加速度,a(k+1)x为k+1时刻x轴方向上的加速度,
Figure GDA0002762840940000038
为行人静止时的x轴方向上的加速度初始值;
y轴方向上的角速度波峰值的计算方式为:
Figure GDA0002762840940000039
Figure GDA00027628409400000310
y轴方向上的角速度波谷值的计算方式为:
Figure GDA00027628409400000311
Figure GDA00027628409400000312
式中,ωky为k时刻y轴方向上的角速度,ω(k-1)y为k-1时刻y轴方向上的角速度,ω(k+1)y为k+1时刻y轴方向上的角速度,
Figure GDA00027628409400000313
为行人静止时y轴方向上的角速度初始值。
附图说明
图1是本发明的MEMS-IMU单元在右脚鞋上的安装位置示意图;
图2是本发明的MEMS-IMU单元的结构图;
图3是本发明基于MEMS-IMU的行人运动模式识别方法实施例的方法流程图;
附图标记:1-鞋面,2-微惯性测量单元,3-鞋跟。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚,下面结合附图和具体实施例对本发明进行详细说明。本实施例以本发明技术方案为前提进行实施,各出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
基于MEMS-IMU的行人运动模式识别方法实施例:
本发明中将MEM-IMU单元固定安装在右脚鞋上,其安装位置和坐标系如图1所示,行人运动状态的鞋靴包括鞋面1、鞋跟3和鞋底,微惯性测量单元2装置在鞋跟部位(微惯性测量单元2下文中以MEM-IMU单元代替)。
其中,本实施例中的MEM-IMU单元包括处理器、存储器、通讯模块和三轴微机械陀螺仪及三轴微机械加速度计,如图2所示,处理器分别连接存储器和通讯模块。
本实施例中将MEM-IMU单元牢固固定于右鞋的鞋后跟里,并且x轴与鞋底平行,指向鞋头,z轴垂直于鞋底,指向向上,y轴指向符合右手定则。
作为其他实施方式,还可将MEM-IMU单元安装于左脚鞋的根部。
本实施例中是通过三轴微机械陀螺仪采集三个方向上的角速度测量值,通过三轴微机械加速度计采集三个方向上的加速度测量值;且处理器用于采集三轴微机械陀螺仪和三轴微机械加速度计的测量数据,存储器用于存储采集的测量值以及存储实现计算、处理的软件程序,通讯模块用于将计算、分析的行人的运动状态往外发送。
本发明基于MEMS-IMU的行人运动模式识别方法步骤的流程图,如图3所示。
步骤1:至少采集MEMS-IMU中加速度计测量的x轴方向上的加速度和陀螺仪测量的y轴方向上的角速度的测量值数据,将数据进行存储。
其中,本实施例中是采集的任意k时刻MEMS-IMU的中x轴、y轴、z轴三个方向上的加速度和角速度的测量数据,具体的x轴、y轴、z轴方向上的加速度和角速度分别为:
ak=[akx aky akz]T
ωk=[ωkx ωky ωkz]T
式中,akx、aky、akz分别表示x轴、y轴和z轴方向上的加速度,ωkx、ωky、ωkz分别表示x轴、y轴和z轴方向上的角速度,T表示转置操作。
以上实施例中,通过直接采用陀螺仪的y轴方向上的测量值作为y轴方向上的角速度,加速度计x轴方向上的测量值作为x轴方向上的加速度;作为其他实施方式,也可以通过对加窗平均的方式获得x轴方向上的加速度计的测量值的平均值,作为x轴方向上的加速度;同样,通过加窗平均的方式获得y轴方向上的陀螺仪的测量值的平均值,作为y轴方向上的角速度。
步骤2:将步骤1中采集到的x轴方向上的加速度与加速度初始值作差,大于零的极值为加速度波峰值,小于零的极值为加速度波谷值;将采集的y轴方向上的角速度与角速度初始值作差,大于零的极值为角速度波峰值,小于零的极值为角速度波谷值;
其中,加速度初始值为行人静止时x轴方向上的加速度;角速度初始值为行人静止时y轴方向上的角速度。
步骤3:判断运动状态:从行人静止状态解除开始,若x轴方向上的加速度先出现加速度波谷值,则判断为上楼状态;若y轴方向上的角速度先出现角速度波谷值,则判断为下楼状态。
需要说明的是,本实施例中角速度初始值和加速度初始值是行人静止时的角速度数据和加速度数据,其可以是直接设定的,也可以是通过计算得到的。
一般情况下,加速度初始值和角速度初始值应该是陀螺仪和加速度计出厂时分别设置的初始值,该初始值可以根据出厂测试时的测量进行设置;当然在使用一段时间后,陀螺仪和加速度计由于损坏、老化等原因,在行人静止时的数据测量由于误差的原因,其初始值可能变化,那么,为了保证行人运动状态识别的准确性,作为优选的实施方式,其可以通过计算得到,具体计算过程为:
(1)分别采集MEMS-IMU三个方向上的加速度和角速度;
(2)根据采集的三个方向上的加速度计的加速度,计算加速度方差,所述加速度方差的计算方式为:
Figure GDA0002762840940000061
式中,ak=[akx aky akz]T为采集的k时刻的加速度;
