CN110453142A - 一种汽车模具用合金铸铁性能改善的方法 - Google Patents

一种汽车模具用合金铸铁性能改善的方法 Download PDF

Info

Publication number
CN110453142A
CN110453142A CN201910875349.2A CN201910875349A CN110453142A CN 110453142 A CN110453142 A CN 110453142A CN 201910875349 A CN201910875349 A CN 201910875349A CN 110453142 A CN110453142 A CN 110453142A
Authority
CN
China
Prior art keywords
cast iron
alloy cast
accounts
hours
performance improvement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910875349.2A
Other languages
English (en)
Inventor
李孙德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ma'anshan Sanchuan Machinery Manufacturing Co Ltd
Original Assignee
Ma'anshan Sanchuan Machinery Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ma'anshan Sanchuan Machinery Manufacturing Co Ltd filed Critical Ma'anshan Sanchuan Machinery Manufacturing Co Ltd
Priority to CN201910875349.2A priority Critical patent/CN110453142A/zh
Publication of CN110453142A publication Critical patent/CN110453142A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron
    • C21C1/105Nodularising additive agents
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/08Making cast-iron alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/04Cast-iron alloys containing spheroidal graphite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • C22C37/08Cast-iron alloys containing chromium with nickel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

本发明涉及新材料加工技术领域,公开了一种汽车模具用合金铸铁性能改善的方法,通过合金铸铁模具钢组织层面和材料服役性能的研究,从内部因素解决合金铸铁疲劳抗性低的问题,对模具材料的综合性能进行提高,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,所述改性二氧化硅陶瓷粉在制备过程中,以氧化铕以及醋酸锆为原料,反应制备棒状纳米氧化铕/氧化锆复合材料,该纳米结构能够阻止晶间晶粒聚集长大,防止裂纹的扩展,表现出良好的粘结性,通过在合金表面形成氧化物质点改善合金结构的疲劳性,使得制备得到的模具材料具有极好的抗热疲劳强度。

Description

一种汽车模具用合金铸铁性能改善的方法
技术领域
本发明属于新材料加工技术领域,具体涉及一种汽车模具用合金铸铁性能改善的方法。
背景技术
合金铸铁是指在普通铸铁中加入合金元素而具有特殊性能的铸铁。通常加入的合金元素有硅、锰、磷、镍、铬、钼、铜、铝、硼、钒、钛、锑、锡等。合金铸铁根据合金元素的加入量分为低合金铸铁 (合金元素含量<3%)、中合金铸铁(合金元素含量为>10%)。合金元素能使铸铁基体组织发生变化,从而使铸铁获得特殊的耐热、耐磨、耐腐蚀、无磁和耐低温等物理-化学性能,因此这种铸铁也叫“特殊性能铸铁”。由于其熔铸性能好,合金铸铁广泛用于汽车零部件生产加工。随着汽车行业的发展,各类汽车零部件也日趋精益化。零部件的生产品质依赖模具的性能的好坏,模具用合金铸铁的性能要求以耐热性为主,现有的合金铸铁材料常常是用来制作受冲击力较小的模具,如玻璃模具、塑料模具、热压模具等。
随着产业的高速发展,合金铸铁模具材料的缺点日益暴露:成分与相应的合金钢相似,但材料加工周期长,力学性能低于铸钢,加工费用高,脆性较大,易开裂,组合精度低、耐磨性、抗冲击性一般,使得在加工大型部件时模具受损严重,影响模具的使用寿命,并且引发疲劳断裂造成的事故损失。因此,当前急需一种提高合金铸铁模具使用寿命的方法,对于汽车零部件生产和机械加工行业具有重要意义。
发明内容
本发明的目的是针对现有的问题,提供了一种汽车模具用合金铸铁性能改善的方法,通过在合金表面形成氧化物质点改善合金结构的疲劳性,使得制备得到的模具材料具有极好的抗热疲劳强度。
本发明是通过以下技术方案实现的:
一种汽车模具用合金铸铁性能改善的方法,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,加工成模具,所述改性二氧化硅陶瓷粉的制备过程包括以下步骤:
(1)称取4.5-5.0克氧化铕置于烧杯中,加入30-35毫升盐酸溶液,搅拌均匀后,加入10-15毫升的油酸钠水溶液,升温至60-64℃,搅拌混合均匀后静置10-12小时,加入7.5-8.0克醋酸锆和20-30毫升乙二醇水溶液,然后超声分散10-15分钟后转移至高压反应釜中,设定反应温度为190-200℃,反应时间为13-15小时,反应结束后自然冷却至20-25℃,使用高速离心机分离得到固体沉淀物,依次使用去离子水和乙醇洗涤3-5次,置于90-100℃干燥箱中干燥7-8小时,得到棒状纳米氧化铕 /氧化锆复合材料;
(2)称取40-45克二氧化硅和27-30克氧化钙研磨2-3小时得到混合粉末,置于真空干燥箱中,在110-120℃下干燥8-10小时,冷却至室温后过200目筛备用,加入步骤(1)制备得到的纳米氧化铕 /氧化锆复合材料,置于球磨罐中,球磨10-15小时,将球磨粉料置于真空干燥箱箱,在100-110℃下干燥12-14小时,自然冷却至室温,然后置于预热至330-350℃的电阻炉中,以7-8℃/分钟的速度升温至1100-1200℃,保温煅烧1.5-2.0小时,自然冷却至室温后研磨得到改性二氧化硅陶瓷粉。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉粒径大小在0.2-0.6微米之间。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉添加量为合金铸铁铁水质量的0.04-0.06%。
作为对上述方案的进一步描述,所述浇包使用前要预热至550-580℃。
作为对上述方案的进一步描述,步骤(1)所述盐酸溶液摩尔浓度为5.5-6.0摩尔/升。
作为对上述方案的进一步描述,步骤(1)所述油酸钠水溶液质量浓度为20-24%。
作为对上述方案的进一步描述,步骤(1)所述乙二醇水溶液质量浓度为80-85%。
作为对上述方案的进一步描述,所述合金铸铁各元素成分含量按照质量百分比为:碳占0.20-0.23%;铬占5.5-6.5%;钼占2.0-2.3%;镍占0.7-0.8%;铜占0.3-0.6%;锰占0.4-0.6%;锡占0.40-0.50%;锑占0.25-0.35%;磷占0.20-0.25%;硫占0.15-0.20%;剩余为铁和不可避免的杂质。
本发明相比现有技术具有以下优点:为了解决汽车模具用合金铸铁使用寿命短的问题,本发明提供了一种汽车模具用合金铸铁性能改善的方法,通过合金铸铁模具钢组织层面和材料服役性能的研究,从内部因素解决合金铸铁疲劳抗性低的问题,对模具材料的综合性能进行提高,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,所述改性二氧化硅陶瓷粉在制备过程中,以氧化铕以及醋酸锆为原料,反应制备棒状纳米氧化铕 /氧化锆复合材料,该纳米结构能够阻止晶间晶粒聚集长大,防止裂纹的扩展,表现出良好的粘结性,通过在合金表面形成氧化物质点改善合金结构的疲劳性,使得制备得到的模具材料具有极好的抗热疲劳强度,淬火后强度高,塑性变形小,材料组织均匀,强化了晶界和相界的作用,提高了抗蠕变强度,微观程度上不断细化,减少杂质存在对模具力学性能造成的损害,具有较低的摩擦系数,同时不易粘模,具有优异的综合性能,其材质特性能够很好的解决现有合金铸铁材料的弊端,加工制备的汽车零部件的耐疲劳强度显著提升,提高了抗冲击韧性,零部件精度显著提升,从而延长了组件的使用寿命,提高了汽车部件的使用性能和美观性,本发明有效解决了汽车模具用合金铸铁使用寿命短的问题,具有低成本、低能耗、高寿命的特点,有助于模具材料各方面性能的均衡改善,能够实现提高汽车零部件生产行业工作效率以及提高市场竞争力的现实意义,对于汽车零部件加工模具研究具有较高价值,显著促进现代化汽车行业快速发展以及资源可持续发展,是一种极为值得推广使用的技术方案。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,下面结合具体实施例对本发明作进一步说明,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明所提供的技术方案。
实施例1
一种汽车模具用合金铸铁性能改善的方法,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,加工成模具,所述改性二氧化硅陶瓷粉的制备过程包括以下步骤:
(1)称取4.5克氧化铕置于烧杯中,加入30毫升盐酸溶液,搅拌均匀后,加入10毫升的油酸钠水溶液,升温至60℃,搅拌混合均匀后静置10小时,加入7.5克醋酸锆和20毫升乙二醇水溶液,然后超声分散10分钟后转移至高压反应釜中,设定反应温度为190℃,反应时间为13小时,反应结束后自然冷却至20℃,使用高速离心机分离得到固体沉淀物,依次使用去离子水和乙醇洗涤3次,置于90℃干燥箱中干燥7小时,得到棒状纳米氧化铕 /氧化锆复合材料;
(2)称取40克二氧化硅和27克氧化钙研磨2小时得到混合粉末,置于真空干燥箱中,在110℃下干燥8小时,冷却至室温后过200目筛备用,加入步骤(1)制备得到的纳米氧化铕 /氧化锆复合材料,置于球磨罐中,球磨10小时,将球磨粉料置于真空干燥箱箱,在100℃下干燥12小时,自然冷却至室温,然后置于预热至330℃的电阻炉中,以7℃/分钟的速度升温至1100℃,保温煅烧1.5小时,自然冷却至室温后研磨得到改性二氧化硅陶瓷粉。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉粒径大小在0.2-0.6微米之间。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉添加量为合金铸铁铁水质量的0.04%。
作为对上述方案的进一步描述,所述浇包使用前要预热至550℃。
作为对上述方案的进一步描述,步骤(1)所述盐酸溶液摩尔浓度为5.5摩尔/升。
作为对上述方案的进一步描述,步骤(1)所述油酸钠水溶液质量浓度为20%。
作为对上述方案的进一步描述,步骤(1)所述乙二醇水溶液质量浓度为80%。
作为对上述方案的进一步描述,所述合金铸铁各元素成分含量按照质量百分比为:碳占0.20%;铬占5.5%;钼占2.0%;镍占0.7%;铜占0.3%;锰占0.4%;锡占0.40%;锑占0.25%;磷占0.20%;硫占0.15%;剩余为铁和不可避免的杂质。
实施例2
一种汽车模具用合金铸铁性能改善的方法,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,加工成模具,所述改性二氧化硅陶瓷粉的制备过程包括以下步骤:
(1)称取4.7克氧化铕置于烧杯中,加入33毫升盐酸溶液,搅拌均匀后,加入13毫升的油酸钠水溶液,升温至62℃,搅拌混合均匀后静置11小时,加入7.8克醋酸锆和25毫升乙二醇水溶液,然后超声分散12分钟后转移至高压反应釜中,设定反应温度为195℃,反应时间为14小时,反应结束后自然冷却至22℃,使用高速离心机分离得到固体沉淀物,依次使用去离子水和乙醇洗涤4次,置于95℃干燥箱中干燥7.5小时,得到棒状纳米氧化铕 /氧化锆复合材料;
(2)称取42克二氧化硅和28克氧化钙研磨2.5小时得到混合粉末,置于真空干燥箱中,在115℃下干燥9小时,冷却至室温后过200目筛备用,加入步骤(1)制备得到的纳米氧化铕/氧化锆复合材料,置于球磨罐中,球磨12小时,将球磨粉料置于真空干燥箱箱,在105℃下干燥13小时,自然冷却至室温,然后置于预热至340℃的电阻炉中,以7.5℃/分钟的速度升温至1150℃,保温煅烧1.8小时,自然冷却至室温后研磨得到改性二氧化硅陶瓷粉。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉粒径大小在0.2-0.6微米之间。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉添加量为合金铸铁铁水质量的0.05%。
作为对上述方案的进一步描述,所述浇包使用前要预热至565℃。
作为对上述方案的进一步描述,步骤(1)所述盐酸溶液摩尔浓度为5.8摩尔/升。
作为对上述方案的进一步描述,步骤(1)所述油酸钠水溶液质量浓度为22%。
作为对上述方案的进一步描述,步骤(1)所述乙二醇水溶液质量浓度为82%。
作为对上述方案的进一步描述,所述合金铸铁各元素成分含量按照质量百分比为:碳占0.22%;铬占6.0%;钼占2.15%;镍占0.75%;铜占0.45%;锰占0.5%;锡占0.45%;锑占0.30%;磷占0.22%;硫占0.18%;剩余为铁和不可避免的杂质。
实施例3
一种汽车模具用合金铸铁性能改善的方法,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,加工成模具,所述改性二氧化硅陶瓷粉的制备过程包括以下步骤:
(1)称取5.0克氧化铕置于烧杯中,加入35毫升盐酸溶液,搅拌均匀后,加入15毫升的油酸钠水溶液,升温至64℃,搅拌混合均匀后静置12小时,加入8.0克醋酸锆和30毫升乙二醇水溶液,然后超声分散15分钟后转移至高压反应釜中,设定反应温度为200℃,反应时间为15小时,反应结束后自然冷却至25℃,使用高速离心机分离得到固体沉淀物,依次使用去离子水和乙醇洗涤5次,置于100℃干燥箱中干燥8小时,得到棒状纳米氧化铕 /氧化锆复合材料;
(2)称取45克二氧化硅和30克氧化钙研磨3小时得到混合粉末,置于真空干燥箱中,在120℃下干燥10小时,冷却至室温后过200目筛备用,加入步骤(1)制备得到的纳米氧化铕 /氧化锆复合材料,置于球磨罐中,球磨15小时,将球磨粉料置于真空干燥箱箱,在110℃下干燥14小时,自然冷却至室温,然后置于预热至350℃的电阻炉中,以8℃/分钟的速度升温至1200℃,保温煅烧2.0小时,自然冷却至室温后研磨得到改性二氧化硅陶瓷粉。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉粒径大小在0.2-0.6微米之间。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉添加量为合金铸铁铁水质量的0.06%。
作为对上述方案的进一步描述,所述浇包使用前要预热至580℃。
作为对上述方案的进一步描述,步骤(1)所述盐酸溶液摩尔浓度为6.0摩尔/升。
作为对上述方案的进一步描述,步骤(1)所述油酸钠水溶液质量浓度为24%。
作为对上述方案的进一步描述,步骤(1)所述乙二醇水溶液质量浓度为85%。
作为对上述方案的进一步描述,所述合金铸铁各元素成分含量按照质量百分比为:碳占0.23%;铬占6.5%;钼占2.3%;镍占0.8%;铜占0.6%;锰占0.6%;锡占0.50%;锑占0.35%;磷占0.25%;硫占0.20%;剩余为铁和不可避免的杂质。
对比例1-3
铸铁的熔炼:采用中频感应电炉作为熔炼工具,将合金铸铁原料(所述合金铸铁各元素成分含量按照质量百分比为:碳占0.22%;铬占6.0%;钼占2.15%;镍占0.75%;铜占0.45%;锰占0.5%;锡占0.45%;锑占0.30%;磷占0.22%;硫占0.18%;剩余为铁和不可避免的杂质)熔炼为铁水后,浇入预热的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,(使用的孕育剂用量占浇铸液的0.35%,成分为63SiFe,使用的球化剂为稀土镁硅铁球化剂粉末:所含各元素的重量百分比为:含镁15%,含硅65%,含铈2.5%,剩余为铁;添加量为铸铁原料质量的1.5%);浇铸温度为1450℃,浇铸后空冷至室温,机械加工得到所需尺寸试样,对所得试样进行下一步性能试验。
其中对比例1所述浇包内预先放置粒度在0.5-1.0微米之间的二氧化硅粉末,用量占铁水质量的0.2%。
其中对比例2所述浇包内预先放置粒度在0.5-1.0微米之间的氧化钙粉末,用量占铁水质量的0.3%。
其中对比例3所述浇包内预先放置粒度在0.5-1.0微米之间的二氧化钛粉末,用量占铁水质量的0.2%。
对比例4
一种汽车模具用合金铸铁性能改善的方法,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,加工成模具,所述改性二氧化硅陶瓷粉的制备过程包括以下步骤:
(1)称取4.7克氧化铕置于烧杯中,加入33毫升盐酸溶液,搅拌均匀后,加入13毫升的油酸钠水溶液,升温至62℃,搅拌混合均匀后静置11小时,然后超声分散12分钟后转移至高压反应釜中,设定反应温度为195℃,反应时间为14小时,反应结束后自然冷却至22℃,使用高速离心机分离得到固体沉淀物,依次使用去离子水和乙醇洗涤4次,置于95℃干燥箱中干燥7.5小时,得到棒状纳米氧化铕材料;
(2)称取42克二氧化硅和28克氧化钙研磨2.5小时得到混合粉末,置于真空干燥箱中,在115℃下干燥9小时,冷却至室温后过200目筛备用,加入步骤(1)制备得到的纳米氧化铕材料,置于球磨罐中,球磨12小时,将球磨粉料置于真空干燥箱箱,在105℃下干燥13小时,自然冷却至室温,然后置于预热至340℃的电阻炉中,以7.5℃/分钟的速度升温至1150℃,保温煅烧1.8小时,自然冷却至室温后研磨得到改性二氧化硅陶瓷粉。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉粒径大小在0.2-0.6微米之间。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉添加量为合金铸铁铁水质量的0.05%。
作为对上述方案的进一步描述,所述浇包使用前要预热至565℃。
作为对上述方案的进一步描述,所述盐酸溶液摩尔浓度为5.8摩尔/升。
作为对上述方案的进一步描述,所述油酸钠水溶液质量浓度为22%。
作为对上述方案的进一步描述,所述合金铸铁各元素成分含量按照质量百分比为:碳占0.22%;铬占6.0%;钼占2.15%;镍占0.75%;铜占0.45%;锰占0.5%;锡占0.45%;锑占0.30%;磷占0.22%;硫占0.18%;剩余为铁和不可避免的杂质。
对比例5
一种汽车模具用合金铸铁性能改善的方法,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,加工成模具,所述改性二氧化硅陶瓷粉的制备过程包括以下步骤:
(1)称取加入7.8克醋酸锆和25毫升乙二醇水溶液,超声分散12分钟后转移至高压反应釜中,设定反应温度为195℃,反应时间为14小时,反应结束后自然冷却至22℃,使用高速离心机分离得到固体沉淀物,依次使用去离子水和乙醇洗涤4次,置于95℃干燥箱中干燥7.5小时,得到棒状纳米氧化锆材料;
(2)称取42克二氧化硅和28克氧化钙研磨2.5小时得到混合粉末,置于真空干燥箱中,在115℃下干燥9小时,冷却至室温后过200目筛备用,加入步骤(1)制备得到的纳米氧化锆材料,置于球磨罐中,球磨12小时,将球磨粉料置于真空干燥箱箱,在105℃下干燥13小时,自然冷却至室温,然后置于预热至340℃的电阻炉中,以7.5℃/分钟的速度升温至1150℃,保温煅烧1.8小时,自然冷却至室温后研磨得到改性二氧化硅陶瓷粉。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉粒径大小在0.2-0.6微米之间。
作为对上述方案的进一步描述,所述改性二氧化硅陶瓷粉添加量为合金铸铁铁水质量的0.05%。
作为对上述方案的进一步描述,所述浇包使用前要预热至565℃。
作为对上述方案的进一步描述,步骤(1)所述乙二醇水溶液质量浓度为82%。
作为对上述方案的进一步描述,所述合金铸铁各元素成分含量按照质量百分比为:碳占0.22%;铬占6.0%;钼占2.15%;镍占0.75%;铜占0.45%;锰占0.5%;锡占0.45%;锑占0.30%;磷占0.22%;硫占0.18%;剩余为铁和不可避免的杂质。
对比实验
分别使用实施例1-3和对比例1-5的方法对汽车模具用合金铸铁性能进行改善,以公开号为CN101177758公开的一种耐磨合金铸铁改性材料中的方法为对照组,采用上述各组制得的合金铸铁模具材料,机械加工得到所需尺寸试样(每组制备5个),对所得试样进行下一步性能试验,在相同条件下进行各项性能测试,试验中保持无关变量一致,进行结果统计分析(实验前利用统计学方法进行试验设计,然后进行试验并记录试验数据,分析得到试验结果,过程中充分利用统计学工具对结果加以最大程度的解释),结果如下表所示:
项目 抗拉强度(MPa) 裂纹长度(毫米) 冲击韧性(J/cm2) 硬度(HRC)
实施例1 964 0.11 72 55
实施例2 966 0.10 76 56
实施例3 962 0.12 71 54
对比例1 787 0.48 48 41
对比例2 799 0.45 53 45
对比例3 792 0.48 49 43
对比例4 834 0.32 61 53
对比例5 829 0.33 60 50
对照组 675 0.65 41 38
(其中,抗拉强度的测定中试样是按照GB1348-1988标准进行加工得到的;裂纹长度是在冷热循环2000次后使用显微镜以及扫描电镜观察测定的主裂纹长度(冷热循环是在25℃至800℃之间进行的加热冷却循环);磨损性能测定中试样是按照GB/T12444.1-1990标准进行加工得到的;冲击韧性的测定采用的试样尺寸为50mm·15mm·15mm,在JB-5型冲击试验机上进行;硬度测试是采用HRC150型洛氏硬度机进行)
本发明有效解决了汽车模具用合金铸铁使用寿命短的问题,具有低成本、低能耗、高寿命的特点,有助于模具材料各方面性能的均衡改善,能够实现提高汽车零部件生产行业工作效率以及提高市场竞争力的现实意义,对于汽车零部件加工模具研究具有较高价值,显著促进现代化汽车行业快速发展以及资源可持续发展,是一种极为值得推广使用的技术方案。

Claims (8)

1.一种汽车模具用合金铸铁性能改善的方法,其特征在于,在合金铸铁熔炼为铁水后,浇入预先放置了改性二氧化硅陶瓷粉的浇包内,进行球化孕育处理,反应完毕后进行除渣净化,然后浇注成型,加工成模具,所述改性二氧化硅陶瓷粉的制备过程包括以下步骤:
(1)称取4.5-5.0克氧化铕置于烧杯中,加入30-35毫升盐酸溶液,搅拌均匀后,加入10-15毫升的油酸钠水溶液,升温至60-64℃,搅拌混合均匀后静置10-12小时,加入7.5-8.0克醋酸锆和20-30毫升乙二醇水溶液,然后超声分散10-15分钟后转移至高压反应釜中,设定反应温度为190-200℃,反应时间为13-15小时,反应结束后自然冷却至20-25℃,使用高速离心机分离得到固体沉淀物,依次使用去离子水和乙醇洗涤3-5次,置于90-100℃干燥箱中干燥7-8小时,得到棒状纳米氧化铕 /氧化锆复合材料;
(2)称取40-45克二氧化硅和27-30克氧化钙研磨2-3小时得到混合粉末,置于真空干燥箱中,在110-120℃下干燥8-10小时,冷却至室温后过200目筛备用,加入步骤(1)制备得到的纳米氧化铕 /氧化锆复合材料,置于球磨罐中,球磨10-15小时,将球磨粉料置于真空干燥箱箱,在100-110℃下干燥12-14小时,自然冷却至室温,然后置于预热至330-350℃的电阻炉中,以7-8℃/分钟的速度升温至1100-1200℃,保温煅烧1.5-2.0小时,自然冷却至室温后研磨得到改性二氧化硅陶瓷粉。
2.如权利要求1所述一种汽车模具用合金铸铁性能改善的方法,其特征在于,所述改性二氧化硅陶瓷粉粒径大小在0.2-0.6微米之间。
3.如权利要求1所述一种汽车模具用合金铸铁性能改善的方法,其特征在于,所述改性二氧化硅陶瓷粉添加量为合金铸铁铁水质量的0.04-0.06%。
4.如权利要求1所述一种汽车模具用合金铸铁性能改善的方法,其特征在于,所述浇包使用前要预热至550-580℃。
5.如权利要求1所述一种汽车模具用合金铸铁性能改善的方法,其特征在于,步骤(1)所述盐酸溶液摩尔浓度为5.5-6.0摩尔/升。
6.如权利要求1所述一种汽车模具用合金铸铁性能改善的方法,其特征在于,步骤(1)所述油酸钠水溶液质量浓度为20-24%。
7.如权利要求1所述一种汽车模具用合金铸铁性能改善的方法,其特征在于,步骤(1)所述乙二醇水溶液质量浓度为80-85%。
8.如权利要求1所述一种汽车模具用合金铸铁性能改善的方法,其特征在于,所述合金铸铁各元素成分含量按照质量百分比为:碳占0.20-0.23%;铬占5.5-6.5%;钼占2.0-2.3%;镍占0.7-0.8%;铜占0.3-0.6%;锰占0.4-0.6%;锡占0.40-0.50%;锑占0.25-0.35%;磷占0.20-0.25%;硫占0.15-0.20%;剩余为铁和不可避免的杂质。
CN201910875349.2A 2019-09-17 2019-09-17 一种汽车模具用合金铸铁性能改善的方法 Pending CN110453142A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910875349.2A CN110453142A (zh) 2019-09-17 2019-09-17 一种汽车模具用合金铸铁性能改善的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910875349.2A CN110453142A (zh) 2019-09-17 2019-09-17 一种汽车模具用合金铸铁性能改善的方法

Publications (1)

Publication Number Publication Date
CN110453142A true CN110453142A (zh) 2019-11-15

Family

ID=68492172

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910875349.2A Pending CN110453142A (zh) 2019-09-17 2019-09-17 一种汽车模具用合金铸铁性能改善的方法

Country Status (1)

Country Link
CN (1) CN110453142A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112122588A (zh) * 2020-09-11 2020-12-25 马鞍山市三川机械制造有限公司 一种提高汽车覆盖件力学性能的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591914A (en) * 1978-12-28 1980-07-11 Sumitomo Metal Ind Ltd Manufacture of manganese steel
JPH0873979A (ja) * 1994-09-08 1996-03-19 Mazda Motor Corp 耐食性に優れた球状黒鉛鋳鉄部材およびその製造方法
JP2005336542A (ja) * 2004-05-26 2005-12-08 Nakai Kogyo Kk 鋳鉄鋳物素材の脱炭熱処理方法
CN102912212A (zh) * 2012-10-08 2013-02-06 抚顺罕王直接还原铁有限公司 球墨铸铁用高纯生铁及其制备方法
CN105349873A (zh) * 2015-10-29 2016-02-24 宁波康发铸造有限公司 一种球墨铸铁的制备方法
CN105886885A (zh) * 2016-06-27 2016-08-24 含山县朝霞铸造有限公司 一种可生产高强铸铁的新型铸造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5591914A (en) * 1978-12-28 1980-07-11 Sumitomo Metal Ind Ltd Manufacture of manganese steel
JPH0873979A (ja) * 1994-09-08 1996-03-19 Mazda Motor Corp 耐食性に優れた球状黒鉛鋳鉄部材およびその製造方法
JP2005336542A (ja) * 2004-05-26 2005-12-08 Nakai Kogyo Kk 鋳鉄鋳物素材の脱炭熱処理方法
CN102912212A (zh) * 2012-10-08 2013-02-06 抚顺罕王直接还原铁有限公司 球墨铸铁用高纯生铁及其制备方法
CN105349873A (zh) * 2015-10-29 2016-02-24 宁波康发铸造有限公司 一种球墨铸铁的制备方法
CN105886885A (zh) * 2016-06-27 2016-08-24 含山县朝霞铸造有限公司 一种可生产高强铸铁的新型铸造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中华人民共和国第一机械工业部: "《机械工人技术培训教材 化铁工艺学》", 30 November 1982, 科学普及出版社 *
杨莉等: "《工程材料及成形技术基础》", 30 April 2016, 西安电子科技大学出版社 *
赵东方等: "《金属工艺学》", 31 December 2008, 吉林大学出版社 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112122588A (zh) * 2020-09-11 2020-12-25 马鞍山市三川机械制造有限公司 一种提高汽车覆盖件力学性能的方法

Similar Documents

Publication Publication Date Title
CN100586639C (zh) 汽车用abs阀体材料的生产工艺
CN1025506C (zh) 强韧性高耐磨大型球磨机衬板及其制造工艺
CN102560229B (zh) 一种低铬多元合金铸及其制备方法
WO2022237263A1 (zh) 一种半自磨机用铸造贝氏体钢、其制备方法及半自磨机铸造贝氏体钢衬板
CN101280394A (zh) 一种高硅低碳型高热强性热作模具钢
CN102839316A (zh) 超高铬磨球及其加工工艺
CN111136246B (zh) 一种高速钢轧辊的制备方法
CN107747066A (zh) 一种内生纳米TiC陶瓷颗粒原位增强铸造高铬热作模具钢及其制备方法
CN100572762C (zh) 一种汽车发动机气门座及其制造工艺
CN115921524A (zh) 一种出口热轧高强钢轨的生产工艺
CN109536844B (zh) 一种耐高温模具钢及其制备方法
CN103014478B (zh) 短流程半固态铸造耐磨球的制造方法
CN110453142A (zh) 一种汽车模具用合金铸铁性能改善的方法
CN101660083B (zh) 焦炉护炉铁件高性能蠕墨铸铁
CN111041355B (zh) 一种添加TiC的低密度高强度钢及其制备方法
CN115896611B (zh) 一种奥氏体-铁素体双相耐热钢及其制备方法和应用
CN111088466A (zh) 一种耐磨钢球抗冲击形变性能增强的加工工艺
CN114934206B (zh) 一种多元铝化物增强铝基复合材料及其制备方法和应用
CN102994718B (zh) 一种闸阀阀瓣的铸造成型制备方法
CN111020382B (zh) 一种高热稳定性压铸模具钢及其制备方法
CN101705421A (zh) 铸态贝氏体制造工艺
CN110527772B (zh) 一种提高汽车零部件生产所用模具材料性能的方法
CN105838965A (zh) 一种发动机活塞用合金钢材料
CN112359272B (zh) 一种高纯净度铁水配方及其制备方法
CN103667917A (zh) 一种耐高温低碳钢材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20191115

RJ01 Rejection of invention patent application after publication