CN110450163A - 无需标定板的基于3d视觉的通用手眼标定方法 - Google Patents

无需标定板的基于3d视觉的通用手眼标定方法 Download PDF

Info

Publication number
CN110450163A
CN110450163A CN201910767165.4A CN201910767165A CN110450163A CN 110450163 A CN110450163 A CN 110450163A CN 201910767165 A CN201910767165 A CN 201910767165A CN 110450163 A CN110450163 A CN 110450163A
Authority
CN
China
Prior art keywords
coordinate
sensor
coordinates
under
origin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910767165.4A
Other languages
English (en)
Inventor
高小嵩
覃江华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Chinese Car Riberd Intelligent System Co Ltd
Original Assignee
Shanghai Chinese Car Riberd Intelligent System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Chinese Car Riberd Intelligent System Co Ltd filed Critical Shanghai Chinese Car Riberd Intelligent System Co Ltd
Priority to CN201910767165.4A priority Critical patent/CN110450163A/zh
Publication of CN110450163A publication Critical patent/CN110450163A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator

Abstract

本发明公开无需标定板的基于3D视觉的手眼标定方法,且通用于眼在手外和眼在手上两种情况。其方法在于,首先保持机械臂的末端执行器的法兰盘中心的位置不变,控制末端执行器仅做旋转运动,使用3D视觉传感器采集至少四个特征点F坐标来进行球心拟合。然后保持机械臂的末端执行器的姿态不变,控制末端执行器仅做平移运动,使用3D相机采集至少三个特征点F坐标,使用机器人的控制器记录或计算对应的法兰盘中心的位置,来估计刚性变换的参数。本发明的有益效果在于:充分利用3D视觉传感器的空间信息,避免测定标定板姿态时的高误差,无需求解复杂的高维非线性矩阵方程,因而具有较高的标定精度和标定效率。

Description

无需标定板的基于3D视觉的通用手眼标定方法
技术领域
本发明涉及工业机器人与自动化领域,特别地是,无需标定板的基于3D视 觉的通用手眼标定方法。
背景技术
在工业机械臂的自动化系统中,如何让其正确地获取和理解关于操作空间 的信息,是一个十分关键的问题。在绝大多数的机械臂系统中,环境感知的最 佳途径是利用视觉数据,因为视觉数据可以通过无接触的安全方式获取。进行 机器视觉中分析的前提是手眼标定。所谓手眼标定,就是测定相机和机械臂之 间的相对姿态和位置关系,是机械臂学中的一个基本问题。机械臂系统要分析 的是一个三维的世界,而3D视觉数据最能用来描述一个3D场景,再加上近年 来3D视觉传感器的造价越来越低,如何充分利用3D信息来进行手眼标定是一 个亟待解决的难题。
手眼标定按照相机的安装方式可分为两类:眼在手外(eye-to-hand)和眼 在手上(eye-in-hand)。前者是指相机安装在固定支架上,其位姿相对机械臂 的基座固定。后者是指相机安装在机械臂的末端执行器上,其位姿相对机械臂 的末端执行器固定。现有的手眼标定方法大都要利用一个标定板,通过迭代求 解AX=XB或者AX=YB这两类高维非线性矩阵方程来进行标定。这种手眼标定 方法有如下三种缺点:第一,非线性优化问题使得求解上述方程较为复杂且耗 时较长,无法实现在线标定;第二,测定标定板姿态的过程会引入较大误差, 导致最终手眼标定的精度不高;第三,在有的场合使用精确的标定板并不方便甚至不可能,例如移动机械臂由于负重有限无法携带标定板。因此,为了解决 上述三大问题,一种新的通用的手眼标定方法亟待提出。
发明内容
本发明要解决的技术问题是现有技术中手眼标定方法须要用标定板,提供 一种新型的无需标定板的基于3D视觉的通用手眼标定方法。
为了实现这一目的,本发明的技术方案如下:无需标定板的基于3D视觉的 通用手眼标定方法,包含有以下步骤,
步骤S1,提供机械臂、3D视觉传感器及特征点F,所述机械臂具有末端执 行器,所述机械臂上定义有基坐标系及其原点B,所述3D视觉传感器上定义有 传感器坐标系及其原点S,所述末端执行器上定义有工具坐标系及其原点H;
步骤S2,在原点H位置不变的条件下,控制所述末端执行器仅做旋转运动, 利用所述3D视觉传感器获取所述特征点F在所述末端执行器旋转运动过程中关 于所述传感器坐标系下的非共面的至少四个旋转空间坐标,根据所述至少四个 旋转空间坐标确定所述原点H关于所述传感器坐标系下的坐标SpH;以及,
步骤S3,接着步骤S2,在所述末端执行器姿态不变的条件下,控制所述末 端执行器仅做平移运动,利用所述3D视觉传感器获取所述特征点F在所述末端 执行器平移运动过程中关于所述传感器坐标系下的至少三个平移空间坐标,根 据所述至少三个平移空间坐标求解p′=Rp+t刚性变换方程以估计刚性变化参 数,R为旋转矩阵,t为平移向量。
作为无需标定板的基于3D视觉的通用手眼标定方法的优选方案,所述通用 手眼标定方法适用于眼在手外的标定技术。
作为无需标定板的基于3D视觉的通用手眼标定方法的优选方案,所述特征 点F设置于所述末端执行器上;所述传感器坐标系到所述基坐标系的关系变换 式:
BpH为原点H在所述基坐标系下的坐标,从所述机械臂的控制器中读取或 者通过关节参数计算得到;
为传感器坐标到基坐标的旋转矩阵;
为传感器坐标到基坐标的平移向量;
执行步骤S1,得到原点H在所述传感器坐标系的坐标SpH
执行步骤S2,通过以下公式得到该姿态向量在所述传感器坐标系中的坐 标:
SpH为原点H在传感器坐标系下的坐标;
SpF为特征点F在传感器坐标系下的坐标;
为由原点H指向特征点F的姿态向量在传感器坐标系下的坐标;
记录每次平移后的BpH和计算相应的SpF,利用上式将关系变换式更新为:
BpH为原点H在基坐标系下的坐标;
为传感器坐标到基坐标的旋转矩阵;
SpF为特征点F在传感器坐标系下的坐标;
为由原点H指向特征点F的姿态向量在传感器坐标系下的坐标;
为传感器坐标到基座标的平移向量;
通过求解p′=Rp+t刚性变换方程来求取
作为无需标定板的基于3D视觉的通用手眼标定方法的优选方案,所述通用 手眼标定方法适用于眼在手上的标定技术。
作为无需标定板的基于3D视觉的通用手眼标定方法的优选方案,所述特征 点F设置于所述机械臂外,所述特征点F的位置不变;所述传感器坐标系到所 述工具坐标系的关系变换式:
为传感器坐标到工具坐标的旋转矩阵;
为传感器坐标到工具坐标的平移向量;
HpF为特征点F在工具坐标系下的坐标;
SpF为特征点F在传感器坐标系下的坐标;
注意到关系变换式更新为:
执行步骤S1,从所述传感器坐标系的视角来看,则是所述特征点F在绕原 点H旋转,得到的SpH就是要求的
执行步骤S2,则向量在所述传感器坐标系中固定,其坐标可通过如下公 式得到:
HpF为特征点F在工具坐标系下的坐标;
为由原点B指向特征点F的姿态向量在工具坐标系下的坐标;
HpB为原点B在工具标系下的坐标;
注意到其中BpH分别代表末端执行器在基坐标系 下的姿态和位置,直接从所述机器臂的控制器中读取或者通过关节参数计算得 到;
关系变换式更新为:
为工具坐标到基坐标的旋转矩阵;
HpB为原点B在工具标系下的坐标;
为传感器坐标到工具坐标的旋转矩阵;
SpF为特征点F在传感器坐标系下的坐标;
为工具坐标到传感器座标的平移向量;
为由原点B指向特征点F的姿态向量在工具坐标系下的坐标;
通过求解p′=Rp+t刚性变换方程来求取 给出。
作为无需标定板的基于3D视觉的通用手眼标定方法的优选方案,步骤S2 中,若所述3D视觉传感器获取到的所述旋转空间坐标的数量等于四个,以空间 四点确定spH;若所述3D视觉传感器获取到的所述旋转空间坐标的数量大于四 个,则通过最小二乘法或RANSAC算法求解SpH
作为无需标定板的基于3D视觉的通用手眼标定方法的优选方案,步骤S3 中,若所述3D视觉传感器获取到的平移空间坐标为三个,则以p′=Rp+t直 接得到封闭解析解;若所述3D视觉传感器获取到的平移空间坐标大于三个,则 以p′=Rp+t为超定方程,通过最小二乘法或者RANSAC算法求解。
与现有技术相比,本发明的有益效果至少在于:1.手眼标定方法中无需标 定板;2.充分利用3D视觉传感器的空间信息,避免测定标定板姿态时的高误差, 无需求解复杂的高维非线性矩阵方程,因而具有较高的标定精度和标定效率; 3.极大地提高精度,将误差降低到与3D视觉传感器误差相同甚至更低的水平, 因而能满足工业机械臂精细操作的要求。
除了上面所描述的本发明解决的技术问题、构成技术方案的技术特征以及 由这些技术方案的技术特征所带来的有益效果之外,本发明所能解决的其他技 术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果, 将连接附图作出进一步详细的说明。
附图说明
图1是本发明眼在手外标定系统的模型示意图。
图2是本发明眼在手上标定系统的模型示意图。
图3是本发明拟合球心时特征点F均匀分布在球表面上的示意图。
序号:
1.机械臂;
2.末端执行器;
3.3D视觉传感器。
具体实施方式
下面通过具体的实施方式连接附图对本发明作进一步详细说明。在此需要 说明的是,对于这些实施方式的说明用于帮助理解本发明,但不构成对本发明 的限定。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要 彼此之间未构成冲突就可以相互组合。
实施例1-眼在手外(eye-to-hand):
请参见图1,本实施中以机械臂的末端执行器夹持乒乓球。将乒乓球的球心 作为特征点F。提取乒乓球的球心位置至少有两种方法:第一,利用3D相机的 深度图像数据来进行霍夫变换;第二,从2D图像数据中分割出黄色圆形区域, 该区域中离相机最近的点沿着相机深度方向增加一个乒乓球的半径即为球心。
基于3D视觉的通用手眼标定方法的具体步骤如下,包含有,
步骤S1,保持机械臂的末端执行器的法兰盘中心的位置不变,控制末端执 行器仅做旋转运动。就机械臂的控制器层面来说,只改变机械臂的表征姿态的 ABC欧拉角,而不改变机械臂的表征位置的XYZ坐标。每次机械臂旋转后,都使 用作为3D视觉传感器的3D相机来采集特征点F对应的在相机坐标系中的坐标, 并用于进行球心拟合。若采集的特征点F坐标为四个(非共面),则利用该四 个特征点F坐标就可以直接确定球心。若采集的特征点F坐标大于四个(非共面), 可通过最小二乘法或者RANSAC算法求解球心。需要注意的是,特征点F坐标应 尽可能分散在球的表面,否则可能会产生较大的误差。
步骤S2,保持机械臂的末端执行器的姿态不变,控制末端执行器仅做平移 运动。就机械臂的控制器层面来说,只改变机械臂的表征位置的XYZ坐标,而 不改变机械臂的表征姿态的ABC欧拉角。每次机械臂平移后,都使用3D相机来 采集对应的特征点F在相机坐标系中的坐标,使用机械臂的控制器来记录对应 的法兰盘中心的XYZ坐标,并用于估计刚性变换的参数,也就是求解方程p′=Rp+t。若采集的特征点F坐标为三个,则上述方程可以直接得到封闭解 析解;若采集的特征点F坐标大于三个,则上述方程为超定方程,可通过最小二 乘法或者RANSAC算法求解。
进一步地,为了提高标定精度,在上述步骤S1采集特征点F坐标用于球心 拟合时,应尽可能使采集的特征点F分散在球的表面上。如图3所示,以机械 臂的法兰盘为中心,可预先设定100个机械臂的姿态,也就是特征点F应到达 的位置。实际操作过程中由于机械臂限位不能到达,或者超出相机的视野范围 等原因,实际采集到的特征点F坐标位置会少于100个。
此外,为了提高标定效率,可以设定机械臂的运动频率和相机的拍摄频率。 本实施例中设置机械臂的运动到另一位姿的频率和相机的采集拍摄频率都为每 秒一次,并且相机从时刻第0秒开始第一次拍摄,机械臂从时刻第0.1秒开始 第一次运动。
本实施例中以封闭解析解的数据来对眼在手外标定技术做更直观的解释。 在步骤S1中得到特征点F四个坐标的数据分别为:
由这四个点唯一确定的球心位置为 SpH=(134.7001-104.7773 527.3778)。
在步骤S2中选定为固定的姿态此时 采集到的三组特征点F数据分别为:
将上述三组数据用于求解以下 p′=Rp+t形式的刚性变换方程:
BpH-法兰盘中心原点H在基坐标系下的坐标;
-相机坐标到基坐标的旋转矩阵;
SpF-特征点F在相机坐标系下的坐标;
-由原点H指向点F的姿态向量在相机坐标系下的坐标;
-相机坐标到基座标的平移向量;
其中 注意到旋转矩阵R为正交矩阵,那么其封闭 解析解的形式由以下方法给出:
令px=p1-p2,py=px×(p2-p3),pz=px×py, p′x=p′1-p′2,p′y=p′x×(p′2-p′3),p′z=p′x×p′y, 则R=P′(P)T,t=p′1-Rp1
最终求得的手眼关系变换式为:
由于手眼标定结果的真值无法取得,可以通过以下方法来间接分析手眼标 定结果的精度:
在拟合球心的时候,采集更多的数据点则对于该点拟合球心过程的 误差由下式给出:
其中r为拟合得到的球的半径。
在估计刚性变换的参数的时候,采集更多的数据点对则对于 该点对估计刚性变换的参数的误差由下式给出:
e2,i=|Rpi+t-p′i|
此外,采集到更多的数据点后,可以把这些数据点用最小二乘法或者RANSAC 算法来拟合球心和估计刚性变换的参数,这两种迭代方法的优化目标由以下式子 给出:
在拟合球心的时候,若采集的特征点F个数大于4,则拟合球心过程的优化 目标函数为:
在估计刚性变换的参数的时候,若采集的数据点对个数大于3,则估计刚性变换的参数的优化目标函数和约束条件为:
s.t.RTR=I3
其中I3表示3×3的单位矩阵。
按照以上方法,下表给出了使用封闭解析解、最小二乘法迭代优化解和 RANSAC算法迭代优化解的误差统计:
实施例中所用的3D相机的测量范围是0.5m到8m,测量误差是测量目标到 相机距离的0.2%到1%,距离越远误差越大。由上表可以看出,本发明提出的手 眼标定方法能极大地提高精度,将误差降低到与相机误差相同甚至更低的水平, 因而能满足工业机械臂精细操作的要求。
实施例2-眼在手上(eye-in-hand):
请参见图2,眼在手上标定技术的操作步骤与上述实施例基本相同,只是在 步骤S2中要增加记录机械臂的姿态,具体实施方式此处不再一一赘述。
而以上仅表达了本发明的实施方式,其描述较为具体和详细,但且不能因 此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人 员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都 属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (7)

1.无需标定板的基于3D视觉的通用手眼标定方法,其特征在于,包含有以下步骤,
步骤S1,提供机械臂、3D视觉传感器及特征点F,所述机械臂具有末端执行器,所述机械臂上定义有基坐标系及其原点B,所述3D视觉传感器上定义有传感器坐标系及其原点S,所述末端执行器上定义有工具坐标系及其原点H;
步骤S2,在原点H位置不变的条件下,控制所述末端执行器仅做旋转运动,利用所述3D视觉传感器获取所述特征点F在所述末端执行器旋转运动过程中关于所述传感器坐标系下的非共面的至少四个旋转空间坐标,根据所述至少四个旋转空间坐标确定所述原点H关于所述传感器坐标系下的坐标SpH;以及,
步骤S3,接着步骤S2,在所述末端执行器姿态不变的条件下,控制所述末端执行器仅做平移运动,利用所述3D视觉传感器获取所述特征点F在所述末端执行器平移运动过程中关于所述传感器坐标系下的至少三个平移空间坐标,根据所述至少三个平移空间坐标求解p′=Rp+t刚性变换方程以估计刚性变化参数,R为旋转矩阵,t为平移向量。
2.根据权利要求1所述的无需标定板的基于3D视觉的通用手眼标定方法,其特征在于,所述通用手眼标定方法适用于眼在手外的标定技术。
3.根据权利要求2所述的无需标定板的基于3D视觉的通用手眼标定方法,其特征在于,所述特征点F设置于所述末端执行器上;所述传感器坐标系到所述基坐标系的关系变换式:
BpH为原点H在所述基坐标系下的坐标,从所述机械臂的控制器中读取或者通过关节参数计算得到;
为传感器坐标到基坐标的旋转矩阵;
为传感器坐标到基坐标的平移向量;
执行步骤S1,得到原点H在所述传感器坐标系的坐标SpH
执行步骤S2,通过以下公式得到该姿态向量在所述传感器坐标系中的坐标:
SpH为原点H在传感器坐标系下的坐标;
SpF为特征点F在传感器坐标系下的坐标;
为由原点H指向特征点F的姿态向量在传感器坐标系下的坐标;
记录每次平移后的BpH和计算相应的SpF,利用上式将关系变换式更新为:
BpH为原点H在基坐标系下的坐标;
为传感器坐标到基坐标的旋转矩阵;
SpF为特征点F在传感器坐标系下的坐标;
为由原点H指向特征点F的姿态向量在传感器坐标系下的坐标;
为传感器坐标到基座标的平移向量;
通过求解p′=Rp+t刚性变换方程来求取
4.根据权利要求1所述的无需标定板的基于3D视觉的通用手眼标定方法,其特征在于,所述通用手眼标定方法适用于眼在手上的标定技术。
5.根据权利要求4所述的无需标定板的基于3D视觉的通用手眼标定方法,其特征在于,所述特征点F设置于所述机械臂外,所述特征点F的位置不变;所述传感器坐标系到所述工具坐标系的关系变换式:
为传感器坐标到工具坐标的旋转矩阵;
为传感器坐标到工具坐标的平移向量;
HpF为特征点F在工具坐标系下的坐标;
SpF为特征点F在传感器坐标系下的坐标;
注意到关系变换式更新为:
执行步骤S1,从所述传感器坐标系的视角米有,则是所述特征点F在绕原点H旋转,得到的SpH就是要求的
执行步骤S2,则向量在所述传感器坐标系中固定,其坐标可通过如下公式得到:
HpF为特征点F在工具坐标系下的坐标;
为由原点B指向特征点F的姿态向量在工具坐标系下的坐标;
HpB为原点B在工具标系下的坐标;
注意到其中BpH分别代表末端执行器在基坐标系下的姿态和位置,直接从所述机器臂的控制器中读取或者通过关节参数计算得到;关系变换式更新为:
为工具坐标到基坐标的旋转矩阵;
HpB为原点B在工具标系下的坐标;
为传感器坐标到工具坐标的旋转矩阵;
SpF为特征点F在传感器坐标系下的坐标;
为工具坐标到传感器座标的平移向量;
为由原点B指向特征点F的姿态向量在工具坐标系下的坐标;
通过求解p′=Rp+t刚性变换方程来求取 给出。
6.根据权利要求1至5中任意一项所述的无需标定板的基于3D视觉的通用手眼标定方法,其特征在于,步骤S2中,若所述3D视觉传感器获取到的所述旋转空间坐标的数量等于四个,以空间四点确定spH;若所述3D视觉传感器获取到的所述旋转空间坐标的数量大于四个,则通过最小二乘法或RANSAC算法求解SpH
7.根据权利要求1至5中任意一项所述的无需标定板的基于3D视觉的通用手眼标定方法,其特征在于,步骤S3中,若所述3D视觉传感器获取到的平移空间坐标为三个,则以p′=Rp+t直接得到封闭解析解;若所述3D视觉传感器获取到的平移空间坐标大于三个,则以p′=Rp+t为超定方程,通过最小二乘法或者RANSAC算法求解。
CN201910767165.4A 2019-08-20 2019-08-20 无需标定板的基于3d视觉的通用手眼标定方法 Withdrawn CN110450163A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910767165.4A CN110450163A (zh) 2019-08-20 2019-08-20 无需标定板的基于3d视觉的通用手眼标定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910767165.4A CN110450163A (zh) 2019-08-20 2019-08-20 无需标定板的基于3d视觉的通用手眼标定方法

Publications (1)

Publication Number Publication Date
CN110450163A true CN110450163A (zh) 2019-11-15

Family

ID=68487800

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910767165.4A Withdrawn CN110450163A (zh) 2019-08-20 2019-08-20 无需标定板的基于3d视觉的通用手眼标定方法

Country Status (1)

Country Link
CN (1) CN110450163A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110977980A (zh) * 2019-12-17 2020-04-10 上海嘉奥信息科技发展有限公司 基于光学定位仪的机械臂实时手眼标定方法及系统
CN111127568A (zh) * 2019-12-31 2020-05-08 南京埃克里得视觉技术有限公司 一种基于空间点位信息的相机位姿标定方法
CN111633643A (zh) * 2020-05-07 2020-09-08 武汉理工大学 一种基于tcp坐标系下平移运动的旋转矩阵标定方法
CN112454332A (zh) * 2020-11-25 2021-03-09 中科新松有限公司 一种用于手眼标定的机器人轨迹点生成方法
CN112598752A (zh) * 2020-12-24 2021-04-02 东莞市李群自动化技术有限公司 基于视觉识别的标定方法及作业方法
CN112659129A (zh) * 2020-12-30 2021-04-16 杭州思锐迪科技有限公司 机器人的定位方法、装置、系统和计算机设备
CN112729245A (zh) * 2020-11-30 2021-04-30 成都飞机工业(集团)有限责任公司 一种自动瞄准投点器及投点方法
CN113172636A (zh) * 2021-06-29 2021-07-27 深圳市越疆科技有限公司 一种自动手眼标定方法、装置及存储介质
CN113681559A (zh) * 2021-08-24 2021-11-23 宁波光雷睿融智能系统有限公司 一种基于标准圆柱的线激光扫描机器人手眼标定方法
CN114794667A (zh) * 2022-03-31 2022-07-29 深圳市如本科技有限公司 工具标定方法、系统、装置、电子设备以及可读存储介质
WO2022199047A1 (zh) * 2021-03-26 2022-09-29 北京长木谷医疗科技有限公司 机器人配准方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0151417A1 (en) * 1984-01-19 1985-08-14 Hitachi, Ltd. Method for correcting systems of coordinates in a robot having visual sensor device and apparatus therefor
CN102062576A (zh) * 2010-11-12 2011-05-18 浙江大学 基于激光跟踪测量的附加外轴机器人自动标定装置及方法
CN109278044A (zh) * 2018-09-14 2019-01-29 合肥工业大学 一种手眼标定及坐标转换方法
CN110116411A (zh) * 2019-06-06 2019-08-13 浙江汉振智能技术有限公司 一种基于球目标的机器人3d视觉手眼标定方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0151417A1 (en) * 1984-01-19 1985-08-14 Hitachi, Ltd. Method for correcting systems of coordinates in a robot having visual sensor device and apparatus therefor
CN102062576A (zh) * 2010-11-12 2011-05-18 浙江大学 基于激光跟踪测量的附加外轴机器人自动标定装置及方法
CN109278044A (zh) * 2018-09-14 2019-01-29 合肥工业大学 一种手眼标定及坐标转换方法
CN110116411A (zh) * 2019-06-06 2019-08-13 浙江汉振智能技术有限公司 一种基于球目标的机器人3d视觉手眼标定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
沈爱华等: "一种基于双目视觉的手眼标定方法", 《机械设计与制造工程》 *
谢小鹏等: "一种固定视点的机器人手眼关系标定方法", 《中国测试》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110977980A (zh) * 2019-12-17 2020-04-10 上海嘉奥信息科技发展有限公司 基于光学定位仪的机械臂实时手眼标定方法及系统
CN111127568A (zh) * 2019-12-31 2020-05-08 南京埃克里得视觉技术有限公司 一种基于空间点位信息的相机位姿标定方法
CN111633643A (zh) * 2020-05-07 2020-09-08 武汉理工大学 一种基于tcp坐标系下平移运动的旋转矩阵标定方法
CN111633643B (zh) * 2020-05-07 2021-06-04 武汉理工大学 一种基于tcp坐标系下平移运动的旋转矩阵标定方法
CN112454332B (zh) * 2020-11-25 2022-02-22 中科新松有限公司 一种用于手眼标定的机器人轨迹点生成方法
CN112454332A (zh) * 2020-11-25 2021-03-09 中科新松有限公司 一种用于手眼标定的机器人轨迹点生成方法
CN112729245A (zh) * 2020-11-30 2021-04-30 成都飞机工业(集团)有限责任公司 一种自动瞄准投点器及投点方法
CN112729245B (zh) * 2020-11-30 2022-08-12 成都飞机工业(集团)有限责任公司 一种自动瞄准投点器及投点方法
CN112598752A (zh) * 2020-12-24 2021-04-02 东莞市李群自动化技术有限公司 基于视觉识别的标定方法及作业方法
CN112598752B (zh) * 2020-12-24 2024-02-27 东莞市李群自动化技术有限公司 基于视觉识别的标定方法及作业方法
CN112659129B (zh) * 2020-12-30 2022-08-09 杭州思锐迪科技有限公司 机器人的定位方法、装置、系统和计算机设备
CN112659129A (zh) * 2020-12-30 2021-04-16 杭州思锐迪科技有限公司 机器人的定位方法、装置、系统和计算机设备
WO2022199047A1 (zh) * 2021-03-26 2022-09-29 北京长木谷医疗科技有限公司 机器人配准方法、装置、电子设备及存储介质
CN113172636A (zh) * 2021-06-29 2021-07-27 深圳市越疆科技有限公司 一种自动手眼标定方法、装置及存储介质
CN113681559A (zh) * 2021-08-24 2021-11-23 宁波光雷睿融智能系统有限公司 一种基于标准圆柱的线激光扫描机器人手眼标定方法
CN113681559B (zh) * 2021-08-24 2023-01-03 宁波光雷睿融智能系统有限公司 一种基于标准圆柱的线激光扫描机器人手眼标定方法
CN114794667A (zh) * 2022-03-31 2022-07-29 深圳市如本科技有限公司 工具标定方法、系统、装置、电子设备以及可读存储介质

Similar Documents

Publication Publication Date Title
CN110450163A (zh) 无需标定板的基于3d视觉的通用手眼标定方法
JP6966582B2 (ja) ロボットモーション用のビジョンシステムの自動ハンドアイ校正のためのシステム及び方法
CN111775146B (zh) 一种工业机械臂多工位作业下的视觉对准方法
CN107883929B (zh) 基于多关节机械臂的单目视觉定位装置及方法
CN110116411B (zh) 一种基于球目标的机器人3d视觉手眼标定方法
CN109859275B (zh) 一种基于s-r-s结构的康复机械臂的单目视觉手眼标定方法
JP6426725B2 (ja) 移動可能な対象物体の場所を追跡するためのシステム及び方法
JP4021413B2 (ja) 計測装置
CN108582076A (zh) 一种基于标准球的机器人手眼标定方法及装置
US6816755B2 (en) Method and apparatus for single camera 3D vision guided robotics
CN111127568B (zh) 一种基于空间点位信息的相机位姿标定方法
JP5815761B2 (ja) 視覚センサのデータ作成システム及び検出シミュレーションシステム
CN108436909A (zh) 一种基于ros的相机和机器人的手眼标定方法
CN110728715A (zh) 一种智能巡检机器人像机角度自适应调整方法
US20040172164A1 (en) Method and apparatus for single image 3D vision guided robotics
CN106003020A (zh) 机器人、机器人控制装置以及机器人系统
US20220230348A1 (en) Method and apparatus for determining a three-dimensional position and pose of a fiducial marker
Samson et al. The agile stereo pair for active vision
CN116766194A (zh) 基于双目视觉的盘类工件定位与抓取系统和方法
CN115284292A (zh) 基于激光相机的机械臂手眼标定方法及装置
Ng et al. Intuitive robot tool path teaching using laser and camera in augmented reality environment
CN109773589B (zh) 对工件表面进行在线测量和加工导引的方法及装置、设备
CN112907682B (zh) 一种五轴运动平台的手眼标定方法、装置及相关设备
CN113618367B (zh) 基于七自由度并联双模块机器人的多视觉空间装配系统
CN110533727A (zh) 一种基于单个工业相机的机器人自定位方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20191115