Figure GDA0002762840940000062
为滑动窗口N时间段内的计算的加速度平均值;
Figure GDA0002762840940000063
为加速度方差;
(3)将计算的加速度方差与加速度方差检测阈值thresholdσ比较,若小于,即
Figure GDA0002762840940000064
则将采集的x轴方向上的加速度作为加速度初始值,将y轴方向上的角速度作为角速度初始值。
其中,滑动窗口N与采样率以及行走速度密切相关,由于观测量的形式不同,则对应的阈值也有差异。本发明中,N取45,thresholdσ取103.5
本发明还可以多次测量行人静止时间段内x轴方向上的加速度和将y轴方向上的角速度,并分别求出角速度的平均值和加速度的平均值,将其分别作为角速度初始值和加速度初始值。
本发明中,当行人运动时,将x轴方向上的加速度与加速度初始值作差,以零值为界限,进行分段,大于零的极值为加速度波峰值,小于零的极值为加速度波谷值,具体的计算方式为:
x轴方向上的加速度波峰值为:
Figure GDA0002762840940000065
Figure GDA0002762840940000066
x轴方向上的加速度波谷值为:
Figure GDA0002762840940000067
Figure GDA0002762840940000068
式中,akx为k时刻x轴方向上的加速度,a(k-1)x为k-1时刻x轴方向上的加速度,a(k+1)x为k+1时刻x轴方向上的加速度,
Figure GDA0002762840940000069
为行人静止时的x轴方向上的加速度初始值。
同样,将采集的y轴方向上的角速度与角速度初始值作差,以零值为界限,进行分段,大于零的极值为角速度波峰值,小于零的极值为角速度波谷值,具体的计算方式为:
y轴方向上的角速度波峰值为:
Figure GDA00027628409400000610
Figure GDA00027628409400000611
y轴方向上的角速度波谷值为:
Figure GDA0002762840940000071
Figure GDA0002762840940000072
式中,ωky为k时刻y轴方向上的角速度,ω(k-1)y为k-1时刻y轴方向上的角速度,ω(k+1)y为k+1时刻y轴方向上的角速度,
Figure GDA0002762840940000073
为行人静止时y轴方向上的角速度初始值。
当然作为其他实施方式,本发明中的加速度波峰值、加速度波谷值、角速度波峰值和角速度波谷值还可以通过斜率的方式计算得到。
需要说明的是,本发明中设定以行人静止模式为起始时刻,到下一个行人静止模式时为终止时刻的这一“静止-运动-静止”的过程为一个区间,进行行人运动模式下的运动状态的判断;由于在该区间内的波峰波谷是交替出现的,那么,可以根据x轴方向上的加速度计先出现加速度波峰值还是先出现加速度波谷值,如果先出现加速度波谷值,则判断为上楼状态;根据y轴方向上的角速度先出现角速度波峰值还是先出现角速度波谷值,如果先出现角速度波谷值,则判断为下楼状态。
当然,当上述判断既不是上楼状态,也不是下楼状态时,那么就可以确定为正常行走或者跑步中的一种状态;而对于正常行走或者跑步中的一种状态的判断,本发明中可以采用输出信号周期性(频率)来判断,人是正常行走状态还是跑步状态;即将运动的频率与设定频率比较,频率低的为走路,频率高的为跑步状态。
其中,本实施例中的设定频率可根据不同人的习惯进行设置,也可以根据行人的特点研究相关的算法进行计算。
行人运动识别装置实施例:
为了实施上述行人运动识别方法,本发明的行人运动识别装置为MEM-IMU单元,其包括处理器、存储器、通讯模块和三轴微机械陀螺仪及三轴微机械加速度计,如图2所示。其中,处理器分别连接存储器和通讯模块。
通过将上述识别方法形成软件存储在存储器中,处理器对三轴微机械陀螺仪及三轴微机械加速度计的测量数据采样,并对存储在存储器中的上述方法进行处理,得出判断结果,实现监控穿戴者的行走状态。
而通讯模块用于将计算、分析的行人的运动状态往外发送,如发送到手环或者智能手机上以供穿戴者查看。
作为其他实施方式,本发明中的三轴微机械陀螺仪及三轴微机械加速度计采集的数据还可以通过通讯模块往外发送测量数据;利用手环或智能手机实时接收并存储行人运动时MEMS-IMU系统输出的测量值信息。
以手环为例,手环包括处理器、存储器、蓝牙或者其他通信模块;通过将上述方法形成软件存储在手环的存储器中,手环处理器通过自身设置的蓝牙等通信模块与MEMS-IMU单元的通讯模块进行通讯,以接收的测量数据,并对存储在手环存储器中的上述方法进行处理,得出判断结果,实现近距离监控穿戴者的行走状态。
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但应当认识到上述的描述不应被认为是对本发明的限制。在本领域技术人员阅读了上述内容后,对于本发明的多种修改和替代都将是显而易见的。因此,本发明的保护范围应由所附的权利要求来限定。

Claims (6)

1.一种基于MEMS-IMU的行人运动模式识别方法,根据MEMS-IMU在鞋中的位置,确定三维坐标系,其中鞋的前后方向为x轴方向,垂直于鞋底面的方向为z轴方向,y轴垂直于x轴和z轴;其特征在于,包括以下步骤:
1)至少采集MEMS-IMU中x轴方向上的加速度和y轴方向上的角速度;
2)将采集的x轴方向上的加速度与加速度初始值作差,大于零的极值为加速度波峰值,小于零的极值为加速度波谷值;将采集的y轴方向上的角速度与角速度初始值作差,大于零的极值为角速度波峰值,小于零的极值为角速度波谷值;
其中,所述加速度初始值为行人静止时x轴方向上的加速度;所述角速度初始值为行人静止时y轴方向上的角速度;
3)从行人静止状态解除开始,若x轴方向上的加速度先出现加速度波谷值,则判断为上楼状态;若y轴方向上的角速度先出现角速度波谷值,则判断为下楼状态。
2.根据权利要求1所述的基于MEMS-IMU的行人运动模式识别方法,其特征在于,所述加速度初始值和角速度初始值是通过计算得到的:
(1)分别采集MEMS-IMU中x轴、y轴、z轴三个方向上的加速度和角速度;
(2)根据采集的x轴、y轴、z轴三个方向上的加速度,计算加速度方差,所述加速度方差的计算方式为:
Figure FDA0002762840930000011
式中,ak=[akx aky akz]T为采集的k时刻的加速度;
Figure FDA0002762840930000012
为滑动窗口N时间段内的计算的加速度平均值;
Figure FDA0002762840930000013
为加速度方差;
(3)将计算的加速度方差与加速度方差检测阈值thresholdσ比较,若加速度方差小于加速度方差检测阈值thresholdσ,则将采集的x轴方向上的加速度作为加速度初始值,将y轴方向上的角速度作为角速度初始值。
3.根据权利要求1所述的基于MEMS-IMU的行人运动模式识别方法,其特征在于,步骤2)中,x轴方向上的加速度波峰值的计算方式为:
Figure FDA0002762840930000021
Figure FDA0002762840930000022
x轴方向上的加速度波谷值的计算方式为:
Figure FDA0002762840930000023
Figure FDA0002762840930000024
式中,akx为k时刻x轴方向上的加速度,a(k-1)x为k-1时刻x轴方向上的加速度,a(k+1)x为k+1时刻x轴方向上的加速度,
Figure FDA0002762840930000025
为行人静止时的x轴方向上的加速度初始值;
y轴方向上的角速度波峰值的计算方式为:
Figure FDA0002762840930000026
Figure FDA0002762840930000027
y轴方向上的角速度波谷值的计算方式为:
Figure FDA0002762840930000028
Figure FDA0002762840930000029
式中,ωky为k时刻y轴方向上的角速度,ω(k-1)y为k-1时刻y轴方向上的角速度,ω(k+1)y为k+1时刻y轴方向上的角速度,
Figure FDA00027628409300000210
为行人静止时y轴方向上的角速度初始值。
4.一种基于MEMS-IMU的行人运动模式识别装置,包括处理器和存储器,处理器连接有用于获取MEMS-IMU数据的通讯接口;其特征在于,所述处理器执行存储在存储器中的如下方法指令:
1)至少采集MEMS-IMU中x轴方向上的加速度和y轴方向上的角速度;
2)将采集的x轴方向上的加速度与加速度初始值作差,大于零的极值为加速度波峰值,小于零的极值为加速度波谷值;将采集的y轴方向上的角速度与角速度初始值作差,大于零的极值为角速度波峰值,小于零的极值为角速度波谷值;
其中,所述加速度初始值为行人静止时x轴方向上的加速度;所述角速度初始值为行人静止时y轴方向上的角速度;
3)从行人静止状态解除开始,若x轴方向上的加速度先出现加速度波谷值,则判断为上楼状态;若y轴方向上的角速度先出现角速度波谷值,则判断为下楼状态。
5.根据权利要求4所述的基于MEMS-IMU的行人运动模式识别装置,其特征在于,所述加速度初始值和角速度初始值是通过计算得到的:
(1)分别采集MEMS-IMU中x轴、y轴、z轴三个方向上的加速度和角速度;
(2)根据采集的x轴、y轴、z轴三个方向上的加速度,计算加速度方差,所述加速度方差的计算方式为:
Figure FDA0002762840930000031
式中,ak=[akx aky akz]T为采集的k时刻的加速度;
Figure FDA0002762840930000032
为滑动窗口N时间段内的计算的加速度平均值;
Figure FDA0002762840930000033
为加速度方差;
(3)将计算的加速度方差与加速度方差检测阈值thresholdσ比较,若加速度方差小于加速度方差检测阈值thresholdσ,则将采集的x轴方向上的加速度作为加速度初始值,将y轴方向上的角速度作为角速度初始值。
6.根据权利要求4所述的基于MEMS-IMU的行人运动模式识别装置,其特征在于,步骤2)中,x轴方向上的加速度波峰值的计算方式为:
Figure FDA0002762840930000034
Figure FDA0002762840930000035
x轴方向上的加速度波谷值的计算方式为:
Figure FDA0002762840930000036
Figure FDA0002762840930000037
式中,akx为k时刻x轴方向上的加速度,a(k-1)x为k-1时刻x轴方向上的加速度,a(k+1)x为k+1时刻x轴方向上的加速度,
Figure FDA0002762840930000038
为行人静止时的x轴方向上的加速度初始值;
y轴方向上的角速度波峰值的计算方式为:
Figure FDA0002762840930000039
Figure FDA00027628409300000310
y轴方向上的角速度波谷值的计算方式为:
Figure FDA00027628409300000311
Figure FDA00027628409300000312
式中,ωky为k时刻y轴方向上的角速度,ω(k-1)y为k-1时刻y轴方向上的角速度,ω(k+1)y为k+1时刻y轴方向上的角速度,
Figure FDA00027628409300000313
为行人静止时y轴方向上的角速度初始值。
CN201910611372.0A 2019-07-03 2019-07-03 一种基于mems-imu的行人运动模式识别方法及装置 Active CN110455284B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910611372.0A CN110455284B (zh) 2019-07-03 2019-07-03 一种基于mems-imu的行人运动模式识别方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910611372.0A CN110455284B (zh) 2019-07-03 2019-07-03 一种基于mems-imu的行人运动模式识别方法及装置

