CN110445593A - 一种无线传输中的方法和装置 - Google Patents

一种无线传输中的方法和装置 Download PDF

Info

Publication number
CN110445593A
CN110445593A CN201910509320.2A CN201910509320A CN110445593A CN 110445593 A CN110445593 A CN 110445593A CN 201910509320 A CN201910509320 A CN 201910509320A CN 110445593 A CN110445593 A CN 110445593A
Authority
CN
China
Prior art keywords
harq
ack bit
low latency
ack
bit group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910509320.2A
Other languages
English (en)
Other versions
CN110445593B (zh
Inventor
张晓博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Qiyu Communication Technology Service Center
Original Assignee
Shanghai Langbo Communication Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61201144&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN110445593(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Shanghai Langbo Communication Technology Co Ltd filed Critical Shanghai Langbo Communication Technology Co Ltd
Publication of CN110445593A publication Critical patent/CN110445593A/zh
Application granted granted Critical
Publication of CN110445593B publication Critical patent/CN110445593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1614Details of the supervisory signal using bitmaps
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种无线传输中的方法和装置。UE接收第一无线信号,随后在L1个时间间隔中分别检测低延迟信令,并发送第一HARQ‑ACK信息。所述低延迟信令中包括第一域,所述第一域被用于确定低延迟HARQ‑ACK比特组与第一HARQ‑ACK比特组的关系。所述第一HARQ‑ACK信息包括所述第一HARQ‑ACK比特组中的部分或者全部HARQ‑ACK比特。本发明通过设计所述第一域,从而支持将所述第一HARQ‑ACK比特组的信息放入所述低延迟HARQ‑ACK比特组中传输,进而优化针对HARQ‑ACK的UCI的传输,降低上行控制信息传输的资源开销和功率开销,提高整体系统性能和频谱效率。

Description

一种无线传输中的方法和装置
本申请是以下原申请的分案申请:
--原申请的申请日:2016年10月21日
--原申请的申请号:201610917646.5
--原申请的发明创造名称:一种无线传输中的方法和装置
技术领域
本申请涉及无线通信系统中的无线信号的传输方案,特别是涉及HARQ(HybridAutomatic Repeat request,混合自动重传请求)传输的用户及基站中的方法和装置。
背景技术
现有的LTE(Long-term Evolution,长期演进)及LTE-A(Long Term EvolutionAdvanced,增强的长期演进)系统中,TTI(Transmission Time Interval,传输时间间隔)或者子帧(Subframe)或者PRB(Physical Resource Block,物理资源块)对(Pair)在时间上对应一个ms(milli-second,毫秒)。一个LTE子帧包括两个时隙(Time Slot),分别是第一时隙和第二时隙,且所述第一时隙和所述第二时隙分别占用一个LTE子帧的前半个毫秒和后半个毫秒。
3GPP(3rd Generation Partner Project,第三代合作伙伴项目)Release 14中的Latency Reduction(LR,延迟降低)课题中,一个重要的应用目的就是低延迟通信。传统的LTE系统中,下行PDSCH(Physical Downlink Shared Channel,物理下行共享信道)的传输及与之对应的HARQ-ACK(Hybrid Automatic Repeat request Acknowledgment,混合自动重传请求确认)符合严格的预定义时序关系。针对降低延迟的需求,传统的LTE帧结构需要被重新设计,与之相对应的,新的下行传输及下行传输针对的上行反馈也需要被重新设计。
发明内容
Release 14延迟降低相关的Study Item(研究课题)中,一个需要被研究的方向就是下行传输及下行传输针对的上行反馈的时序关系的设计,相较LTE系统,为实现低延迟传输的目的,下行传输及针对的上行HARQ-ACK的时间间隔将会降低。然而,当UE可以同时支持基于1ms的TTI(Transmission Time Interval,传输时间间隔)和基于小于1ms的sTTI(Short Transmission Time Interval,缩短的传输时间间隔)的多个下行传输时,所述多个下行传输的上行HARQ-ACK有可能会在同一子帧中上传。
一种直观的解决方法,就是基于1ms的TTI的UL(Uplink,上行)HARQ-ACK在传统的PUCCH(Physical Uplink Control Channel,物理上行控制信道)或者PUSCH(PhysicalUplink Shared Channel,物理上行共享信道)中传输,基于小于1ms的sTTI的UL HARQ-ACK在新设计的sPUCCH(Short Latency Physical Uplink Control Channel,短延迟物理上行控制信道)或者sPUSCH(Short Latency Physical Uplink Shared Channel,短延迟物理上行共享信道)中传输。但显然此种方法会增加UE上行的功率,对于功率受限的用于,将会影响性能。同时,因为发送多个UCI(Uplink Control Information,上行控制信息)也会导致效率较低。
针对上述问题,本申请提供了解决方案。需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。例如,本申请的UE中的实施例和实施例中的特征可以应用到基站中,反之亦然。
本申请公开了一种支持HARQ的UE中的方法,其中,包括如下步骤:
-步骤A.接收第一无线信号;
-步骤B.在L1个时间间隔中分别检测低延迟信令;
-步骤C.发送第一HARQ-ACK信息。
其中,所述低延迟信令是物理层信令。所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者。所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源。所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特。所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码。所述L1是正整数。
作为一个实施例,上述方法的特质在于,所述相应的低延迟HARQ-ACK比特组中包含全部或者部分所述第一HARQ-ACK比特组中的HARQ-ACK信息,从而实现在基于sTTI的sPUCCH或者sPUSCH中传输基于TTI的PDSCH对应的UL HARQ-ACK。优化上行资源和UE的上行发送功率,避免发送多个针对不同TTI及sTTI的UCI。
作为一个实施例,上述方法的另一个特质在于,通过设计所述第一域,动态的指示所述第一HARQ-ACK比特组的信息是否包含于所述相应的低延迟HARQ-ACK比特组中。当所述UE没有低延迟调度;或者低延迟调度对应的sPUCCH或者sPUSCH资源不够用时,或者所述UE上行发送功率能力较强,可以同时发送多个UCI时;所述第一HARQ-ACK信息仍然在传统的PUCCH或者PUSCH上传输。
作为一个实施例,所述第一无线信号对应的TTI大于所述低延迟信令所调度的无线信号对应的TTI。
作为一个实施例,所述第一域被用于确定所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量是指:给定低延迟HARQ-ACK比特组中包括包含J个HARQ-ACK比特,且所述J个HARQ-ACK比特中包含所述第一HARQ-ACK比特组中的I个HARQ-ACK比特。所述述第一域被用于确定J的值,所述给定低延迟HARQ-ACK比特组针对所述相应的低延迟HARQ-ACK比特组。所述I是正整数,所述J是不小于I的正整数。
作为一个实施例,所述第一域包括第一信息比特组,所述第一信息比特组包括且仅包括2个信息比特,所述所述低延迟信令中的所述第一信息比特组的取值等于所述所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量除以4所得的余数。
作为上述两个实施例的一个子实施例,所述第一信息比特组的取值等于J除以4得到的余数。
作为一个实施例,所述第一域包括第一信息比特组,所述第一信息比特组包括且仅包括Y个信息比特,所述所述低延迟信令中的所述第一信息比特组的取值等于所述所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量除以2Y所得的余数。其中Y是大于2的正整数,所述2Y是2的Y次幂。
作为上述实施例的一个子实施例,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量等于J,所述第一信息比特组的取值等于J除以2Y得到的余数。
作为一个实施例,所述下行比特块是下行TB(Transport Block,传输块)。
作为一个实施例,所述L1个时间间隔中至少有两个时间间隔的持续时间是不同的。
作为一个实施例,所述L1个时间间隔中任意两个时间间隔在时域上是正交的,即不重叠。
作为上述两个实施例的子实施例,所述时间间隔的持续时间等于{14*T,7*T,4*T,2*T}中的之一。所述T是一个多载波符号所占据的时间窗口的持续时间。
作为一个实施例,本申请中的多载波符号是{包含CP(Cyclic Prefix,循环前缀)的OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号,包含CP的DFT-s-OFDM(Discrete Fourier Transform Spreading OFDM,离散傅里叶变换扩频的正交频分复用)符号,SC-FDMA(Single-Carrier Frequency Division Multiple Access,单载波频分复用接入)符号,FBMC(Filter Bank Multi Carrier,滤波器组多载波)符号}中的之一。
作为一个实施例,本申请中的多载波符号是LTE中的下行的OFDM符号。
作为一个实施例,本申请中的多载波符号是LTE中的上行的SC-FDMA符号。
作为一个实施例,所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特。
作为一个实施例,所述所述相应的低延迟HARQ-ACK比特组中包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特。
作为一个实施例,所述L1大于1。
作为一个实施例,所述第一无线信号包括F1个所述下行比特块,所述F1个所述下行比特块分别在F1个子帧中传输,所述F1是大于1的正整数。
作为一个实施例,所述第一无线信号包括F2个所述下行比特块,所述F2个所述下行比特块分别在F2个载波上传输,所述F2是大于1的正整数。
作为一个实施例,所述第一无线信号包括F3个子无线信号,所述F3个子无线信号和F3个所述下行比特块一一对应,所述子无线信号是相应的所述下行比特块依次经过信道编码(Channel Coding),调制映射器(Modulation Mapper),层映射器(Layer Mapper),预编码(Precoding),资源粒子映射器(Resource Element Mapper),OFDM信号发生(Generation)之后的输出。
作为一个实施例,所述第一无线信号在PDSCH(Physical Downlink SharedChannel,物理下行共享信道)上传输。
作为一个实施例,所述第一无线信号在sPDSCH(Short Latency PhysicalDownlink Shared Channel,短延迟物理下行共享信道)上传输。
作为一个实施例,所述第一无线信号对应的传输信道是DL-SCH(Downlink SharedChannel,下行共享信道)。
作为一个实施例,所述低延迟信令对应的物理层信道是sPDCCH(Short LatencyPhysical Downlink Control Channel,短延迟物理下行控制信道)。
作为一个实施例,所述低延迟信令对应UL授权(Grant)的DCI(Downlink ControlInformation,下行控制信息)。
作为一个实施例,所述低延迟信令所占用的时间间隔隐式指示所述所述相应的低延迟HARQ-ACK比特组所占用的时域资源。
作为该实施例的一个子实施例,所述隐式指示是指:所述低延迟信令占用的时间间隔的结束时刻是T1(ms),所述相应的低延迟HARQ-ACK比特组所占用的时域资源的起始时刻是(T1+T2)(ms)。所述T2是固定的。
作为该子实施例的一个附属实施例,所述T2是给定持续时间的正整数倍,所述给定持续时间是所述低延迟信令占用的时间间隔的持续时间。
作为该子实施例的一个附属实施例,所述T2不小于T3。所述T3是固定。
作为上述两个子实施例的一个附属实施例,所述T2和所述T3均是{14*T,7*T,4*T,2*T}中之一的正整数倍。所述T是一个多载波符号的持续时间。
作为一个实施例,所述低延迟信令显式的指示所述所述相应的低延迟HARQ-ACK比特组所占用的时域资源。
作为该实施例的一个子实施例,所述低延迟信令包含给定信息域,所述低延迟信令占用的时间间隔的结束时刻是T1(ms),所述相应的低延迟HARQ-ACK比特组所占用的时域资源的起始时刻是(T1+T2)(ms),且所述T2是被指示的。
作为该子实施例的一个附属实施例,给定信息域被用于确定所述T2,所述给定信息域是所述低延迟信令中的信息域。
作为该子实施例的一个附属实施例,所述T2是{14*T,7*T,4*T,2*T}中之一的正整数倍。所述T是一个多载波符号所占据的时间窗口的持续时间。
根据本申请的一个方面,上述方法的特征在于,所述步骤C还包括如下步骤:
-步骤C0.根据基于1毫秒TTI的LTE方案确定所述第一HARQ-ACK信息所占用的空口资源。
其中,在所述L1个时间间隔中未检测到所述低延迟信令,所述第一HARQ-ACK信息包括且仅包括所述第一HARQ-ACK比特组,所述第一无线信号对应的TTI是1毫秒。
作为一个实施例,上述方法的特质在于,所述第一HARQ-ACK信息不在sTTI对应的低延迟HARQ-ACK比特组中传输,而在TTI对应的PUCCH或者PUSCH中传输。
作为一个实施例,所述低延迟信令所调度的无线信号对应的TTI小于1毫秒。
作为一个实施例,所述所述第一HARQ-ACK信息所占用的空口资源属于PUCCH格式1a,所述根据基于1毫秒TTI的LTE方案确定所述第一HARQ-ACK信息所占用的空口资源是指:所述UE根据PUCCH-ConfigCommon,调度所述第一无线信号的DCI所占用的第一个CCE(Control Channel Element,控制信道单元)的序号,以及预定义的所述第一无线信号与所述第一HARQ-ACK信息所对应的HARQ-ACK时序(Timing)关系,确定所述第一HARQ-ACK信息所占用的{时域资源,频域资源,码域资源}中的至少之一。所述PUCCH-ConfigCommon是RRC(Radio Resource Control,无线资源控制)高层信令,具体参见TS 36.331。
作为一个实施例,所述所述第一HARQ-ACK信息所占用的空口资源属于PUCCH格式3,所述根据基于1毫秒TTI的LTE方案确定所述第一HARQ-ACK信息所占用的空口资源是指:所述UE根据PUCCH-ConfigDedicated,调度所述第一无线信号的DCI中的TPC指示,以及预定义的所述第一无线信号与所述第一HARQ-ACK信息所对应的HARQ-ACK时序关系,确定所述第一HARQ-ACK信息所占用的{时域资源,频域资源,码域资源}中的至少之一。所述PUCCH-ConfigDedicated是RRC高层信令,具体参见TS 36.331。
作为一个实施例,所述所述第一HARQ-ACK信息所占用的空口资源属于PUSCH,所述根据基于1毫秒TTI的LTE方案确定所述第一HARQ-ACK信息所占用的空口资源是指:所述UE根据所述第一HARQ-ACK信息在所述PUSCH中预定义的时频位置,所述PUSCH对应的调度信息,以及预定义的所述第一无线信号与所述第一HARQ-ACK信息所对应的HARQ-ACK时序关系,确定所述第一HARQ-ACK信息所占用的{时域资源,频域资源,码域资源}中的至少之一。
根据本申请的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A1.接收第一信令。
其中,所述第一信令包括DAI(Downlink Assignment Index,下行分配索引)域。所述第一信令中的所述DAI域被用于确定所述第一HARQ-ACK比特组中的HARQ-ACK比特的数量。
作为一个实施例,所述第一信令中的所述DAI域包括2个信息比特,所述所述第一HARQ-ACK比特组中的HARQ-ACK比特的数量除以4的余数等于所述2个信息比特的值。
作为一个实施例,所述第一信令包括所述第一无线信号的调度信息。所述调度信息包括{所占用的时频资源,MCS(Modulation and Coding Status,调制编码状态),NDI(New Data Indicator,新数据指示),RV(Redundancy Version,冗余版本),HARQ进程号}中至少之一。
作为一个实施例,所述第一信令包括第二无线信号的调度信息。所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中至少之一。所述第二无线信号是上行信号。
作为该实施例的一个子实施例,所述第二无线信号对应的物理层信道是PUSCH。
作为该实施例的一个子实施例,所述第二无线信号对应的传输信道是UL-SCH。
作为该实施例的一个子实施例,所述相应的低延迟HARQ-ACK比特组所占用的时域资源属于所述第二无线信号所占用的时域资源。所述第一HARQ-ACK比特组所占用的时域资源属于所述第二无线信号所占用的时域资源。
作为该实施例的一个子实施例,所述第一信令被用于确定所述所述第一HARQ-ACK信息所占用的空口资源。
作为该子实施例的一个附属实施例,所述所述第一HARQ-ACK信息所占用的空口资源属于PUSCH。
作为一个实施例,所述第一信令是UL授权对应的DCI。
根据本申请的一个方面,上述方法的特征在于,L2个所述低延迟信令分别在L2个时间间隔中被正确接收,所述L2个时间间隔是所述L1个时间间隔的子集,所述L2是正整数。所述L2个所述低延迟信令中至少存在第一低延迟信令,所述第一低延迟信令对应的第一低延迟HARQ-ACK比特组中包括第一HARQ-ACK比特组中的HARQ-ACK比特。
作为一个实施例,上述方法的特质在于所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特在所述第一低延迟HARQ-ACK比特组中传输。从而降低传输的UCI个数,将低延迟传输对应的HARQ-ACK和正常延迟传输对应的HARQ-ACK在一个物理信道中传输。
作为一个实施例,所述第一低延迟HARQ-ACK比特组是所述第一HARQ-ACK信息。
作为一个实施例,所述第一低延迟信令被用于确定所述第一低延迟HARQ-ACK比特组所占用的空口资源。
根据本申请的一个方面,上述方法的特征在于,所述步骤C还包括如下步骤:
-步骤C1.发送L2个低延迟无线信号。
其中,所述L2个低延迟信令分别包括所述L2个低延迟无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中至少之一。
作为一个实施例,所述低延迟无线信号对应的传输信道是UL-SCH。
作为一个实施例,所述L2个低延迟无线信号中分别包括L2个低延迟HARQ-ACK比特组。
作为一个实施例,给定低延迟无线信号被用于传输所述第一低延迟HARQ-ACK比特组,所述给定低延迟无线信号是所述L2个低延迟无线信号中的一个。
根据本申请的一个方面,上述方法的特征在于,所述第一低延迟信令中的第一域被用于确定{第一目标HARQ-ACK比特组中的HARQ-ACK比特的数量,所述第一目标HARQ-ACK比特组中的HARQ-ACK比特在所述第一HARQ-ACK比特组中的位置}中的至少前者,所述第一目标HARQ-ACK比特组是由同时属于所述第一低延迟HARQ-ACK比特组和所述第一HARQ-ACK比特组的HARQ-ACK比特组成。
作为一个实施例,上述方法的特质在于,所述第一目标HARQ-ACK比特组在一个给定的上行物理信道中传输,且同时包含针对不同传输延迟的下行数据的UL HARQ-ACK。
作为一个实施例,所述所述相应的低延迟HARQ-ACK比特组是所述第一低延迟HARQ-ACK比特组。
作为一个实施例,所述第一域包括第三信息比特组,所述所述第一低延迟信令中的所述第三信息比特组的取值等于同时属于所述所述相应的低延迟HARQ-ACK比特组和所述第一HARQ-ACK比特组的HARQ-ACK比特的数量。
作为该实施例的一个子实施例,上述描述是指:所述第一HARQ-ACK比特组中包含I1个HARQ-ACK比特,所述I1个HARQ-ACK比特中的I2个HARQ-ACK比特属于所述相应的低延迟HARQ-ACK比特组。所述第三信息比特组被用于确定I2的取值。所述I1是正整数,所述I2是小于所述I1的正整数。
作为该子实施例的一个附属实施例,所述I2个HARQ-ACK比特对应所述第一目标HARQ-ACK比特组。
作为一个实施例,所述第一目标HARQ-ACK比特组中的HARQ-ACK比特在所述第一HARQ-ACK比特组中的位置是连续的。
作为一个实施例,所述第一域包括第四信息比特组,所述所述第一低延迟信令中的所述第四信息比特组被用于确定所述第一目标HARQ-ACK比特组中的HARQ-ACK比特在所述第一HARQ-ACK比特组中的位置。
作为该实施例的一个子实施例,上述描述是指:所述第一HARQ-ACK比特组中包含I1个HARQ-ACK比特,所述I1个HARQ-ACK比特中的I2个HARQ-ACK比特属于所述第一目标HARQ-ACK比特组。所述第四信息比特组被用于确定所述I2个HARQ-ACK信息在所述I1个HARQ-ACK信息中的位置。所述I1是正整数,所述I2是小于所述I1的正整数。
作为该子实施例的一个附属实施例,所述I1个HARQ-ACK信息在所述I2个HARQ-ACK信息中的位置是不连续的。
作为该实施例的一个子实施例,所述所述第一目标HARQ-ACK比特组中的HARQ-ACK比特在所述第一HARQ-ACK比特组中的位置是Q种候选位置中的一种,所述Q是正整数。所述Q种候选位置中的一种通过所述第四信息比特组确定。
作为该子实施例的一个附属实施例,所述Q为2。
作为该子实施例的一个附属实施例,所述Q为4。
根据本申请的一个方面,上述方法的特征在于,所述第一域包括{第一信息比特组,第二信息比特组}中的至少第二信息比特组。所述第一信息比特组包括2个信息比特,所述第二信息比特组包括1个信息比特。所述低延迟信令中的所述第一信息比特组的取值等于所述所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量除以4所得的余数,所述低延迟信令中的所述第二信息比特组指示所述所述相应的低延迟HARQ-ACK比特组中是否包括所述第一HARQ-ACK比特组。
作为一个实施例,上述方法的特质在于,所述第一HARQ-ACK比特组中的HARQ-ACK比特可以全部属于所述相应的低延迟HARQ-ACK比特组。
根据本申请的一个方面,上述方法的特征在于,所述第一HARQ-ACK比特组包括且仅包括基于1ms TTI的LTE方案确定的给定物理层信道上传输的HARQ-ACK比特。
作为一个实施例,所述第一HARQ-ACK比特组对应的HARQ-ACK信息属于1个sTTI对应的时间间隔。
作为一个实施例,所述第一HARQ-ACK比特组对应的HARQ-ACK信息分别属于2个sTTI对应的时间间隔。
作为一个实施例,所述所述第一HARQ-ACK比特组包括且仅包括基于1ms TTI的LTE方案确定的给定物理层信道上传输的HARQ-ACK比特是指:对于FDD(Frequency DivisionDual,频分双工)模式,所述给定物理层信道是PUCCH或者PUSCH,所述第一HARQ-ACK比特组针对给定PDSCH的HARQ-ACK信息,所述给定PDSCH在子帧#(n-4)上传输,且所述PUCCH或者PUSCH在子帧#n上传输。所述n是不小于4的正整数。
作为一个实施例,所述所述第一HARQ-ACK比特组包括且仅包括基于1ms TTI的LTE方案确定的给定物理层信道上传输的HARQ-ACK比特是指:对于TDD(Time Division Dual,时分双工)模式,所述给定物理层信道是PUCCH或者PUSCH,所述第一HARQ-ACK比特组针对给定PDSCH的HARQ-ACK信息,所述给定PDSCH在子帧#(n-k)上传输,且所述PUCCH或者PUSCH在子帧#n上传输,所述k∈K,所述K的定义参见TS 36.213中的表Table 10.1.3.1-1(见下表),且所述K对应集合{k0,k1,...,kM-1},所述K与所述{k0,k1,...,kM-1}关系与n的值以及对应的TDD配置(Configuration)有关。
Table 10.1.3.1-1:Downlink association set K:{k0,k1,…kM-1}for TDD
本申请公开了一种支持HARQ的基站中的方法,其中,包括如下步骤:
-步骤A.发送第一无线信号;
-步骤B.在L1个时间间隔中发送低延迟信令;
-步骤C.接收第一HARQ-ACK信息。
其中,所述低延迟信令是物理层信令。所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者。所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源。所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特。所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码。所述L1是正整数。
根据本申请的一个方面,上述方法的特征在于,所述步骤C还包括如下步骤:
-步骤C0.根据基于1毫秒TTI的LTE方案为所述第一HARQ-ACK信息配置空口资源。
其中,在所述L1个时间间隔中未发送所述低延迟信令,所述第一HARQ-ACK信息包括且仅包括所述第一HARQ-ACK比特组,所述第一无线信号对应的TTI是1毫秒。
根据本申请的一个方面,上述方法的特征在于,所述步骤A还包括如下步骤:
-步骤A1.发送第一信令。
其中,所述第一信令包括DAI域。所述第一信令中的所述DAI域被用于确定所述第一HARQ-ACK比特组中的HARQ-ACK比特的数量。
根据本申请的一个方面,上述方法的特征在于,L2个所述低延迟信令分别在L2个时间间隔中被发送,所述L2个时间间隔是所述L1个时间间隔的子集,所述L2是正整数。所述L2个所述低延迟信令中至少存在第一低延迟信令,所述第一低延迟信令对应的第一低延迟HARQ-ACK比特组中包括第一HARQ-ACK比特组中的HARQ-ACK比特。
根据本申请的一个方面,上述方法的特征在于,所述步骤C还包括如下步骤:
-步骤C1.接收L2个低延迟无线信号。
其中,所述L2个低延迟信令分别包括所述L2个低延迟无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中至少之一。
根据本申请的一个方面,上述方法的特征在于,所述第一低延迟信令中的第一域被用于确定{第一目标HARQ-ACK比特组中的HARQ-ACK比特的数量,所述第一目标HARQ-ACK比特组中的HARQ-ACK比特在所述第一HARQ-ACK比特组中的位置}中的至少前者,所述第一目标HARQ-ACK比特组是由同时属于所述第一低延迟HARQ-ACK比特组和所述第一HARQ-ACK比特组的HARQ-ACK比特组成。
根据本申请的一个方面,上述方法的特征在于,所述第一域包括{第一信息比特组,第二信息比特组}中的至少第二信息比特组。所述第一信息比特组包括2个信息比特,所述第二信息比特组包括1个信息比特。所述低延迟信令中的所述第一信息比特组的取值等于所述所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量除以4所得的余数,所述低延迟信令中的所述第二信息比特组指示所述所述相应的低延迟HARQ-ACK比特组中是否包括所述第一HARQ-ACK比特组。
根据本申请的一个方面,上述方法的特征在于,所述第一HARQ-ACK比特组包括且仅包括基于1ms TTI的LTE方案确定的给定物理层信道上传输的HARQ-ACK比特。
本申请公开了一种支持HARQ的用户设备,其中,包括如下模块:
-第一接收模块:用于接收第一无线信号;
-第二接收模块:用于在L1个时间间隔中分别检测低延迟信令;
-第一处理模块:用于发送第一HARQ-ACK信息。
其中,所述低延迟信令是物理层信令。所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者。所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源。所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特。所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码。所述L1是正整数。
作为一个实施例,所述第一接收模块还用于接收第一信令。所述第一信令包括DAI域。所述第一信令中的所述DAI域被用于确定所述第一HARQ-ACK比特组中的HARQ-ACK比特的数量。
作为一个实施例,所述第一处理模块还用于根据基于1毫秒TTI的LTE方案确定所述第一HARQ-ACK信息所占用的空口资源。其中,所述第一处理模块在所述L1个时间间隔中未检测到所述低延迟信令,所述第一HARQ-ACK信息包括且仅包括所述第一HARQ-ACK比特组,所述第一无线信号对应的TTI是1毫秒。
作为一个实施例,所述第一处理模块还用于发送L2个低延迟无线信号。所述L2个低延迟信令分别包括所述L2个低延迟无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中至少之一。
根据本申请的一个方面,上述用户设备的特征在于,L2个所述低延迟信令分别在L2个时间间隔中被正确接收,所述L2个时间间隔是所述L1个时间间隔的子集,所述L2是正整数。所述L2个所述低延迟信令中至少存在第一低延迟信令,所述第一低延迟信令对应的第一低延迟HARQ-ACK比特组中包括第一HARQ-ACK比特组中的HARQ-ACK比特。
根据本申请的一个方面,上述用户设备的特征在于,所述第一低延迟信令中的第一域被用于确定{第一目标HARQ-ACK比特组中的HARQ-ACK比特的数量,所述第一目标HARQ-ACK比特组中的HARQ-ACK比特在所述第一HARQ-ACK比特组中的位置}中的至少前者,所述第一目标HARQ-ACK比特组是由同时属于所述第一低延迟HARQ-ACK比特组和所述第一HARQ-ACK比特组的HARQ-ACK比特组成。
根据本申请的一个方面,上述用户设备的特征在于,所述第一域包括{第一信息比特组,第二信息比特组}中的至少第二信息比特组。所述第一信息比特组包括2个信息比特,所述第二信息比特组包括1个信息比特。所述低延迟信令中的所述第一信息比特组的取值等于所述所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量除以4所得的余数,所述低延迟信令中的所述第二信息比特组指示所述所述相应的低延迟HARQ-ACK比特组中是否包括所述第一HARQ-ACK比特组。
根据本申请的一个方面,上述用户设备的特征在于,所述第一HARQ-ACK比特组包括且仅包括基于1ms TTI的LTE方案确定的给定物理层信道上传输的HARQ-ACK比特。
本申请公开了一种支持HARQ的基站设备,其中,包括如下模块:
-第一发送模块:用于发送第一无线信号;
-第二发送模块:用于在L1个时间间隔中发送低延迟信令;
-第二处理模块:用于接收第一HARQ-ACK信息。
其中,所述低延迟信令是物理层信令。所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者。所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源。所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特。所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码。所述L1是正整数。
作为一个实施例,所述第一发送模块还用于发送第一信令。所述第一信令包括DAI域。所述第一信令中的所述DAI域被用于确定所述第一HARQ-ACK比特组中的HARQ-ACK比特的数量。
作为一个实施例,所述第二处理模块还用于根据基于1毫秒TTI的LTE方案为所述第一HARQ-ACK信息配置空口资源。其中,所述第二处理模块在所述L1个时间间隔中未发送所述低延迟信令,所述第一HARQ-ACK信息包括且仅包括所述第一HARQ-ACK比特组,所述第一无线信号对应的TTI是1毫秒。
作为一个实施例,所述第二处理模块还用于接收L2个低延迟无线信号。所述L2个低延迟信令分别包括所述L2个低延迟无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中至少之一。
根据本申请的一个方面,上述基站设备的特征在于,L2个所述低延迟信令分别在L2个时间间隔中被发送,所述L2个时间间隔是所述L1个时间间隔的子集,所述L2是正整数。所述L2个所述低延迟信令中至少存在第一低延迟信令,所述第一低延迟信令对应的第一低延迟HARQ-ACK比特组中包括第一HARQ-ACK比特组中的HARQ-ACK比特。
根据本申请的一个方面,上述基站设备的特征在于,所述第一低延迟信令中的第一域被用于确定{第一目标HARQ-ACK比特组中的HARQ-ACK比特的数量,所述第一目标HARQ-ACK比特组中的HARQ-ACK比特在所述第一HARQ-ACK比特组中的位置}中的至少前者,所述第一目标HARQ-ACK比特组是由同时属于所述第一低延迟HARQ-ACK比特组和所述第一HARQ-ACK比特组的HARQ-ACK比特组成。
根据本申请的一个方面,上述基站设备的特征在于,所述第一域包括{第一信息比特组,第二信息比特组}中的至少第二信息比特组。所述第一信息比特组包括2个信息比特,所述第二信息比特组包括1个信息比特。所述低延迟信令中的所述第一信息比特组的取值等于所述所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量除以4所得的余数,所述低延迟信令中的所述第二信息比特组指示所述所述相应的低延迟HARQ-ACK比特组中是否包括所述第一HARQ-ACK比特组。
根据本申请的一个方面,上述基站设备的特征在于,所述第一HARQ-ACK比特组包括且仅包括基于1ms TTI的LTE方案确定的给定物理层信道上传输的HARQ-ACK比特。
相比现有公开技术,本申请具有如下技术优势:
-.通过设计所述第一域,实现将所述第一HARQ-ACK比特组中的部分或全部HARQ-ACK比特放入所述相应的低延迟HARQ-ACK比特组中传输,降低发送的UCI的个数,合理分配上行资源和上行发送功率。
-.通过设计回退机制,即当在所述L1个时间间隔中未传输所述低延迟信令时,所述第一HARQ-ACK信息包括且仅包括所述第一HARQ-ACK比特组,且所述第一HARQ-ACK比特组仅在非低延迟传输对应的UCI上传输。更为灵活的配置上行资源。
-.通过进一步设计所述第一域中的{所述第一信息比特组,所述第二信息比特组,所述第三信息比特组,所述第四信息比特组},更加灵活的配置所述第一HARQ-ACK比特组和所述低延迟HARQ-ACK比特组的关系,以及第一目标HARQ-ACK比特组中HARQ-ACK比特的数目,进一步合理配置传输低延迟上行HARQ-ACK和非低延迟上行HARQ-ACK比特的上行信道的资源,进而提高上行传输的效率和性能。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更加明显:
图1示出了根据本申请的一个实施例的所述第一无线信号的传输的流程图;
图2示出了根据本申请的一个实施例的所述第一域的示意图;
图3示出了根据本申请的一个实施例的所述第一HARQ-ACK比特组所占用的时域资源的示意图;
图4示出了根据本申请的另一个实施例的所述第一HARQ-ACK比特组所占用的时域资源的示意图;
图5示出了根据本申请的一个实施例的UE中的处理装置的结构框图;
图6示出了根据本申请的一个实施例的基站中的处理装置的结构框图;
具体实施方式
下文将结合附图对本申请的技术方案作进一步详细说明,需要说明的是,在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。
实施例1
实施例1示例了根据本申请的一个所述第一无线信号的传输的流程图,如附图1所示。附图1中,基站N1是UE U2的服务小区的维持基站,方框F0,方框F1和方框F2中的步骤分别是可选的。
对于基站N1,在步骤S10中发送第一无线信号;在步骤S11中发送第一信令;在步骤S12中在L1个时间间隔中发送低延迟信令;在步骤S13中根据基于1毫秒TTI的LTE方案为所述第一HARQ-ACK信息配置空口资源;在步骤S14中接收第一HARQ-ACK信息;在步骤S15中接收L2个低延迟无线信号。
对于UE U2,在步骤S20中接收第一无线信号;在步骤S21中接收第一信令;在步骤S22中在L1个时间间隔中分别检测低延迟信令;在步骤S23中根据基于1毫秒TTI的LTE方案确定所述第一HARQ-ACK信息所占用的空口资源;在步骤S24中发送第一HARQ-ACK信息;在步骤S25中发送L2个低延迟无线信号。
作为一个子实施例,所述方框F0中的步骤和所述方框F1中的步骤不能同时出现。
作为一个子实施例,所述方框F0中的步骤和所述方框F2中的步骤同时出现,或者同时不出现。
作为一个子实施例,所述L2个低延迟无线信号中包含所述第一HARQ-ACK信息对应的上行信道。
作为该子实施例的一个附属实施例,所述所述第一HARQ-ACK信息对应的上行信道在sPUSCH上传输。
作为一个子实施例,所述第一HARQ-ACK信息中包含和所述第一无线信号相关联的HARQ-ACK比特。
作为一个子实施例,所述L2个低延迟无线信号在物理层分别对应L2个sPUSCH。
作为一个子实施例,所述第一HARQ-ACK信息在给定无线信号上传输。所述给定无线信号是所述L2个低延迟无线信号之外的无线信号。
作为该子实施例的一个附属实施例,所述给定无线信号对应的物理层信道是sPUCCH。
作为该子实施例的一个附属实施例,所述给定无线信号对应的物理层信道是PUCCH或者PUSCH。
实施例2
实施例2示例了根据本申请的一个所述第一域的示意图,如附图2所示。附图2中,所述第一域包括{第一信息比特组,第二信息比特组,第三信息比特组,第四信息比特组}。所述{第一信息比特组,第二信息比特组,第三信息比特组,第四信息比特组}分别由正整数个信息比特组成。图中所示的其他对应所述{第一信息比特组,第二信息比特组,第三信息比特组,第四信息比特组}之外的信息比特。
作为一个子实施例,给定低延迟HARQ-ACK比特组是包含给定HARQ-ACK比特的低延迟HARQ-ACK比特组。所述给定HARQ-ACK比特是和所述第一无线信号相关联的HARQ-ACK比特。
作为一个子实施例,第一HARQ-ACK比特组包含和所述第一无线信号相关联的HARQ-ACK比特。
作为一个子实施例,所述给定低延迟HARQ-ACK比特组对应发明内容中定义的所述第一低延迟HARQ-ACK比特组。
作为一个子实施例,所述第一信息比特组被用于确定所述给定低延迟HARQ-ACK比特组中HARQ-ACK比特的数量。
作为一个子实施例,所述第二信息比特组被用于确定所述给定低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组。
作为该子实施例的一个附属实施例,所述第二信息比特组等于1,所述给定低延迟HARQ-ACK比特组中包括所述第一HARQ-ACK比特组的所有HARQ-ACK比特。
作为该子实施例的一个附属实施例,所述第二信息比特组等于0,所述给定低延迟HARQ-ACK比特组中不包括所述第一HARQ-ACK比特组的所有HARQ-ACK比特。
作为一个子实施例,所述第三信息比特组被用于确定同时属于所述给定低延迟HARQ-ACK比特组和所述第一HARQ-ACK比特组的HARQ-ACK比特的数量。
作为该子实施例的一个附属实施例,所述第一HARQ-ACK比特组包含I1个HARQ-ACK比特,所述I 1个HARQ-ACK比特中有I2个HARQ-ACK比特属于所述给定低延迟HARQ-ACK比特组,所述I 1个HARQ-ACK比特中有I3个HARQ-ACK比特不属于所述给定低延迟HARQ-ACK比特组。所述I1等于所述I2和所述I3的和,所述I2是正整数,所述I3是非负整数。
作为该附属实施例的一个范例,所述第四信息比特组被用于从所述I 1个HARQ-ACK比特中确定所述I2个HARQ-ACK比特。
作为一个子实施例,所述其他对应的信息比特的比特数等于0。
实施例3
实施例3示例了根据本申请的一个所述第一HARQ-ACK比特组所占用的时域资源的示意图,如附图3所示。附图3中,所述第一HARQ-ACK比特组仅占用一个给定时间间隔,所述给定时间间隔的持续时间小于1ms。
作为一个子实施例,所述第一HARQ-ACK比特组中的所有HARQ-ACK比特所对应的下行传输的传输时间间隔是一个TTI。
作为一个子实施例,所述给定时间间隔被用于本文中的所述第一低延迟HARQ-ACK比特组的传输。
实施例4
实施例4示例了根据本申请的另一个所述第一HARQ-ACK比特组所占用的时域资源的示意图,如附图4所示。附图4中,所述第一HARQ-ACK比特组占用正整数个时间间隔,所述正整数个时间间隔分别对应{时间间隔#1,…,时间间隔#Z}。所述Z是大于1的正整数。
作为一个子实施例,所述正整数个时间间隔在时域是连续的。
作为一个子实施例,所述正整数个时间间隔在时域是离散的。
作为一个子实施例,所述正整数个时间间隔属于同一个子帧。
作为一个子实施例,所述第一低延迟HARQ-ACK比特组在所述正整数个时间间隔中的一个时间间隔上传输。
实施例5
实施例5示例了一个用户设备中的处理装置的结构框图,如附图5所示。附图5中,用户设备处理装置100主要由第一接收模块101,第二接收模块102和第一处理模块103组成。
-第一接收模块101:用于接收第一无线信号;
-第二接收模块102:用于在L1个时间间隔中分别检测低延迟信令;
-第一处理模块103:用于发送第一HARQ-ACK信息。
实施例5中,所述低延迟信令是物理层信令。所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者。所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源。所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特。所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码。所述L1是正整数。
作为一个子实施例,所述第一接收模块101还用于接收第一信令。所述第一信令包括DAI域。所述第一信令中的所述DAI域被用于确定所述第一HARQ-ACK比特组中的HARQ-ACK比特的数量。
作为一个子实施例,所述第一处理模块103还用于根据基于1毫秒TTI的LTE方案确定所述第一HARQ-ACK信息所占用的空口资源。其中,所述第一处理模块103在所述L1个时间间隔中未检测到所述低延迟信令,所述第一HARQ-ACK信息包括且仅包括所述第一HARQ-ACK比特组,所述第一无线信号对应的TTI是1毫秒。
作为一个子实施例,所述第一处理模块103还用于发送L2个低延迟无线信号。所述L2个低延迟信令分别包括所述L2个低延迟无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中至少之一。
作为一个子实施例,所述相应的低延迟HARQ-ACK比特组所对应的下行数据中的至少之一的传输时间间隔是一个sTTI。
作为一个子实施例,所述第一HARQ-ACK比特组所对应的下行数据的传输时间间隔是一个TTI,所述第一HARQ-ACK比特组由I1个HARQ-ACK比特组成。
作为上述两个子实施例的一个附属实施例,所述I1个HARQ-ACK比特中有I2个HARQ-ACK比特同时属于所述相应的低延迟HARQ-ACK比特组。
作为该附属实施例的一个范例,所述I2个HARQ-ACK比特中包括和所述第一无线信号相关联的HARQ-ACK比特。
作为该附属实施例的一个范例,所述相应的低延迟HARQ-ACK比特组还包含所述I2个HARQ-ACK比特之外的HARQ-ACK比特。
作为该附属实施例的一个范例,所述相应的低延迟HARQ-ACK比特组包含且仅包含所述I2个HARQ-ACK比特。
作为该附属实施例的一个范例,所述第一HARQ-ACK信息至少包含和所述第一无线信号相关联的HARQ-ACK比特。
作为该附属实施例的一个范例,所述第一HARQ-ACK信息被用于传输所述相应的低延迟HARQ-ACK比特组。
实施例6
实施例6示例了一个基站设备中的处理装置的结构框图,如附图6所示。附图6中,基站设备处理装置200主要由主要由第一发送模块201,第二发送模块202和第二处理模块203组成。
-第一发送模块201:用于发送第一无线信号;
-第二发送模块202:用于在L1个时间间隔中发送低延迟信令;
-第二处理模块203:用于接收第一HARQ-ACK信息。
实施例6中,所述低延迟信令是物理层信令。所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者。所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源。所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特。所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码。所述L1是正整数。
作为一个实施例,所述第一发送模块201还用于发送第一信令。所述第一信令包括DAI域。所述第一信令中的所述DAI域被用于确定所述第一HARQ-ACK比特组中的HARQ-ACK比特的数量。
作为一个实施例,所述第二处理模块203还用于根据基于1毫秒TTI的LTE方案为所述第一HARQ-ACK信息配置空口资源。其中,所述第二处理模块203在所述L1个时间间隔中未发送所述低延迟信令,所述第一HARQ-ACK信息包括且仅包括所述第一HARQ-ACK比特组,所述第一无线信号对应的TTI是1毫秒。
作为一个实施例,所述第二处理模块203还用于接收L2个低延迟无线信号。所述L2个低延迟信令分别包括所述L2个低延迟无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中至少之一。
作为一个子实施例,所述相应的低延迟HARQ-ACK比特组所对应的下行数据中的至少之一的传输时间间隔是一个sTTI。
作为一个子实施例,所述第一HARQ-ACK比特组所对应的下行数据的传输时间间隔是一个TTI,所述第一HARQ-ACK比特组由I1个HARQ-ACK比特组成。
作为上述两个子实施例的一个附属实施例,所述I1个HARQ-ACK比特中有I2个HARQ-ACK比特同时属于所述相应的低延迟HARQ-ACK比特组。
作为该附属实施例的一个范例,所述I2个HARQ-ACK比特中包括和所述第一无线信号相关联的HARQ-ACK比特。
作为该附属实施例的一个范例,所述相应的低延迟HARQ-ACK比特组还包含所述I2个HARQ-ACK比特之外的HARQ-ACK比特。
作为该附属实施例的一个范例,所述相应的低延迟HARQ-ACK比特组包含且仅包含所述I2个HARQ-ACK比特。
作为该附属实施例的一个范例,所述第一HARQ-ACK信息至少包含和所述第一无线信号相关联的HARQ-ACK比特。
作为该附属实施例的一个范例,所述第一HARQ-ACK信息被用于传输所述相应的低延迟HARQ-ACK比特组。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可以通过程序来指令相关硬件完成,所述程序可以存储于计算机可读存储介质中,如只读存储器,硬盘或者光盘等。可选的,上述实施例的全部或部分步骤也可以使用一个或者多个集成电路来实现。相应的,上述实施例中的各模块单元,可以采用硬件形式实现,也可以由软件功能模块的形式实现,本申请不限于任何特定形式的软件和硬件的结合。本申请中的UE和终端包括但不限于手机,平板电脑,笔记本,车载通信设备,无线传感器,上网卡,物联网终端,RFID终端,NB-IOT终端,MTC(MachineType Communication,机器类型通信)终端,eMTC(enhanced MTC,增强的MTC)终端,数据卡,上网卡,车载通信设备,低成本手机,低成本平板电脑等无线通信设备。本申请中的基站包括但不限于宏蜂窝基站,微蜂窝基站,家庭基站,中继基站等无线通信设备。
以上所述,仅为本申请的较佳实施例而已,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内,所做的任何修改,等同替换,改进等,均应包含在本申请的保护范围之内。

Claims (11)

1.一种支持HARQ的用户设备,其中,包括如下模块:
-第一接收模块:用于接收第一无线信号;
-第二接收模块:用于在L1个时间间隔中分别检测低延迟信令;
-第一处理模块:用于发送第一HARQ-ACK信息;
其中,所述低延迟信令是物理层信令;所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者;所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源;所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特;所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码;所述L1是正整数;所述第一无线信号对应的传输信道是下行共享信道。
2.根据权利要求1所述的用户设备,其特征在于,所述第一处理模块还用于根据基于1毫秒TTI的LTE方案确定所述第一HARQ-ACK信息所占用的空口资源;其中,所述第一处理模块在所述L1个时间间隔中未检测到所述低延迟信令,所述第一HARQ-ACK信息包括且仅包括所述第一HARQ-ACK比特组,所述第一无线信号对应的TTI是1毫秒。
3.根据权利要求1或2所述的用户设备,其特征在于,所述第一接收模块还用于接收第一信令;所述第一信令包括DAI域;所述第一信令中的所述DAI域被用于确定所述第一HARQ-ACK比特组中的HARQ-ACK比特的数量。
4.根据权利要求1至3中任一权利要求所述的用户设备,其特征在于,L2个所述低延迟信令分别在L2个时间间隔中被正确接收,所述L2个时间间隔是所述L1个时间间隔的子集,所述L2是正整数;所述L2个所述低延迟信令中至少存在第一低延迟信令,所述第一低延迟信令对应的第一低延迟HARQ-ACK比特组中包括第一HARQ-ACK比特组中的HARQ-ACK比特。
5.根据权利要求4所述的用户设备,其特征在于,所述第一处理模块还用于发送L2个低延迟无线信号;所述L2个低延迟信令分别包括所述L2个低延迟无线信号的调度信息,所述调度信息包括{所占用的时频资源,MCS,RV,NDI,HARQ进程号}中至少之一。
6.根据权利要求4所述的用户设备,其特征在于,所述第一低延迟信令中的第一域被用于确定{第一目标HARQ-ACK比特组中的HARQ-ACK比特的数量,所述第一目标HARQ-ACK比特组中的HARQ-ACK比特在所述第一HARQ-ACK比特组中的位置}中的至少前者,所述第一目标HARQ-ACK比特组是由同时属于所述第一低延迟HARQ-ACK比特组和所述第一HARQ-ACK比特组的HARQ-ACK比特组成。
7.根据权利要求1至6中任一权利要求所述的用户设备,其特征在于,所述第一域包括{第一信息比特组,第二信息比特组}中的至少第二信息比特组;所述第一信息比特组包括2个信息比特,所述第二信息比特组包括1个信息比特;所述低延迟信令中的所述第一信息比特组的取值等于所述相应的低延迟HARQ-ACK比特组中的所述HARQ-ACK比特的数量除以4所得的余数,所述低延迟信令中的所述第二信息比特组指示所述所述相应的低延迟HARQ-ACK比特组中是否包括所述第一HARQ-ACK比特组。
8.根据权利要求1至7中任一权利要求所述的用户设备,其特征在于,所述第一HARQ-ACK比特组包括且仅包括基于1ms TTI的LTE方案确定的给定物理层信道上传输的HARQ-ACK比特。
9.一种支持HARQ的基站设备,其中,包括如下模块:
-第一发送模块:用于发送第一无线信号;
-第二发送模块:用于在L1个时间间隔中发送低延迟信令;
-第二处理模块:用于接收第一HARQ-ACK信息;
其中,所述低延迟信令是物理层信令;所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者;所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源;所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特;所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码;所述L1是正整数;所述第一无线信号对应的传输信道是下行共享信道。
10.一种支持HARQ的用户设备中的方法,其中,包括如下步骤:
-步骤A.接收第一无线信号;
-步骤B.在L1个时间间隔中分别检测低延迟信令;
-步骤C.发送第一HARQ-ACK信息;
其中,所述低延迟信令是物理层信令;所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者;所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源;所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特;所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码;所述L1是正整数;所述第一无线信号对应的传输信道是下行共享信道。
11.一种支持HARQ的基站中的方法,其中,包括如下步骤:
-步骤A.发送第一无线信号;
-步骤B.在L1个时间间隔中发送低延迟信令;
-步骤C.接收第一HARQ-ACK信息;
其中,所述低延迟信令是物理层信令;所述低延迟信令中包括第一域,所述低延迟信令中的所述第一域被用于确定{相应的低延迟HARQ-ACK比特组中是否包括第一HARQ-ACK比特组中的HARQ-ACK比特,所述相应的低延迟HARQ-ACK比特组中的HARQ-ACK比特的数量}中的至少前者;所述第一HARQ-ACK比特组包括和所述第一无线信号相关联的HARQ-ACK比特,所述低延迟信令被用于确定所述相应的低延迟HARQ-ACK比特组所占用的时域资源;所述第一HARQ-ACK信息包括所述第一HARQ-ACK比特组中的部分或者全部HARQ-ACK比特;所述第一HARQ-ACK信息和所述低延迟HARQ-ACK比特组分别包括正整数个HARQ-ACK比特,一个所述HARQ-ACK比特指示一个下行比特块是否被正确译码;所述L1是正整数;所述第一无线信号对应的传输信道是下行共享信道。
CN201910509320.2A 2016-08-12 2016-10-21 一种无线传输中的方法和装置 Active CN110445593B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2016106679797 2016-08-12
CN201610667979 2016-08-12
CN201610917646.5A CN107733620B (zh) 2016-08-12 2016-10-21 一种无线传输中的方法和装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201610917646.5A Division CN107733620B (zh) 2016-08-12 2016-10-21 一种无线传输中的方法和装置

Publications (2)

Publication Number Publication Date
CN110445593A true CN110445593A (zh) 2019-11-12
CN110445593B CN110445593B (zh) 2021-11-23

Family

ID=61201144

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610917646.5A Active CN107733620B (zh) 2016-08-12 2016-10-21 一种无线传输中的方法和装置
CN201910509320.2A Active CN110445593B (zh) 2016-08-12 2016-10-21 一种无线传输中的方法和装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610917646.5A Active CN107733620B (zh) 2016-08-12 2016-10-21 一种无线传输中的方法和装置

Country Status (2)

Country Link
US (1) US10728007B2 (zh)
CN (2) CN107733620B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573414A (zh) * 2020-04-28 2021-10-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022188835A1 (zh) * 2021-03-12 2022-09-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107154837B (zh) * 2016-03-03 2018-03-23 上海朗帛通信技术有限公司 一种降低无线通信中的延迟的方法和装置
WO2018028620A1 (zh) * 2016-08-12 2018-02-15 上海朗帛通信技术有限公司 一种无线传输中的方法和装置
CN107113839A (zh) * 2017-03-24 2017-08-29 北京小米移动软件有限公司 通信资源管理方法、装置及系统
CN110266452B (zh) * 2018-03-12 2020-06-30 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
US11323231B2 (en) * 2019-02-12 2022-05-03 Samsung Electronics Co., Ltd. Adapting a number of repetitions for a physical uplink control channel
CN113993106B (zh) 2019-05-14 2024-03-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN112713973B (zh) * 2019-10-24 2022-11-01 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113115592B (zh) * 2019-11-11 2022-11-22 北京小米移动软件有限公司 Harq-ack传输方法及装置、通信设备
US11711837B2 (en) * 2020-01-14 2023-07-25 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
WO2021093212A1 (en) * 2020-02-19 2021-05-20 Zte Corporation A system and method for determining downlink control information
CN114070472B (zh) * 2020-08-05 2023-02-21 维沃移动通信有限公司 数据传输方法、装置及通信设备
CN116095834A (zh) * 2021-10-29 2023-05-09 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132262A (zh) * 2006-08-21 2008-02-27 大唐移动通信设备有限公司 一种tdd系统同步harq的实现及数据传输的方法
US20120082263A1 (en) * 2010-10-01 2012-04-05 Research In Motion Limited Orthogonal Resource Selection Transmit Diversity
CN104272635A (zh) * 2012-03-05 2015-01-07 三星电子株式会社 在多个控制信道类型的情况下响应于控制信道类型的检测的混合自动重传请求-应答信号的传输
CN104601305A (zh) * 2013-11-01 2015-05-06 重庆重邮信科通信技术有限公司 一种上行混合自动重传控制的方法和终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114364035A (zh) * 2015-11-06 2022-04-15 摩托罗拉移动有限责任公司 用于低延时传输的方法及装置
WO2017222534A1 (en) * 2016-06-23 2017-12-28 Intel IP Corporation Systems, methods and devices for link adaptation and reducing hybrid automatic repeat request overhead

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132262A (zh) * 2006-08-21 2008-02-27 大唐移动通信设备有限公司 一种tdd系统同步harq的实现及数据传输的方法
US20120082263A1 (en) * 2010-10-01 2012-04-05 Research In Motion Limited Orthogonal Resource Selection Transmit Diversity
CN104272635A (zh) * 2012-03-05 2015-01-07 三星电子株式会社 在多个控制信道类型的情况下响应于控制信道类型的检测的混合自动重传请求-应答信号的传输
CN104601305A (zh) * 2013-11-01 2015-05-06 重庆重邮信科通信技术有限公司 一种上行混合自动重传控制的方法和终端

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: ""discussion on the simultaneous transmission of normal tti and stti"", 《3GPP TSG-RAN WG1 MEETING #85,R1-164235》 *
NOKIA NETWORKS: ""consideration on HARQ for supporting latency reduction"", 《3GPP TSG RAN WG1 MEETING #84,R1-160799》 *
QUALCOM: ""summary of email discussion on frame structure"", 《3GPP TSG-RAN WG1#85 R1-164696》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113573414A (zh) * 2020-04-28 2021-10-29 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN113573414B (zh) * 2020-04-28 2023-07-25 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2022188835A1 (zh) * 2021-03-12 2022-09-15 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
CN115085878A (zh) * 2021-03-12 2022-09-20 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置

Also Published As

Publication number Publication date
CN110445593B (zh) 2021-11-23
CN107733620B (zh) 2019-07-23
US10728007B2 (en) 2020-07-28
US20190173651A1 (en) 2019-06-06
CN107733620A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN107733620B (zh) 一种无线传输中的方法和装置
US11711171B2 (en) System and method for reliable transmission over network resources
CN111082915B (zh) 一种无线通信中的方法和装置
TWI716745B (zh) 統一訊框結構
CN101998649B (zh) 处理资源指派的方法及其相关通讯装置
KR102315253B1 (ko) 주파수-분할 듀플렉스 송신 시간 간격 동작을 위한 시스템들 및 방법들
EP3459195B1 (en) Systems and methods for frequency-division duplex transmission time interval operation
JP6604524B2 (ja) データ伝送のための方法及び端末
CN109845169B (zh) 发送和接收多个定时传输方案的方法和装置
CN113541869B (zh) 通信系统中的终端、基站及其执行的方法
CN110169000A (zh) 用于上行链路超高可靠低延迟通信的信令、过程、用户设备和基站
TW202123748A (zh) 用於下行鏈路資料重複的時域資源配置
CN107682099A (zh) 无线通信中确认时序的选择
CN107690188A (zh) 一种无线传输中的方法和装置
EP4080980B1 (en) Scheduling request indication
WO2018058485A1 (zh) 下行控制信息监听、发送、接收方法及装置
JP2016531490A (ja) アップリンク制御情報の送信方法、ユーザ装置及び基地局
CN108809541B (zh) 上行数据的传输方法和装置
CN107959557A (zh) 一种支持多载波通信的 ue、基站中的方法和设备
KR20230044431A (ko) 무선 통신 시스템에서 상향링크 전송 방법 및 장치
WO2021197270A1 (zh) 信息传输方法、装置及系统
WO2017167139A1 (zh) 一种上行控制信号传输方法及装置、用户终端、存储介质
KR20220051839A (ko) 다중 구성 그랜트 리소스에 의한 harq 프로세스 공유
CN107154837B (zh) 一种降低无线通信中的延迟的方法和装置
CN104518859A (zh) 一种频谱聚合的数据发送方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200907

Address after: No.79 Fuhua Road, Luhua Town, Chongming District, Shanghai 202151 (Shanghai LvHua Economic Development Zone)

Applicant after: Shanghai Qiyu Communication Technology Service Center

Address before: 200240. A2117, building B, building 555, Dongchuan Road, Minhang District, Shanghai

Applicant before: Shanghai Langbo Communication Technology Co.,Ltd.

GR01 Patent grant
GR01 Patent grant