CN110423362A - 水凝胶、制备方法和冻干支架 - Google Patents

水凝胶、制备方法和冻干支架 Download PDF

Info

Publication number
CN110423362A
CN110423362A CN201910565914.5A CN201910565914A CN110423362A CN 110423362 A CN110423362 A CN 110423362A CN 201910565914 A CN201910565914 A CN 201910565914A CN 110423362 A CN110423362 A CN 110423362A
Authority
CN
China
Prior art keywords
hydrogel
preparation
freeze
present
graft product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910565914.5A
Other languages
English (en)
Inventor
杨自言
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Yuezhi Biology Medicine Co ltd
Original Assignee
Jiangsu Yuezhi Biology Medicine Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Yuezhi Biology Medicine Co ltd filed Critical Jiangsu Yuezhi Biology Medicine Co ltd
Priority to CN201910565914.5A priority Critical patent/CN110423362A/zh
Publication of CN110423362A publication Critical patent/CN110423362A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/22Polypeptides or derivatives thereof, e.g. degradation products
    • A61L27/227Other specific proteins or polypeptides not covered by A61L27/222, A61L27/225 or A61L27/24
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明提供一种水凝胶、制备方法和冻干支架,所述水凝胶的分子式为:根据本发明实施例的水凝胶分子式简单,未来可作为3D打印生物墨水的原材料,并在组织修复工程领域有良好的应用前景。

Description

水凝胶、制备方法和冻干支架
技术领域
本发明涉及生物水凝胶技术领域,尤其涉及一种水凝胶、制备方法和冻干支架。
背景技术
生物水凝胶在组织工程学中有着广泛的应用,据文献记载,其主要应用领域有创伤修复、组织和器官再生、药物缓释等。现有的水凝胶原料来源可分为天然材料和合成材料。天然材料有胶原蛋白、壳聚糖、细胞质基质等。合成材料有普朗尼克(Pluronic)和聚乙二醇(PEG)。
天然材料形成的水凝胶其机械性能差、生物降解速率过快、限制了其在临床上的应用,同时,目前还有部分材料来源于动物,其免疫原性差,进入人体后,会产生一定程度的免疫排斥反应;合成材料尽管在改善机械性能、可打印性、交联型等方面具有很好的前景,但相比天然材料在促进细胞附着和增殖方面性能要差。
此外,光引发剂种类繁多,如Irgacure 651、Irgacure 2959和Esoin Y等,大部分存在水溶性较差等问题,且使用的是紫外光交联,在可见光下交联效果不理想,紫外光将会对细胞的活力状态产生影响。水凝胶制备不理想,应用范围受限制。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
为此,本发明提出一种水凝胶、制备方法和冻干支架,该水凝胶用途广泛。
根据本发明第一方面实施例的水凝胶分子式为:
根据本发明实施例的水凝胶,物化性能优良,用途广泛。
根据本发明实施例的水凝胶还可以具有以下附加技术特征:
根据本发明的一个实施例,所述水凝胶由分子式为的接枝产物为原料制备而成。
根据本发明的一个实施例,所述接枝产物由重组胶原蛋白通过GelMA方法改性后制得。
根据本发明第二方面实施例的水凝胶的制备方法,包括以下步骤:S10、称取接枝产物溶于苯基(2,4,6-三甲基苯甲酰基)磷酸锂盐(LAP)的DPBS溶液中,配置成溶液;S20、采用蓝光照射上述溶液,形成水凝胶。
根据本发明的一个实施例,在步骤S10中,所述接枝产物的分子式为:
根据本发明的一个实施例,在步骤S10中,所述接枝产物的浓度大于5%。
根据本发明的一个实施例,在步骤S20中,用蓝光灯照射所述溶液,照射时间为8min-12min。
根据本发明的一个实施例,所述蓝光灯的功率为200w,波长为405-415nm。
根据本发明的一个实施例,还包括步骤:S30、将所述水凝胶放置在冷冻干燥机中冻干2天-3天,获得水凝胶冻干支架。
根据本发明第三方面实施例的冻干支架由上述实施例所述的水凝胶经过冻干得到。
附图说明
图1为根据本发明实施例中水凝胶的制备过程示意图;
图2为根据本发明实施例中水凝胶的制备机理图;
图3为根据本发明实施例中水凝胶的制备方法流程图;
图4为根据本发明实施例中水凝胶溶胀比柱状图;
图5为根据本发明实施例中水凝胶的一个扫描电镜图;
图6为根据本发明实施例中水凝胶的又一个扫描电镜图;
图7为根据本发明实施例中水凝胶的再一个扫描电镜图;
图8为根据本发明实施例中水凝胶的弹粘性分析曲线图;
图9为根据本发明实施例中引发剂浓度和UV照射时间对水凝胶的交联影响曲线图;
图10为根据本发明实施例中聚合物浓度对水凝胶流变性影响的一个曲线图。
图11为根据本发明实施例中聚合物浓度对水凝胶流变性影响的又一个曲线图。
附图标记:
水凝胶的制备方法100。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面首先结合附图具体描述根据本发明实施例的水凝胶,水凝胶的分子式为:
需要说明的是,该水凝胶为半透明胶状,具有光敏感性和优良的机械性能,生物降解速度可控。
由此,根据本发明实施例的水凝胶,物化性能优良,用途广泛。
根据本发明的一个实施例,水凝胶由分子式为的接枝产物为原料制备而成。
优选地,接枝产物由重组胶原蛋白通过GelMA方法改性后制得。
也就是说,水凝胶使用原料为重组胶原蛋白,其具有胶原蛋白的低免疫原性、可生物降解性和良好的生物相容性等特点,使用GelMA方法对其进行化学改性,使其具有光敏性和一定机械性能,且生物降解速率可控。
根据本发明实施例的水凝胶的制备方法100如图3所示,主要包括以下步骤:
S10、称取接枝产物溶于苯基(2,4,6-三甲基苯甲酰基)磷酸锂盐(LAP)的DPBS溶液中,配置成溶液;
S20、采用蓝光照射上述溶液,形成水凝胶。
具体地,苯基(2,4,6-三甲基苯甲酰基)磷酸锂盐(LAP)具有较好的水溶性,能在可见光下进行交联反应,LAP交联极其迅速,且可由蓝光激发,对细胞几乎没有损伤,固化时间1-5s。
也就是说,通过蓝光交联技术,形成的水凝胶成胶速度快,且对细胞的损伤小。水凝胶的制备过程如图1所示,水凝胶的制备机理如2所示,蓝光引发的MARHC水凝胶的光聚合反应经过三个阶段:(1)引发剂在蓝光的照射下产生自由基R;(2)链引发及链增长:首先,自由基R·引发甲基丙烯酰胺的链聚合反应,其次,含有甲基丙烯酰胺自由基的重组胶原链与含有甲基丙烯酰胺基团的同一条重组胶原链或不同的重组胶原链发生链增长;(3)链终止:链终止发生在不同的两条重组胶原自由基链或一个重组胶原自由基链与R·自由基之间。
优选地,在步骤S10中,接枝产物的分子式为:
其中,接枝物原料来源为利用基因重组技术,将可以翻译成人胶原蛋白的基因片段的重组载体转入可以表达目的蛋白的宿主细胞,经过发酵、纯化、冻干等工艺后得到重组胶原蛋白,将重组胶原蛋白(RHC)与甲基丙烯酸酐(MA在PBS溶液(pH=7.5)体系中,在50℃下反应3h,透析、冻干后形成接枝物(RHCMA)。重组胶原蛋白使用基因重组技术,将可以翻译成人胶原蛋白的基因片段的重组载体转入可以表达目的蛋白的宿主细胞,从而可以在体外大规模高表达人胶原蛋白,其具有胶原蛋白的低免疫原性、可生物降解性、良好的生物相容性等特点,且没有动物源胶原蛋白存在的动物病毒隐患、排异反应、质量不稳定、分子量不确定等缺点。
具体而言,接枝产物主要通过以下方法获得:将重组胶原蛋白溶解到PBS溶液中;将甲基丙稀酸酐加入到溶解有重组胶原蛋白的PBS溶液中,形成反应液;向反应液中倒入PBS溶液以稀释反应液并终止反应;将稀释后的反应液进行透析,并将透析后的溶液进行离心,收集上清;将上清进行冻干处理,得到接枝产物。
接枝产物主要通过以下反应式获得:
根据本发明的一个实施例,在步骤S10中,接枝产物的浓度大于5%,反应效果好,便于形成水凝胶。
根据本发明的又一个实施例,在步骤S20中,用蓝光灯照射溶液,照射时间为8min-12min。
可选地,蓝光灯的功率为200w,波长为405-415nm,光源于水凝胶上方2cm处光照10min。
在本发明的一个实施例中,还包括步骤:S30、将水凝胶放置在冷冻干燥机中冻干2天-3天,获得水凝胶冻干支架。具体地,水凝胶冻干后为白色块状。
根据本发明实施例的冻干支架由上述实施例的水凝胶制备而成,冻干支架用途广泛。也就是说,冻干后形成的支架能有效的促进细胞生长和迁移,由此使其成为优良的医用生物材料,可作为3D打印生物墨水的原材料,并可应用于各类组织和器官修复中。
下面具体描述根据本发明实施例的水凝胶物化性能。
1、溶胀比分析
将水凝胶于37℃DPBS溶液中温育24小时,取出轻轻吸干并称重(WS)。然后将水凝胶冷冻干燥并称重以确定干重(WD),根据方程式(1)计算溶胀凝胶(SR)的溶胀比
具体地,水凝胶取代度为23%(DS23),光引发剂(LAP)浓度为0.25%,光照时间10min。水凝胶的溶胀比反应其吸水能力,结果如图4所示,随着底物浓度从15%增加至25%,其溶胀比从1245%下降610%,这可能是底物(RHCMA)浓度为25%时,水凝胶的交联度增加,这不仅限制了水渗透的速度和数量,而且有文献显示还认为可以减缓降解。
2、电镜扫描(SEM)分析
具体地,首先,将取代度为23%的接枝物RHCMA,取代度23%(DS23)分别加入到含有0.25%LAP的DPBS溶液中,配制成浓度为15%、20%、25%的水凝胶,使用200mw蓝光光源于水凝胶上方2cm处光照10min,形成水凝胶,冻干后电镜扫描。然后,将取代度为14%的接枝物RHCMA,取代度14%(DS14)分别加入到含有0.25%LAP的DPBS溶液中,配制成浓度为50%、60%的水凝胶,使用200mw蓝光光源于水凝胶上方2cm处光照10min,形成水凝胶,冻干后电镜扫描。
冻干后的RHCMA支架疏松多孔,在接枝物RHCMA,取代度23%(DS23)浓度从15%增加至25%时,SEM电镜扫描结果显示,水凝胶孔径范围在100-500微米的空间网状结构;接枝物RHCMA,取代度14%(DS14)浓度从50%增加到60%时,SEM结果显示,支架结构更加致密,这可能是由于底物浓度增大,交联浓度增加,形成致密的空间结构。图5至图7分别为重组胶原蛋白支架实验组横切面(cross-section)和表面(surface)电镜扫描图。
3、弹粘性分析
具体而言,使用流变仪测试水凝胶粘弹性,以小应变振荡模式测量GelMA水凝胶的粘弹性。实施步骤如下:采用直径为25mm的平行板,在振荡剪切变形模式下测量式样;板间距和温度分别设置为1.5mm和25℃;在温度为25℃、频率范围为0.1-10Hz以及0.5%的恒定应变模式下,记录下力学数值,如图7至图10所示。
(1)取代度(DS)对储能模量的影响
处理方法:底物(RHCMA)浓度40%、光引发剂(LAP)浓度0.25%,光照时间10min。
(2)引发剂和光照时间对支架化学网络形成的影响
处理方法:取代度为23%(DS23)、RHCMA浓度15%w/v光照时间分别为30s、60s、600s,光引发剂(LAP)浓度分别为0.125%、0.25%、0.5%。25℃测试其弹性模量G′。
(3)底物(RHCMA)浓度对储能模量的影响
处理方法1:水凝胶取代度为14%(DS14),光引发剂(LAP)浓度0.25%,光照时间10min。
处理方法2:水凝胶取代度为23%(DS23),光引发剂(LAP)浓度0.25%,光照时间10min。
结论:随着聚合物浓度的增加,分子间螺旋接触几率增加,大量的交联物聚集导致储能模量增加。同时,动态模量不仅随着甲基丙烯酰胺含量的增加而增加(如图8所示),而且还受总聚合物浓度的影响。聚合物浓度越高,对所得水凝胶的流变性影响越大(如图10和图11所示)。
引发剂浓度和UV照射时间对交联结果有很大影响(如图9所示),更长的蓝光照射时间可以改善光激发的网络支架形成。因此,有必要调整好引发剂的量和照射时间两个因素,在尽量低的光照时间和引发剂浓度条件下,获得足够强度的水凝胶支架,以便更好的适应临床应用。
以上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明所述原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种水凝胶,其特征在于,所述水凝胶的分子式为:
2.根据权利要求1所述的水凝胶,其特征在于,所述水凝胶由分子式为的接枝产物为原料制备而成。
3.根据权利要求2所述的水凝胶,其特征在于,所述接枝产物由重组胶原蛋白通过GelMA方法改性后制得。
4.一种水凝胶的制备方法,其特征在于,包括以下步骤:
S10、称取接枝产物溶于苯基(2,4,6-三甲基苯甲酰基)磷酸锂盐(LAP)的DPBS溶液中,配置成溶液;
S20、采用蓝光照射上述溶液,形成水凝胶。
5.根据权利要求4所述的水凝胶的制备方法,其特征在于,在步骤S10中,所述接枝产物的分子式为:
6.根据权利要求4所述的水凝胶的制备方法,其特征在于,在步骤S10中,所述接枝产物的浓度大于5%。
7.根据权利要求4所述的水凝胶的制备方法,其特征在于,在步骤S20中,用蓝光灯照射所述溶液,照射时间为8min-12min。
8.根据权利要求7所述的水凝胶的制备方法,所述蓝光灯的功率为200w,波长为405-415nm。
9.根据权利要求4所述的水凝胶的制备方法,其特征在于,还包括步骤:
S30、将所述水凝胶放置在冷冻干燥机中冻干2天-3天,获得水凝胶冻干支架。
10.一种冻干支架,其特征在于,所述冻干支架由根据权利要求1-3中任一项所述的水凝胶经过冻干得到。
CN201910565914.5A 2019-06-26 2019-06-26 水凝胶、制备方法和冻干支架 Pending CN110423362A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910565914.5A CN110423362A (zh) 2019-06-26 2019-06-26 水凝胶、制备方法和冻干支架

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910565914.5A CN110423362A (zh) 2019-06-26 2019-06-26 水凝胶、制备方法和冻干支架

Publications (1)

Publication Number Publication Date
CN110423362A true CN110423362A (zh) 2019-11-08

Family

ID=68409700

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910565914.5A Pending CN110423362A (zh) 2019-06-26 2019-06-26 水凝胶、制备方法和冻干支架

Country Status (1)

Country Link
CN (1) CN110423362A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072834A (zh) * 2020-01-03 2021-07-06 兰州大学 一种用于3d打印的胶原蛋白生物墨水及3d打印方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100475A3 (en) * 2006-02-23 2008-05-15 Advanced Cardiovascular System Hydrogel bioscaffoldings and biomedical device coatings
CN107540744A (zh) * 2017-10-10 2018-01-05 南京艾澜德生物科技有限公司 重组胶原蛋白及其温敏水凝胶
CN108003360A (zh) * 2017-10-16 2018-05-08 四川大学 诱导干细胞成软骨分化的ii型胶原水凝胶的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100475A3 (en) * 2006-02-23 2008-05-15 Advanced Cardiovascular System Hydrogel bioscaffoldings and biomedical device coatings
CN107540744A (zh) * 2017-10-10 2018-01-05 南京艾澜德生物科技有限公司 重组胶原蛋白及其温敏水凝胶
CN108003360A (zh) * 2017-10-16 2018-05-08 四川大学 诱导干细胞成软骨分化的ii型胶原水凝胶的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAN YUE, ET AL: "Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels", 《BIOMATERIALS》 *
TYTGAT LIESBETH, ET AL: "Photo-crosslinkable recombinant collagen mimics for tissue engineering applications", 《JOURNAL OF MATERIALS CHEMISTRY B》 *
刘彤等: "重组人Ⅲ型胶原蛋白水凝胶对猪全层皮肤缺损创面修复的影响", 《中华损伤与修复杂志(电子版)》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113072834A (zh) * 2020-01-03 2021-07-06 兰州大学 一种用于3d打印的胶原蛋白生物墨水及3d打印方法
CN113072834B (zh) * 2020-01-03 2023-01-06 胶原蛋白(武汉)生物科技有限公司 一种用于3d打印的胶原蛋白生物墨水及3d打印方法

Similar Documents

Publication Publication Date Title
Wang et al. Cross-linking of dialdehyde carboxymethyl cellulose with silk sericin to reinforce sericin film for potential biomedical application
Morris et al. Mechanical properties, cytocompatibility and manufacturability of chitosan: PEGDA hybrid-gel scaffolds by stereolithography
Sionkowska et al. Preparation and characterization of silk fibroin/chitosan composite sponges for tissue engineering
Mousavi et al. Comparative study of collagen and gelatin in chitosan-based hydrogels for effective wound dressing: Physical properties and fibroblastic cell behavior
Li et al. Preparation and properties of cellulose nanocrystals reinforced collagen composite films
Chang et al. Nano-biomaterials application: Morphology and physical properties of bacterial cellulose/gelatin composites via crosslinking
Dragusin et al. Novel gelatin–PHEMA porous scaffolds for tissue engineering applications
Piluso et al. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking
Wang et al. Effects of freezing/thawing cycles and cellulose nanowhiskers on structure and properties of biocompatible starch/PVA sponges
Zhou et al. A super-stretchable, self-healing and injectable supramolecular hydrogel constructed by a host–guest crosslinker
Tak et al. Sulindac imprinted mungbean starch/PVA biomaterial films as a transdermal drug delivery patch
Cui et al. Mechanical, microstructural, and rheological characterization of gelatin-dialdehyde starch hydrogels constructed by dual dynamic crosslinking
Hu et al. Preparation and properties of an injectable scaffold of poly (lactic-co-glycolic acid) microparticles/chitosan hydrogel
Mi et al. Submicron amino acid particles reinforced 100% keratin biomedical films with enhanced wet properties via interfacial strengthening
Zhang et al. Photopolymerizable chitosan hydrogels with improved strength and 3D printability
Yan et al. A comparative study on cross-linking of fibrillar gel prepared by tilapia collagen and hyaluronic acid with EDC/NHS and genipin
AU2022211848B2 (en) Bifunctional modified biopolymer based polymers and hydrogels obtainable from such bifunctional modified biopolymer based polymers
Dai et al. Improved thermostability and cytocompatibility of bacterial cellulose/collagen composite by collagen fibrillogenesis
Zhang et al. High water content silk protein-based hydrogels with tunable elasticity fabricated via a Ru (II) mediated photochemical cross-linking method
Liu et al. Effect of freezing process on the microstructure of gelatin methacryloyl hydrogels
Stubbe et al. Photo‐crosslinked gelatin‐based hydrogel films to support wound healing
Yu et al. Conjugation of CMCS to silk fibroin for tuning mechanical and swelling behaviors of fibroin hydrogels
Chang et al. Poly (glycerol sebacate)‐co‐poly (ethylene glycol)/Gelatin Hybrid Hydrogels as Biocompatible Biomaterials for Cell Proliferation and Spreading
CN110423362A (zh) 水凝胶、制备方法和冻干支架
Nacu et al. 3D bioprinted scaffolds based on functionalized gelatin for soft tissue engineering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 213000 No.28 Shuanglong Road, Jintan District, Changzhou City, Jiangsu Province

Applicant after: Jiangsu chuangjian Medical Technology Co.,Ltd.

Address before: 213000 No.28 Shuanglong Road, Jintan District, Changzhou City, Jiangsu Province

Applicant before: Jiangsu Yuezhi Biotechnology Co.,Ltd.

Address after: 213000 No.28 Shuanglong Road, Jintan District, Changzhou City, Jiangsu Province

Applicant after: Jiangsu Yuezhi Biotechnology Co.,Ltd.

Address before: 213000 No.28 Shuanglong Road, Jintan District, Changzhou City, Jiangsu Province

Applicant before: JIANGSU YUEZHI BIOLOGY MEDICINE CO.,LTD.

CB02 Change of applicant information
CB02 Change of applicant information

Address after: 213000 No.28 Shuanglong Road, Jintan District, Changzhou City, Jiangsu Province

Applicant after: Jiangsu Chuangjian Medical Technology Co.,Ltd.

Address before: 213000 No.28 Shuanglong Road, Jintan District, Changzhou City, Jiangsu Province

Applicant before: Jiangsu chuangjian Medical Technology Co.,Ltd.

CB02 Change of applicant information
RJ01 Rejection of invention patent application after publication

Application publication date: 20191108

RJ01 Rejection of invention patent application after publication