Publications (2)

Publication Number Publication Date
CN110455284A CN110455284A (zh) 2019-11-15
CN110455284B true CN110455284B (zh) 2021-01-01

Family

ID=68482434

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910611372.0A Active CN110455284B (zh) 2019-07-03 2019-07-03 一种基于mems-imu的行人运动模式识别方法及装置

Country Status (1)

Country Link
CN (1) CN110455284B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111649742B (zh) * 2020-05-08 2022-02-08 北京航空航天大学 一种基于anfis辅助的高程估计方法
CN112304316B (zh) * 2020-10-23 2021-11-26 重庆越致科技有限公司 一种行人乘坐电梯状态及轨迹自动检测方法和装置
CN112268556B (zh) * 2020-10-23 2022-02-25 重庆越致科技有限公司 一种行人乘坐扶梯状态的检测方法和装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9554747B2 (en) * 2013-08-26 2017-01-31 EveryFit, Inc. Power efficient system and method for measuring physical activity in resource constrained devices
CN104268577B (zh) * 2014-06-27 2017-05-03 大连理工大学 一种基于惯性传感器的人体行为识别方法
CN104729507B (zh) * 2015-04-13 2018-01-26 大连理工大学 一种基于惯性传感器的步态识别方法
JP6565369B2 (ja) * 2015-06-22 2019-08-28 カシオ計算機株式会社 運動支援装置及び運動支援方法、運動支援プログラム
CN105741491B (zh) * 2016-03-17 2017-11-10 北京工业大学 基于卡尔曼滤波与knn算法的跌倒检测报警系统及方法
CN105877757A (zh) * 2016-03-30 2016-08-24 哈尔滨理工大学 多传感器集成的人体运动姿态捕获与识别装置
JP2018093378A (ja) * 2016-12-05 2018-06-14 株式会社Screenホールディングス 歩行判定方法および歩行判定プログラム
CN108244744B (zh) * 2016-12-29 2021-06-08 中国移动通信有限公司研究院 一种运动状态识别的方法、鞋底及鞋
CN106908060A (zh) * 2017-02-15 2017-06-30 东南大学 一种基于mems惯性传感器的高精度室内定位方法
CN107048570B (zh) * 2017-04-12 2019-02-05 佛山市量脑科技有限公司 一种智能鞋垫的数据分析处理方法

Also Published As

Publication number Publication date
CN110455284A (zh) 2019-11-15

Similar Documents

Publication Publication Date Title
CN110455284B (zh) 一种基于mems-imu的行人运动模式识别方法及装置
CN109579853B (zh) 基于bp神经网络的惯性导航室内定位方法
AU2015316575B2 (en) Inertial tracking based determination of the position of a mobile device carried by a user in a geographical area
EP1764581B1 (en) Apparatus and method for detecting step in a personal navigator
US9127947B2 (en) State estimator for rejecting noise and tracking and updating bias in inertial sensors and associated methods
CN106705968A (zh) 基于姿态识别和步长模型的室内惯性导航算法
JP6155276B2 (ja) エレベータ運動検出のための方法及び装置
US20160016590A1 (en) Method for detecting driving events of a vehicle based on a smartphone
US10520330B2 (en) Estimation of direction of motion of users on mobile devices
CN104296750A (zh) 一种零速检测方法和装置以及行人导航方法和系统
CN109091151B (zh) 一种基于mimu的行人跌倒检测方法及装置
US20210093917A1 (en) Detecting outdoor walking workouts on a wearable device
CN108836344A (zh) 步长步频估算方法和装置及步态检测仪
Wu et al. Indoor positioning system based on inertial MEMS sensors: Design and realization
KR101920306B1 (ko) 모바일 기기를 이용한 운동량 측정 장치 및 방법
CN108592907A (zh) 一种基于双向滤波平滑技术的准实时步进式行人导航方法
CN114469073B (zh) 基于可穿戴传感器的步态分析与异常检测方法
CN103499354A (zh) 一种基于内曼-皮尔逊准则的零速检测方法
CN111197974B (zh) 一种基于Android惯性平台的无气压计高度测算方法
CN106643785B (zh) 一种基于mems惯性测量单元的多源信息自适应步数检测方法
CN113229806A (zh) 可穿戴人体步态检测及导航系统及其运行方法
Liu et al. Development of wearable sensor combinations for human lower extremity motion analysis
JP6147446B1 (ja) ソフト制約及びペナルティ機能を使用した慣性センサの初期化
CN114674317A (zh) 基于活动识别和融合滤波的自校正航位推算系统及方法
CN111887859A (zh) 跌倒行为识别方法、装置、电子设备以及介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant