CN110444615A - 一种AlGaN基垂直结MSM紫外探测器及其制备方法 - Google Patents

一种AlGaN基垂直结MSM紫外探测器及其制备方法 Download PDF

Info

Publication number
CN110444615A
CN110444615A CN201910739894.9A CN201910739894A CN110444615A CN 110444615 A CN110444615 A CN 110444615A CN 201910739894 A CN201910739894 A CN 201910739894A CN 110444615 A CN110444615 A CN 110444615A
Authority
CN
China
Prior art keywords
substrate
electrode
absorbing layer
light absorbing
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910739894.9A
Other languages
English (en)
Other versions
CN110444615B (zh
Inventor
汪炼成
龙林云
胡泽林
李滔
朱文辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910739894.9A priority Critical patent/CN110444615B/zh
Publication of CN110444615A publication Critical patent/CN110444615A/zh
Application granted granted Critical
Publication of CN110444615B publication Critical patent/CN110444615B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种AlGaN基垂直结MSM紫外探测器及其制备方法,包括衬底,衬底一侧由内至外依次设有AlXGa1‑XN紫外光吸收层、电极,所述电极为正常叉指电极的一半,沉积在AlXGa1‑XN紫外光吸收层的表面,衬底另一侧设有区域电极,所述区域电极和叉指电极的材质相同,区域电极为层状,且区域电极、衬底、AlXGa1‑XN紫外光吸收层的横截面积相等。本发明通过将单个叉指电极沉积在紫外光吸收层上面,减少了金属电极对部分入射光的阻挡和吸收,在衬底下面制备区域电极,使得产生的光生载留子在垂直方向迁移收集,而不是在侧方向迁移收集,减少了光生载流子迁移时间,从而提高探测器的响应度,降低响应时间,增大探测器响应度,提高了使用性能。

Description

一种AlGaN基垂直结MSM紫外探测器及其制备方法
技术领域
本发明属于半导体技术领域,具体涉及一种AlGaN基垂直结MSM紫外探测器及其制备方法。
背景技术
紫外光在电磁波谱中的位置被定义为波长在100~400nm的区域,而太阳光中大约有10%的紫外光,在大气层中,波长范围小于280nm的紫外光会被吸收,因此,紫外光波长在240~280nm的区域通常被称为“日盲”区域。
由于紫外线的日盲特性和大气层中良好的传播特性,其具有低窃听率,高抗干扰性和全天候工作等优点,所以紫外探测就显得格外重要。利用紫外探测器可以进行紫外预警,利用日盲区探测导弹的火焰与羽烟,在背景洁净的日盲区,导弹羽烟的紫外辐射很容易被检测出来。同时,紫外探测器在通信、预警、制导、臭氧监测、大气污染监控、空间通信、血液分析、水银灯消毒监控等领域也有广泛应用。
目前,较为常见的紫外探测器有金属-半导体-金属(MSM)结构、光电导型结构、肖特基结构、PIN型结构。光电导型光电流与暗电流都相对较大,但响应时间慢;肖特基型探测器暗电流小,灵敏度高,但需要外加电场才能使用;PIN型探测器,响应度和灵敏度高,但器件制造工艺复杂。平面MSM型探测器制作简单,但一般都为正入射,金属电极会阻挡和吸收一部分光。另外,虽然平面结构MSM探测器的响应速度较快,光生载流子在电场的作用下横向迁移,迁移距离为10μm以上。如果能进一步降低光生载流子的迁移距离,将进一步提高其响应速度。但是基于传统平面MSM结构探测器,如欲减小其叉指电极距离,需要用到复杂、昂贵且耗时的电子束曝光等工具。与传统平面MSM探测器载流子的横向迁移不同,本项目提供一种具有垂直结的AlGaN基垂直结MSM紫外探测器,光生载流子将在数百nm距离的纵向迁移而被收集,具有极高的响应速度。
发明内容
本发明的目的在于提供一种高响应速度的AlGaN基垂直结MSM紫外探测器及其制备方法。
本发明提供以下技术方案:一种AlGaN基垂直结MSM紫外探测器,包括衬底1,衬底1一侧由内至外依次设有AlXGa1-XN紫外光吸收层2、电极301,所述电极301为正常叉指电极的一半,电极301沉积在AlXGa1-XN紫外光吸收层2的表面,所述衬底1的另一侧设有区域电极302,区域电极302和电极301的材质相同,区域电极302为层状,且区域电极302、衬底1、AlXGa1-XN紫外光吸收层2的横截面积相等。
优选的,所述衬底1采用Pt、Cu、Al、Ag、Ti、Au等中的一种或多种材料复合而成。
优选的,所述AlXGa1-XN紫外光吸收层2的厚度为0.1~3μm。
优选的,所述电极301采用Ni、Au、Pt、Cu、Al、Ag、Cr、In中的一种或多种材料复合而成,实现光生载流子的收集。
优选的,所述区域电极302采用Ni、Au、Pt、Cu、Al、Ag、Cr、In中的一种或多种材料复合而成,区域电极302与衬底1直接接触。
本发明还提供所述AlGaN基垂直结MSM紫外探测器的制备方法,包括以下步骤:
(1)在非金属衬底上外延生长AlXGa1-XN紫外光吸收层2;
(2)在AlXGa1-XN紫外光吸收层2上制作衬底1;
(3)将非金属衬底同结构分离;
(4)在AlXGa1-XN紫外光吸收层2上进行光刻,制备电极301;
(5)在衬底1表面制作区域电极302,区域电极302与衬底1直接接触,控制区域电极302、衬底1、AlXGa1-XN紫外光吸收层2的横截面积相等,得到所述AlGaN基垂直结MSM紫外探测器。
进一步,步骤(1)中,所述非金属衬底采用蓝宝石、二氧化硅、氮化铝中的任意一种。
本发明制备方法中,衬底1采用金属材质,在衬底1上是无法外延生长出AlXGa1-XN紫外光吸收层,因此先在非金属衬底上外延生长紫外光吸收层,并在紫外光吸收层上制作衬底1,然后将非金属衬底同结构分离。
进一步,步骤(1)中,所述外延生长采用金属有机气相外延(MOCVD)、分子束外延(MBE)、物理气相外延(PVD)和离子束外延(IBE)中的任意一种。
进一步,步骤(3)中,采用干法刻蚀或者湿法蚀刻方法,将非金属衬底同结构分离。
进一步,步骤(5)中,利用磁控溅射在衬底1下表面制作区域电极302。
本发明所述的氮化物垂直结构MSM紫外探测器,将电极301沉积在AlXGa1-XN紫外光吸收层2的上表面,区域电极302沉积在衬底1的下表面,当紫外光正入射时,光入射面的叉指金属电极透过率较高,与普通的紫外探测器相比,被叉指电极挡住的光减少一半,光透过率可以增大一倍,产生的光生载留子在垂直方向迁移收集,而不是在侧方向迁移收集,衬底1、紫外光吸收层2、电极301和区域电极302形成紫外探测器。
传统的MSM型探测器虽然制作简单,暗电流小,当光正入射到叉指电极上时,金属电极会阻挡和吸收一部分光。本发明提供一种氮化物垂直结构MSM紫外探测器,在光入射面上只有一个叉指电极,可以减少正入射金属电极对入射光的遮挡和吸收,使得产生的光生载留子在垂直方向迁移收集,而不是在侧方向迁移收集,可以增大探测器响应度和响应速度。
与现有技术相比,本发明的有益技术效果为:
本发明所述的一种AlGaN基垂直结MSM紫外探测器及其制备方法,通过将单个电极沉积在紫外光吸收层上面,减少了金属电极对部分入射光的阻挡和吸收,在衬底下面制备区域电极,使得产生的光生载留子在垂直方向迁移收集,而不是在侧方向迁移收集,减少了光生载流子迁移时间,从而提高探测器的响应度,降低响应时间,增大探测器响应度。
本发明通过叉指电极的垂直结的设计,减少电极对紫外光的吸收,从而提高紫外探测器的响应度。
本发明所述的一种AlGaN基垂直结MSM紫外探测器及其制备方法,器件制备工艺简单,封装密度高,成本低,易于实施,可以大规模推广。
附图说明
图1为本发明氮化物垂直结构MSM紫外探测器的结构示意图。
图2为图1的俯视图(A向视图)和仰视图(B向视图)。
图3为本发明的AlGaN基垂直结MSM紫外探测器的制备流程图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
下面结合附图和实施例对本发明方案作进一步的阐述。
本发明提供一种AlGaN基垂直结MSM紫外探测器,包括衬底1,衬底1一侧由内至外依次设有AlXGa1-XN紫外光吸收层2、电极301,所述电极301为正常叉指电极的一半,沉积在AlXGa1-XN紫外光吸收层的表面,衬底另一侧设有区域电极302,所述区域电极302和电极301的材质相同,区域电极302为层状,且区域电极302、衬底1、AlXGa1-XN紫外光吸收层2的横截面积相等。
本发明还提供所述一种AlGaN基垂直结MSM紫外探测器及其制备方法,包括以下步骤:
(1)在非金属衬底上外延生长AlXGa1-XN紫外光吸收层;
(2)在AlXGa1-XN紫外光吸收层上制作衬底1;
(3)将非金属衬底同结构分离;
(4)在AlXGa1-XN紫外光吸收层上进行光刻,制备电极301;
(5)在衬底1下表面制作区域电极302,区域电极302与衬底1直接接触,控制区域电极302、衬底1、AlXGa1-XN紫外光吸收层2的横截面积相等,得到所述AlGaN基垂直结MSM紫外探测器。
实施例1
本发明提供一种氮化物垂直结构MSM紫外探测器的制备方法,如图3所示,包括以下步骤:
(1)非金属衬底选择直径为2英寸的平面(0001)面蓝宝石,厚度约为400μm,采用MOCVD方法在蓝宝石上生长Al0.32Ga0.68N紫外吸收层,厚度约为400nm,其中Al组分为0.32,Al组分为0.32的AlGaN的禁带宽度对应要探测的紫外光的波长,TMAl和TMGa分别作为Al源和Ga源,硅烷SiH4作为Si源,实现了对Al0.32Ga0.68N紫外光吸收层的掺杂,Al0.32Ga0.68N的禁带宽度对应为要探测的紫外光的波长,约为280nm;
(2)在Al0.32Ga0.68N紫外光吸收层上电镀制作衬底1,衬底1采用Cu制成,厚度约为120μm;
(3)用248nm KrF激光剥离方法,将非金属衬底同结构分离;
(4)在Al0.32Ga0.68N紫外光吸收层上进行光刻,制备电极301,电极301为正常叉指电极的一半,电极宽度和间距分为10μm和10μm,电极301采用Ni/Au材料制成;
(5)利用磁控溅射在衬底1下表面制作区域电极302,区域电极302与衬底1直接接触,区域电极302和电极301的材质相同,区域电极302为层状,控制区域电极302、衬底1、AlXGa1-XN紫外光吸收层2的横截面积相等,如图1、2所示,得到所述AlGaN基垂直结MSM紫外探测器。
实施例2
本发明提供一种AlGaN基垂直结MSM紫外探测器的制备方法,包括以下步骤:
(1)非金属衬底选择直径为2英寸的硅,厚度约为400μm,采用MOCVD方法在硅上生长Al0.32Ga0.68N紫外吸收层,厚度约为400nm,其中Al组分为0.32,Al组分为0.32的AlGaN的禁带宽度对应要探测的紫外光的波长,TMAl和TMGa分别作为Al源和Ga源,硅烷SiH4作为Si源,实现了对Al0.32Ga0.68N紫外光吸收层的掺杂,Al0.32Ga0.68N的禁带宽度对应为要探测的紫外光的波长,约为280nm;
(2)在Al0.32Ga0.68N紫外光吸收层上电镀制作衬底1,衬底1采用Cu制成,其厚度约为120μm;
(3)用湿法蚀刻方法,将非金属衬底蚀刻去掉,同结构分离;
(4)在Al0.32Ga0.68N紫外光吸收层上进行光刻,制备电极301,电极301为正常叉指电极的一半,电极301采用Ni/Au材料制成;
(5)利用磁控溅射在衬底1下表面制作区域电极302,区域电极302与衬底1直接接触,区域电极302和电极301的材质相同,区域电极302为层状,控制区域电极302、衬底1、AlXGa1-XN紫外光吸收层2的横截面积相等,如图1、2所示,得到所述AlGaN基垂直结MSM紫外探测器。
以上所述仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施例。对于本技术领域的技术人员来说,在不脱离本发明技术构思前提下所得到的改进和变换也应视为本发明的保护范围。

Claims (10)

1.一种AlGaN基垂直结MSM紫外探测器,包括衬底(1),其特征在于,衬底(1)一侧由内至外依次设有AlXGa1-XN紫外光吸收层(2)、电极(301),所述电极(301)为正常叉指电极的一半,电极(301)沉积在AlXGa1-XN紫外光吸收层(2)的表面,所述衬底(1)的另一侧设有区域电极(302),区域电极(302)和电极(301)的材质相同,区域电极(302)为层状,且区域电极(302)、衬底(1)、AlXGa1-XN紫外光吸收层(2)的横截面积相等。
2.根据权利要求1所述的AlGaN基垂直结MSM紫外探测器,其特征在于,所述衬底(1)采用Pt、Cu、Al、Ag、Ti、Au等中的一种或多种材料复合而成。
3.根据权利要求1所述的AlGaN基垂直结MSM紫外探测器,其特征在于,所述AlXGa1-XN紫外光吸收层(2)的厚度为0.1~3μm。
4.根据权利要求1所述的AlGaN基垂直结MSM紫外探测器,其特征在于,所述电极(301)采用Ni、Au、Pt、Cu、Al、Ag、Cr、In中的一种或多种材料复合而成。
5.根据权利要求1所述的AlGaN基垂直结MSM紫外探测器,其特征在于,所述区域电极(302)采用Ni、Au、Pt、Cu、Al、Ag、Cr、In中的一种或多种材料复合而成,区域电极(302)与衬底(1)直接接触。
6.根据权利要求1~5中任一项所述AlGaN基垂直结MSM紫外探测器的制备方法,其特征在于,包括以下步骤:
(1)在非金属衬底上外延生长AlXGa1-XN紫外光吸收层(2);
(2)在AlXGa1-XN紫外光吸收层(2)上制作衬底(1);
(3)将非金属衬底同结构分离;
(4)在AlXGa1-XN紫外光吸收层(2)上进行光刻,制备电极(301);
(5)在衬底(1)表面制作区域电极(302),区域电极(302)与衬底(1)直接接触,控制区域电极(302)、衬底(1)、AlXGa1-XN紫外光吸收层(2)的横截面积相等,得到所述AlGaN基垂直结MSM紫外探测器。
7.根据权利要求6所述AlGaN基垂直结MSM紫外探测器,其特征在于,步骤(1)中,所述非金属衬底采用蓝宝石、二氧化硅、硅、碳化硅、氮化铝中的任意一种。
8.根据权利要求6所述AlGaN基垂直结MSM紫外探测器,其特征在于,步骤(1)中,所述外延生长采用金属有机气相外延(MOCVD)、分子束外延(MBE)、物理气相外延(PVD)和离子束外延(IBE)中的任意一种。
9.根据权利要求6所述AlGaN基垂直结MSM紫外探测器,其特征在于,步骤(3)中,采用干法刻蚀方法或者湿法蚀刻方法,将非金属衬底同结构分离。
10.根据权利要求6所述AlGaN基垂直结MSM紫外探测器的制备方法,其特征在于,步骤(5)中,利用磁控溅射、电子束蒸发、热蒸发等方式在衬底(1)表面制作区域电极(302)。
CN201910739894.9A 2019-08-12 2019-08-12 一种AlGaN基垂直结MSM紫外探测器及其制备方法 Active CN110444615B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910739894.9A CN110444615B (zh) 2019-08-12 2019-08-12 一种AlGaN基垂直结MSM紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910739894.9A CN110444615B (zh) 2019-08-12 2019-08-12 一种AlGaN基垂直结MSM紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110444615A true CN110444615A (zh) 2019-11-12
CN110444615B CN110444615B (zh) 2021-04-23

Family

ID=68434594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910739894.9A Active CN110444615B (zh) 2019-08-12 2019-08-12 一种AlGaN基垂直结MSM紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110444615B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652435A (en) * 1995-09-01 1997-07-29 The United States Of America As Represented By The Secretary Of The Air Force Vertical structure schottky diode optical detector
CN101976697A (zh) * 2010-09-17 2011-02-16 中国科学院上海技术物理研究所 具有AlGaN吸收层的热释电紫外探测器
CN102361046A (zh) * 2011-09-30 2012-02-22 天津大学 AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN102709395A (zh) * 2012-06-12 2012-10-03 上海大学 一种CdZnTe薄膜紫外光探测器的制备方法
CN108493235A (zh) * 2018-03-23 2018-09-04 电子科技大学 一种基于Mo/ZnON/Mo的MSM结构及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5652435A (en) * 1995-09-01 1997-07-29 The United States Of America As Represented By The Secretary Of The Air Force Vertical structure schottky diode optical detector
CN101976697A (zh) * 2010-09-17 2011-02-16 中国科学院上海技术物理研究所 具有AlGaN吸收层的热释电紫外探测器
CN102361046A (zh) * 2011-09-30 2012-02-22 天津大学 AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN102709395A (zh) * 2012-06-12 2012-10-03 上海大学 一种CdZnTe薄膜紫外光探测器的制备方法
CN108493235A (zh) * 2018-03-23 2018-09-04 电子科技大学 一种基于Mo/ZnON/Mo的MSM结构及其制备方法

Also Published As

Publication number Publication date
CN110444615B (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN107452823B (zh) 一种微米线阵列光探测器及其制备方法
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN201032635Y (zh) 一种PIN结构4H-SiC紫外光电探测器
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN109698250B (zh) 栅极调控AlGaN基金属-半导体-金属紫外探测器及制备方法
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
CN105655437A (zh) 一种紫外雪崩光电探测器
CN110047968A (zh) 一种AlGaN基3D倒装焊MSM阵列紫外探测器的制备方法
CN112614910B (zh) 一种基于pin型氮化镓微米线的紫外光电探测器及其制备方法
CN105590971A (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN110676272A (zh) 一种半导体紫外光电探测器
CN109659398B (zh) 一种AlGaN基背入式MSM紫外焦平面阵列成像系统的制备方法
CN109545883A (zh) 一种低暗电流台面型雪崩单光子探测器及制备方法
WO2012124856A1 (ko) 질화물 반도체 기반의 태양전지 및 그 제조방법
CN111863981A (zh) 一种氧化镓日盲光电探测器及其制备方法
CN110444615A (zh) 一种AlGaN基垂直结MSM紫外探测器及其制备方法
CN116799092A (zh) 一种基于氧化镓基的日盲紫外探测器及其制备方法
CN209447826U (zh) 一种低暗电流台面型雪崩单光子探测器
CN113964238B (zh) 一种雪崩光电探测器的制备方法
CN111211196B (zh) 一种高灵敏度高线性度探测器
CN115332385A (zh) 基于宏观组装石墨烯/外延硅肖特基结的红外雪崩光电探测器及其制备方法
CN111863979B (zh) 一种氧化镓光电探测器及其制备方法
CN205092255U (zh) 一种镓氮雪崩光电二极管组件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant