CN1104475A - Pulse oximetry multi-wavelength optical measurement method and pulse oximetry monitor - Google Patents
Pulse oximetry multi-wavelength optical measurement method and pulse oximetry monitor Download PDFInfo
- Publication number
- CN1104475A CN1104475A CN 93121181 CN93121181A CN1104475A CN 1104475 A CN1104475 A CN 1104475A CN 93121181 CN93121181 CN 93121181 CN 93121181 A CN93121181 A CN 93121181A CN 1104475 A CN1104475 A CN 1104475A
- Authority
- CN
- China
- Prior art keywords
- signal
- fixed
- pulse
- pulse oximetry
- optical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 8
- 238000002106 pulse oximetry Methods 0.000 title description 4
- 238000000691 measurement method Methods 0.000 title description 3
- 238000000034 method Methods 0.000 claims abstract description 16
- 238000005259 measurement Methods 0.000 claims abstract description 12
- 239000008280 blood Substances 0.000 claims abstract description 8
- 210000004369 blood Anatomy 0.000 claims abstract description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 7
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 7
- 239000001301 oxygen Substances 0.000 claims abstract description 7
- 230000003321 amplification Effects 0.000 claims description 4
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 4
- 210000001367 artery Anatomy 0.000 claims description 2
- 230000031700 light absorption Effects 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 230000004069 differentiation Effects 0.000 claims 1
- 230000009977 dual effect Effects 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 230000010349 pulsation Effects 0.000 claims 1
- 238000005191 phase separation Methods 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 6
- 239000002131 composite material Substances 0.000 description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 2
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 208000028399 Critical Illness Diseases 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000002496 oximetry Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
Images
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
本发明涉及一种医疗器械,特别适用于人体动脉 血氧饱和度的测量场合。该发明采用双波长分相调 制法实施光学测量过程,在功能相同,测量精度相同 的情况下由于对元器件和材料的要求低,使其脉搏血 氧饱和度监护仪成本大为降低,适于国内推广使用。
The invention relates to a medical device, which is especially suitable for measuring the oxygen saturation of human arterial blood. The invention adopts the dual-wavelength phase-separation modulation method to implement the optical measurement process. Under the condition of the same function and the same measurement accuracy, the cost of the pulse oximeter monitor is greatly reduced due to the low requirements for components and materials. It is suitable for Domestic promotion and use.
Description
本发明涉及一种医疗器械。The invention relates to a medical device.
无创伤、连续实时测量人体动脉血氧饱和度可方便地应用于重病危人监护、急救、麻醉等场合,是现代手术、监护过程的重要手段。例如“一种用于测量全血中血红蛋白含量和氧浓度的反射式混合光学传感器”(A Miniature Hybrid Reflection TypeOptical Sensor for Measurement of Hemog lobin Content andO xygen Saturation of Whole Blood. IEEE TRAN. ON BIOMED.ENG.Vol35,NO.3,1987)这种采用微电子集成技术,利用混合光学传感器及其分时驱动,采样保持的方法及其相应的脉搏血氧计,其缺点是测量灵敏度较低,在采用计算机计算时必须采用高转换精度的A/D转换器,成本高,国内难以推广使用。Non-invasive, continuous and real-time measurement of human arterial blood oxygen saturation can be conveniently applied to critically ill and critical patient care, first aid, anesthesia and other occasions, and is an important means of modern surgery and monitoring processes. Amin as a miniator formed by the blood Vol35, NO.3, 1987) This kind of microelectronics integration technology, using hybrid optical sensor and its time-sharing drive, sampling and holding method and its corresponding pulse oximeter, its disadvantage is that the measurement sensitivity is low, when using a computer The A/D converter with high conversion accuracy must be used in the calculation, which is costly and difficult to popularize and use in China.
针对上述现有技术存在的缺点,本发明的任务是提供一种双波长分相调制方法的脉搏血氧多波长光学测量方法及其脉搏血氧监护仪。In view of the above-mentioned shortcomings in the prior art, the task of the present invention is to provide a pulse oximetry multi-wavelength optical measurement method with a dual-wavelength phase-separation modulation method and a pulse oximetry monitor.
本发明的方法为采用两个不同波长的光束,在人体体浅表动脉的同一处测定两波长光经血液光吸收的变化,并用两信号比值直接按实验所求得的经验公式SaO2=A-B(Ⅰλ2、/Ⅰλ1)求血氧饱和度,而为实施该方法,本发明所采用的是利用双波长分相调制法实现上述光学测量过程,即以方波发生器20(图3)产生频率为1KHz、占空比为1∶2的方波,一路到脉冲式恒流驱动器22,另一路经反相器21进入脉冲式恒流驱动器23,22和23用于驱动传感器混合LED光源2。传感器11上的光电接收器3和预放电路7将混合信号传输到测量电路输入端1N(24),并经过两个与驱动器同步工作的电子开关区分后送入各自放大器27和28中放大,得到的两个高频调制信号HO1t HO2分别用于识别传感器位置错误,并再经精密解调放大器29和30分别将调制信号上携带的低频有用信号,即不同波长的容积脉搏信号进行解调和放大,还原出实际的搏搏信号O1和O2。The method of the present invention is to use two light beams of different wavelengths to measure the change of light absorption of the two wavelengths of light by blood at the same place in the superficial artery of the human body, and use the ratio of the two signals to directly follow the empirical formula SaO 2 =AB obtained by the experiment. (I λ2 , /I λ1 ) to find blood oxygen saturation, and in order to implement this method, what the present invention adopts is to utilize the two-wavelength phase-splitting modulation method to realize the above-mentioned optical measurement process, that is, use the square wave generator 20 (Fig. 3) A square wave with a frequency of 1KHz and a duty ratio of 1:2 is generated, one path goes to the pulse type constant
根据上述方法研制的人体动脉血氧饱和度监护仪系统原理框图如图2所示,它由器传感器11、测量放大电路12和单片机8098CPU(15)构成,所述传感器11如图1所示,它由上下两个半体构成的外壳1用轴9固定,上下两个半体均可绕其转动。贴紧于轴9的弹簧6一端固定于上半体,另一端固定于下半体,以实现两个半体的张开和合拢运动,外壳1为空心或实心,合拢后的外壳内壁呈圆形或多边形,内层贴海绵10。含2个管芯的LED管2固定在一个半体上,光电转换器3固定在另一个半体上,它们的中心相对,在LED管2和光电转换器3上装有散光片4,用环状橡胶5固定。预放电路7固定在壳体1内,通过引线8与测量电路联接。The system block diagram of the human arterial oxygen saturation monitor system developed according to the above-mentioned method is shown in Figure 2, and it is made up of sensor 11,
本发明的优点由于采用双波长分相调制方法,可降低对传感器的要求,因此可直接采用国产光电器件设计传感器,对元件和材料的要求低,成本低,适于在国内推广使用。The advantage of the present invention is that due to the dual-wavelength phase-separation modulation method, the requirements for sensors can be reduced. Therefore, domestic photoelectric devices can be directly used to design sensors. The requirements for components and materials are low, and the cost is low. It is suitable for popularization and use in China.
附图说明如下:The accompanying drawings are as follows:
附图1a 传感器传结构原理图Attached Figure 1a Schematic diagram of sensor transmission structure
附图1b 为图1a的B-B剖视图Accompanying drawing 1b is the B-B sectional view of Fig. 1a
附图2 人体动脉血氧饱和度监护仪系统
原理框图Principle block diagram
附图3 双波长分相调制法测量方法原理框图。Attached Figure 3 is the principle block diagram of the measurement method of the dual-wavelength phase-splitting modulation method.
附图4 测量电路图Attached Figure 4 Measurement Circuit Diagram
结合附图对发明进一步说明如下:In conjunction with accompanying drawing, the invention is further described as follows:
监护仪系统原理如图2所示,传感器11经引线8与测量放大电路12相连,12中的调制光源电路13产生频率1KHz的脉冲信号驱动复合LED管2。光信号经光电接收器3、预放电路7送入测量放大电路14的输入端1N,其输出信号为两路高频信号HO1和HO2,两路容积脉搏信号O1和O2分别经单片机8098 CPU(15)的内含四路A/D转换器同步采集存贮。单片机系统中包括64×240点阵液晶显示器16、8个功能键17、16K字节的EPROM(18)和32K字节的RAM(19)等基本部件。这样,可根据血氧测定原理完成对两信号的正确与否的判断,对两信号同步采集、存贮、数字滤波、自动识别脉峰、自动计算SaO2和脉率,实时显示波形,存贮24小时的检测值,显示24小时趋势变化图,自动连接报警等功能。双波长分相调制方法测量电路如图4所示,它与图3所示原理框图一一对应,其中C1和C2用于驱动复合LED管,1N为传感器信号的输入端。HO1和HO2是高频调制信号输出,用于判别传感器位置正确与否及校正测量结果,O1和O2为有用的低频信号即容积脉搏波,输入计算机。The principle of the monitor system is shown in Figure 2. The sensor 11 is connected to the
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 93121181 CN1104475A (en) | 1993-12-29 | 1993-12-29 | Pulse oximetry multi-wavelength optical measurement method and pulse oximetry monitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 93121181 CN1104475A (en) | 1993-12-29 | 1993-12-29 | Pulse oximetry multi-wavelength optical measurement method and pulse oximetry monitor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN1104475A true CN1104475A (en) | 1995-07-05 |
Family
ID=4993600
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN 93121181 Pending CN1104475A (en) | 1993-12-29 | 1993-12-29 | Pulse oximetry multi-wavelength optical measurement method and pulse oximetry monitor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN1104475A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100384373C (en) * | 2006-05-30 | 2008-04-30 | 合肥安恒光电有限公司 | Calibrated tester of oximeter |
CN100425197C (en) * | 2002-01-31 | 2008-10-15 | 拉夫伯勒大学企业有限公司 | Venous pulse oximetry |
CN101080192B (en) * | 2004-12-14 | 2010-09-08 | 皇家飞利浦电子股份有限公司 | Integrated pulse oximetry sensor |
CN101884525A (en) * | 2010-06-18 | 2010-11-17 | 上海理工大学 | A portable device for real-time dynamic medical monitoring system |
US8050730B2 (en) | 2005-12-23 | 2011-11-01 | Shenzhen Mindray Bio-Medical Electrics Co., Ltd. | Method and apparatus for eliminating interference in pulse oxygen measurement |
CN102319075A (en) * | 2011-08-17 | 2012-01-18 | 天津大学 | Blood oxygen saturation measuring device and measuring method |
US8280472B2 (en) | 2007-07-19 | 2012-10-02 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Method and apparatus for measuring blood oxygen saturation |
CN103349553A (en) * | 2013-08-01 | 2013-10-16 | 赵巍 | Double-wavelength differential near-infrared non-invasive glucose meter |
-
1993
- 1993-12-29 CN CN 93121181 patent/CN1104475A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100425197C (en) * | 2002-01-31 | 2008-10-15 | 拉夫伯勒大学企业有限公司 | Venous pulse oximetry |
CN101080192B (en) * | 2004-12-14 | 2010-09-08 | 皇家飞利浦电子股份有限公司 | Integrated pulse oximetry sensor |
US8050730B2 (en) | 2005-12-23 | 2011-11-01 | Shenzhen Mindray Bio-Medical Electrics Co., Ltd. | Method and apparatus for eliminating interference in pulse oxygen measurement |
CN100384373C (en) * | 2006-05-30 | 2008-04-30 | 合肥安恒光电有限公司 | Calibrated tester of oximeter |
US8280472B2 (en) | 2007-07-19 | 2012-10-02 | Shenzhen Mindray Bio-Medical Electronics Co., Ltd. | Method and apparatus for measuring blood oxygen saturation |
CN101884525A (en) * | 2010-06-18 | 2010-11-17 | 上海理工大学 | A portable device for real-time dynamic medical monitoring system |
CN102319075A (en) * | 2011-08-17 | 2012-01-18 | 天津大学 | Blood oxygen saturation measuring device and measuring method |
CN103349553A (en) * | 2013-08-01 | 2013-10-16 | 赵巍 | Double-wavelength differential near-infrared non-invasive glucose meter |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6113541A (en) | Noninvasive blood chemistry measurement method and system | |
US5058587A (en) | Probe for optical sensor | |
CN101828908A (en) | Cuff-free portable device for monitoring human physiological parameters and method | |
CA2354064A1 (en) | Direct to digital oximeter and method for calculating oxygenation levels | |
JPH08512217A (en) | Electronic processor for pulse oximeter | |
CA2311487A1 (en) | Signal processing for measurement of physiological analytes | |
CN1104475A (en) | Pulse oximetry multi-wavelength optical measurement method and pulse oximetry monitor | |
CN103027691B (en) | Digital Physiological And Biochemical Parameters measuring device and measuring method | |
CN113854987A (en) | A wireless blood pressure continuous monitoring system based on PWTT | |
CN103040454A (en) | Non-medical wrist type physiological parameter monitoring device and monitoring method thereof | |
CN104739394A (en) | Portable human body physiological signal monitoring and alarming system | |
CN103637789B (en) | Blood pressure real-time measurement apparatus | |
CN112858196A (en) | Method for measuring three-wavelength venous blood oxygen concentration | |
RU2317008C1 (en) | Device for noninvasive measurement of glucose concentration in blood | |
CN110025305A (en) | Blood pressure heart rate measuring system and preparation method thereof based on flexibility stress sensor | |
CN105852879A (en) | Blood composition non-invasive detecting device | |
US20220330894A1 (en) | Contactless intelligent monitor and its detection method | |
CN108720823A (en) | Wristwatch type blood pressure monitoring device and method based on pulse wave velocity method | |
CN212261350U (en) | Bluetooth-based Physiological Parameter Monitoring Device | |
CN113229789A (en) | Physiological index monitoring method and system based on wireless earphone | |
CN201108427Y (en) | Three roads voltage-stabilizing pulse blood oxygen instrument | |
CN115607148A (en) | Blood oxygen instrument | |
JP2006102160A (en) | Blood pressure measurement device | |
US20120209092A1 (en) | Non-invasive apparatus and method for measuring human metabolic conditions | |
CN208065165U (en) | A kind of pulse signal acquisition wrist strap with air bag |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C06 | Publication | ||
PB01 | Publication | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |