CN110436931A - 一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法 - Google Patents

一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法 Download PDF

Info

Publication number
CN110436931A
CN110436931A CN201910672287.5A CN201910672287A CN110436931A CN 110436931 A CN110436931 A CN 110436931A CN 201910672287 A CN201910672287 A CN 201910672287A CN 110436931 A CN110436931 A CN 110436931A
Authority
CN
China
Prior art keywords
copper
room temperature
perovskite structure
substrate
soft magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910672287.5A
Other languages
English (en)
Other versions
CN110436931B (zh
Inventor
惠贞贞
朱雪斌
张晨嵩
唐婧
左绪忠
叶龙强
汪徐春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University of Science and Technology
Original Assignee
Anhui University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University of Science and Technology filed Critical Anhui University of Science and Technology
Priority to CN201910672287.5A priority Critical patent/CN110436931B/zh
Publication of CN110436931A publication Critical patent/CN110436931A/zh
Application granted granted Critical
Publication of CN110436931B publication Critical patent/CN110436931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/36Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites in the form of particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • C04B2235/465Ammonia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Thin Magnetic Films (AREA)

Abstract

本发明公开了一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法,涉及薄膜材料技术领域,由铜、铁和氮元素组成,所述薄膜的化学式为CuNFe3,Cu为铜,Fe为铁,N为氮,薄膜厚度≥200nm,薄膜由致密排列的颗粒构成,颗粒粒径为50‑100nm;本发明的薄膜材料制备方法科学、有效,既制备出了反钙钛矿结构的CuNFe3目标产物,又使目标产物具有较大的饱和磁化强度和较小的电阻率温度系数,使其在磁性和微电子等领域具有广泛的应用前景和巨大的潜力。

Description

一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法
技术领域:
本发明涉及薄膜材料技术领域,具体涉及一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法。
背景技术:
金属氮化物通常具有超硬特性、高熔点、化学惰性、高热导性等优越的性能,在诸多领域有着很广泛的应用如切割刀具、催化剂、锂离子电池、防腐涂层等。在三元金属氮化物中,研究最广泛的一种结构是反钙钛矿结构的化合物,其化学通式为AXM3(A=Cu、Ag、Ga、Sn、Al、Zn、Ge、In等元素;X=C、N、B等元素;M=Sc、Ti、V、Cr、Mn、Fe、Co、Ni等元素)。非金属元素X位于体心位置,与面心位置的六个M原子构成XM6正八面体。
在反钙钛矿结构的金属氮化物中,研究人员对Mn基、Ni基和Co基氮化物进行了广泛研究,但是对于三元Fe基金属氮化物,其磁性质、电输运等具体物性却鲜有报道。
从20世纪20年代起,对Fe基金属氮化物材料的研究和应用就已经开始,起初并未引起人们太大的关注,只是利用X射线技术研究氮化铁的结构,还有人在实验上研究氮化铁的磁性。从20世纪50年代开始,因为具有优异的铁磁、机械性能和良好的抗氧化、耐腐蚀、耐磨损性能,Fe基金属氮化物材料被认为可以应用到磁记录及磁头材料上而受到人们的广泛关注。由于金属-氮的相图比较复杂,从而很难获得纯相的三元Fe基金属氮化物。
为了更好地研究金属氮化物的生长机理及物性,制备单晶及高质量薄膜成为研究的有效手段。为此,人们做出了多种尝试和努力,如利用磁控溅射、脉冲激光沉积等物理法制备出Fe基金属氮化物薄膜,但由于这些物理法制备成本较高,且由于制备技术本身的限制使得其无法获得大面积薄膜,因而要想更好地研究薄膜的物性及应用前景,需要探索其他低成本且实用化的薄膜制备技术。目前,各种制备方法均无法获得具有反钙钛矿结构的铜氮铁金属氮化物室温软磁薄膜材料。
发明内容:
本发明所要解决的技术问题在于提供一种铜氮铁反钙钛矿结构室温软磁薄膜材料,所制材料具有较大的饱和磁化强度和较小的电阻率温度系数,使其在磁性和微电子等领域具有广泛的应用前景和巨大的潜力。
本发明所要解决的技术问题采用以下的技术方案来实现:
一种铜氮铁反钙钛矿结构室温软磁薄膜材料,由铜、铁和氮元素组成,所述薄膜的化学式为CuNFe3,Cu为铜,Fe为铁,N为氮,薄膜厚度≥200nm,薄膜由致密排列的颗粒构成,颗粒粒径为50-100nm。
上述薄膜材料的制备方法,具体步骤如下:
(1)按照铜和铁的摩尔比1:3的比例称量硝酸铜和硝酸铁,同时将硝酸铜和硝酸铁加入到70-80℃的乙二醇甲醚溶液中搅拌至完全溶解,再于室温下搅拌6-7h,得到前驱体溶液;
(2)将前驱体溶液涂敷至基底上,于150-200℃下加热,得到覆有凝胶膜的基底,再将覆有凝胶膜的基底置于350-400℃下热解,得到覆有薄膜的基底;
(3)多次重复步骤(2),将得到的覆有多层薄膜的基底置于850℃的空气氛中退火,再置于700-900℃的氨气氛中退火,分离多层薄膜与基底,制得铜氮铁反钙钛矿结构室温软磁薄膜材料。
所述步骤(2)中的涂敷选自旋涂、浸渍、喷涂中的一种。
所述旋涂时的转速为4000-6000r/min、时间为10-30s。
所述步骤(2)中的基底为陶瓷基底或半导体基底。
所述陶瓷基底选自二氧化硅片、铝酸镧片、钛酸锶片中的一种。
所述半导体基底为硅片。
本发明对制得的目标产物分别使用扫描电镜和X射线衍射仪进行表征,由其结果可知目标产物为薄膜状,其中,薄膜的厚度≥200nm,其由致密排列的颗粒状物构成,颗粒的粒径为50~100nm。薄膜的成分由铜、铁和氮元素组成,薄膜中各元素的含量和组分与化学式为CuNFe3的物质相同。
本发明对制得的目标产物分别使用磁性质测量系统和电输运测量系统进行表征,由其结果可知目标产物在室温下的饱和磁化强度达到了950emu/cm3,矫顽场为3Oe,极利于目标产物应用于室温软磁材料;其中,退火温度为700℃时,电阻率温度系数(TCR)为14ppm/K,优于化学式为CuNMn3的电阻率温度系数(TCR)25ppm/K。
本发明的有益效果是:本发明的薄膜材料制备方法科学、有效,既制备出了反钙钛矿结构的CuNFe3目标产物,又使目标产物具有较大的饱和磁化强度和较小的电阻率温度系数,使其在磁性和微电子等领域具有广泛的应用前景和巨大的潜力;并且目标产物中的化学计量比可精确地控制,工艺简单、易掌握,所需的设备少、制备的成本低、利于大规模的工业化生产的特点。
附图说明:
图1为目标产物的扫描电镜SEM图;
图2为目标产物的X射线衍射XRD图;
图3为目标产物的磁学测量系统MPMS图;使用美国Quantum Design公司的磁学测量系统;
图4为目标产物的物性测量系统PPMS图;使用美国Quantum Design公司的物性测量系统。
具体实施方式:
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体实施例和图示,进一步阐述本发明。
从市场购得或用常规方法制得:硝酸铜;硝酸铁;乙二醇甲醚;作为基底的陶瓷基底和半导体基底,其中,陶瓷基底为二氧化硅片、铝酸镧片和钛酸锶片,半导体基底为硅片。
实施例1
(1)按照铜和铁的摩尔比为1:3的比例,称量硝酸铜和硝酸铁,同时将硝酸铜和硝酸铁加入到70℃的乙二醇甲醚溶液中搅拌至其完全溶解,再于室温下搅拌6h,得到浓度为0.2mol/L的前驱体溶液。
(2)先将前驱体溶液涂敷至基底上,其中,涂敷为旋涂,基底为半导体基底硅片,旋涂时的转速为4000r/min、时间为30s,于150℃下加热5min,得到其上覆有凝胶膜的基底,再将其上覆有凝胶膜的基底置于350℃下热解12min,得到其上覆有薄膜的基底。
(3)先重复步骤2的次数10次后,先将得到的其上覆有多层薄膜的基底置于850℃的空气氛中退火120min,再将得到的其上覆有多层薄膜的基底置于700℃的氨气氛中退火130min,再使用物理的方法分离多层薄膜与基底,制得如图1a和1d所示,以及如图2、图3和图4中的曲线所示的铜氮铁反钙钛矿结构室温软磁薄膜材料。
实施例2
(1)按照铜和铁的摩尔比为1:3的比例,称量硝酸铜和硝酸铁,同时将硝酸铜和硝酸铁加入到75℃的乙二醇甲醚溶液中搅拌至其完全溶解,再于室温下搅拌6.5h,得到浓度为0.3mol/L的前驱体溶液。
(2)先将前驱体溶液涂敷至基底上,其中,涂敷为旋涂,基底为半导体基底硅片,旋涂时的转速为5000r/min、时间为20s,基底为半导体基底硅片,于170℃下加热4min,得到其上覆有凝胶膜的基底,再将其上覆有凝胶膜的基底置于370℃下热解11min,得到其上覆有薄膜的基底。
(3)先重复步骤2的次数9次后,先将得到的其上覆有多层薄膜的基底置于850℃的空气氛中退火120min,再将得到的其上覆有多层薄膜的基底置于800℃的氨气氛中退火125min,再使用物理的方法分离多层薄膜与基底,制得如图1b所示,以及如图2、图3和图4中的曲线所示的铜氮铁反钙钛矿结构室温软磁薄膜材料。
实施例3
(1)按照铜和铁的摩尔比为1:3的比例,称量硝酸铜和硝酸铁,同时将硝酸铜和硝酸铁加入到80℃的乙二醇甲醚溶液中搅拌至其完全溶解,再于室温下搅拌7h,得到浓度为0.4mol/L的前驱体溶液。
(2)先将前驱体溶液涂敷至基底上,其中,涂敷为旋涂,基底为半导体基底硅片,旋涂时的转速为6000r/min、时间为10s,基底为半导体基底硅片,于200℃下加热3min,得到其上覆有凝胶膜的基底,再将其上覆有凝胶膜的基底置于400℃下热解10min,得到其上覆有薄膜的基底。
(3)先重复步骤2的次数8次后,先将得到的其上覆有多层薄膜的基底置于850℃的空气氛中退火120min,再将得到的其上覆有多层薄膜的基底置于900℃的氨气氛中退火120min,再使用物理的方法分离多层薄膜与基底,制得如图1c所示,以及如图2、图3和图4中的曲线所示的铜氮铁反钙钛矿结构室温软磁薄膜材料。
再分别选用涂敷为浸渍或喷涂,以及选用陶瓷基底作为基底,其中,陶瓷基底为二氧化硅片或铝酸镧片或钛酸锶片,重复上述实施例1~3,同样制得了如或近似于图1所示,以及如图2、图3和图4中的曲线所示的铜氮铁反钙钛矿结构室温软磁薄膜材料。
由图1可以看出,目标产物是由致密排列的颗粒状物构成的。
由图2可以看出,目标产物是由铜、铁和氮元素所组成,其峰值表明与化学式为CuNFe3的物质相对应一致。
由图3可以看出,目标产物在室温下的饱和磁化强度达到了950emu/cm3,矫顽场为3Oe,极利于目标产物应用于室温软磁材料;并且,由图3右下角的插图可知,当退火温度为900℃时,目标产物具有最小的矫顽场,最大的剩余磁化强度。
由图4可以看出,目标产物随着退火温度升高,室温下电阻率逐渐减小,通过计算,当退火温度为700℃时,电阻率温度系数(TCR)为14ppm/K,优于化学式为CuNMn3的电阻率温度系数25ppm/K。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种铜氮铁反钙钛矿结构室温软磁薄膜材料,其特征在于:由铜、铁和氮元素组成,所述薄膜的化学式为CuNFe3,Cu为铜,Fe为铁,N为氮,薄膜厚度≥200nm,薄膜由致密排列的颗粒构成,颗粒粒径为50-100nm。
2.权利要求1所述的铜氮铁反钙钛矿结构室温软磁薄膜材料的制备方法,其特征在于:具体步骤如下:
(1)按照铜和铁的摩尔比1:3的比例称量硝酸铜和硝酸铁,同时将硝酸铜和硝酸铁加入到70-80℃的乙二醇甲醚溶液中搅拌至完全溶解,再于室温下搅拌6-7h,得到前驱体溶液;
(2)将前驱体溶液涂敷至基底上,于150-200℃下加热,得到覆有凝胶膜的基底,再将覆有凝胶膜的基底置于350-400℃下热解,得到覆有薄膜的基底;
(3)多次重复步骤(2),将得到的覆有多层薄膜的基底置于850℃的空气氛中退火,再置于700-900℃的氨气氛中退火,分离多层薄膜与基底,制得铜氮铁反钙钛矿结构室温软磁薄膜材料。
3.根据权利要求2所述的铜氮铁反钙钛矿结构室温软磁薄膜材料的制备方法,其特征在于:所述步骤(2)中的涂敷选自旋涂、浸渍、喷涂中的一种。
4.根据权利要求3所述的铜氮铁反钙钛矿结构室温软磁薄膜材料的制备方法,其特征在于:所述旋涂时的转速为4000-6000r/min、时间为10-30s。
5.根据权利要求2所述的铜氮铁反钙钛矿结构室温软磁薄膜材料的制备方法,其特征在于:所述步骤(2)中的基底为陶瓷基底或半导体基底。
6.根据权利要求5所述的铜氮铁反钙钛矿结构室温软磁薄膜材料的制备方法,其特征在于:所述陶瓷基底选自二氧化硅片、铝酸镧片、钛酸锶片中的一种。
7.根据权利要求5所述的铜氮铁反钙钛矿结构室温软磁薄膜材料的制备方法,其特征在于:所述半导体基底为硅片。
CN201910672287.5A 2019-07-24 2019-07-24 一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法 Active CN110436931B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910672287.5A CN110436931B (zh) 2019-07-24 2019-07-24 一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910672287.5A CN110436931B (zh) 2019-07-24 2019-07-24 一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110436931A true CN110436931A (zh) 2019-11-12
CN110436931B CN110436931B (zh) 2022-03-04

Family

ID=68431377

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910672287.5A Active CN110436931B (zh) 2019-07-24 2019-07-24 一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110436931B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739152A (zh) * 2022-11-08 2023-03-07 中国科学院金属研究所 非贵金属乙炔选择性加氢催化剂Ni3CuN及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734863A (zh) * 2009-12-14 2010-06-16 北京航空航天大学 一种“反钙钛矿”结构的三元锰氮化物Mn3CuN薄膜
CN103664161A (zh) * 2012-09-18 2014-03-26 中国科学院合肥物质科学研究院 钴掺杂铁钛酸铋多铁性薄膜材料及其制备方法
EP3226307A1 (en) * 2014-11-27 2017-10-04 Riken Magnetic element, skyrmion memory, solid-state electronic device having skyrmion memory installed, data recording device, data processing device, and communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101734863A (zh) * 2009-12-14 2010-06-16 北京航空航天大学 一种“反钙钛矿”结构的三元锰氮化物Mn3CuN薄膜
CN103664161A (zh) * 2012-09-18 2014-03-26 中国科学院合肥物质科学研究院 钴掺杂铁钛酸铋多铁性薄膜材料及其制备方法
EP3226307A1 (en) * 2014-11-27 2017-10-04 Riken Magnetic element, skyrmion memory, solid-state electronic device having skyrmion memory installed, data recording device, data processing device, and communication device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEI WANG ET AL.: "Effect of Cu on microstructure, magnetic properties of antiperovskite nitrides CuxNFe4-x", 《JOURNAL OF MATERIALS SCIENCE: MATERIALS IN ELECTRONICS》 *
XIN-GE GUO ET AL.: "Anomalous low-temperature heat capacity in antiperovskite compounds", 《CHIN.PHYS.B》 *
ZHENZHEN HUI ET AL.: "Self-assembled c-axis oriented antiperovskite soft-magnetic CuNCO3 thin films by chemical solution deposition", 《JOURNAL OF MATERIALS CHEMISTRY C》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115739152A (zh) * 2022-11-08 2023-03-07 中国科学院金属研究所 非贵金属乙炔选择性加氢催化剂Ni3CuN及其制备方法和应用

Also Published As

Publication number Publication date
CN110436931B (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
CA1330193C (en) Method for making artificial layered high-t_ superconductors
Vlakhov et al. Influence of the substrate on growth and magnetoresistance of La 0.7 Ca 0.3 MnO z thin films deposited by magnetron sputtering
US20130196856A1 (en) Iron based superconducting structures and methods for making the same
Seong et al. Effects of Co-doping level on the microstructural and ferromagnetic properties of liquid-delivery metalorganic-chemical-vapor-deposited Ti 1− x Co x O 2 thin films
Fujii et al. Ilmenite–hematite solid solution films for novel electronic devices
CN109161847B (zh) 镓掺杂铁酸铋超四方相外延薄膜及其制备方法和应用
Metzger et al. Magnetism of α ″‐Fe16N2
CN104538140A (zh) 一种多铁性Bi1-xRExFe0.97-yMn0.03TMyO3/CoFe2O4复合膜及其制备方法
Alyeksyei et al. The regulation of magnetoelectric coupling and magnetic exchange bias effects in La doped Bi5Ti3FeO15 multiferroic films
CN110436931A (zh) 一种铜氮铁反钙钛矿结构室温软磁薄膜材料及其制备方法
Wang et al. Magnetic properties and structure evolution of amorphous Co–C nanocomposite films prepared by pulsed filtered vacuum arc deposition
Lu et al. An enhancement in structural and superconducting properties of Bi2212 epitaxial thin films grown by the Pechini sol–gel method
Kang et al. Growth of HgBa 2 Ca 2 Cu 3 O 8 thin films using stable Re 0.1 Ba 2 Ca 2 Cu 3 O x precursor by pulsed laser deposition
Akmal et al. Study of electronic, structural and magnetic properties of electrodeposited Co2MnSn Heusler alloy thin films
CN101211764A (zh) 一种铬掺杂二氧化钛室温铁磁薄膜的制备方法
Aylesworth et al. Growth and control of the microstructure and magnetic properties of sputtered Nd2Fe14B films and multilayers
US20120035056A1 (en) Nb-DOPED PEROVSKITE FLUX PINNING OF REBCO BASED SUPERCONDUCTORS BY MOCVD
CN104476832A (zh) 一种叠层状BiFe0.97-xMn0.03TMxO3/CoFe2O4多铁性复合膜及其制备方法
Gorbenko et al. Magnetic, electrical, and crystallographic properties of thin La 1− x Sr x MnO 3 films
CN112176394A (zh) 一种掺镧铁酸铋单晶薄膜的制备方法
CN109778318B (zh) 一种半金属性多铁超晶格材料
CN108831741B (zh) 增加铁磁金属/氧化物双层膜的界面磁各向异性能的方法
CN102839354A (zh) 一种组分可控的ZrOx薄膜的制备方法
Bosak et al. Compositional effects on the structure and magnetotransport properties of lacunar La 1-x MnO 3-δ films (x> 0) grown by MOCVD
Gritzner et al. Preparation and properties of La 0.67 Pb 0.33 (Mn 1-x Fe x) O 3 compounds

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant