CN110414139A - 一种用于滚筒内颗粒状坚果热加工的仿真计算方法 - Google Patents

一种用于滚筒内颗粒状坚果热加工的仿真计算方法 Download PDF

Info

Publication number
CN110414139A
CN110414139A CN201910692229.9A CN201910692229A CN110414139A CN 110414139 A CN110414139 A CN 110414139A CN 201910692229 A CN201910692229 A CN 201910692229A CN 110414139 A CN110414139 A CN 110414139A
Authority
CN
China
Prior art keywords
nut
roller
graininess
particle
hot worked
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910692229.9A
Other languages
English (en)
Other versions
CN110414139B (zh
Inventor
姜胜强
周玉鹏
刘思思
刘金刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiangtan University
Original Assignee
Xiangtan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiangtan University filed Critical Xiangtan University
Priority to CN201910692229.9A priority Critical patent/CN110414139B/zh
Publication of CN110414139A publication Critical patent/CN110414139A/zh
Application granted granted Critical
Publication of CN110414139B publication Critical patent/CN110414139B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L25/00Food consisting mainly of nutmeat or seeds; Preparation or treatment thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种用于滚筒内颗粒状坚果热加工的仿真计算方法,包括如下步骤:获取颗粒状坚果的物性参数、滚筒的材料特性参数和结构参数、滚筒—坚果之间及坚果—坚果之间的相互作用参数;根据所获得的颗粒状坚果的物性参数,在离散元软件中建立与实际相符的颗粒状坚果离散元模型;根据所述滚筒的结构参数,建立滚筒的三维实体模型;将所述滚筒的三维实体模型转换格式,将其导入至离散元软件中,再通过添加热交换接触模型、滚筒的转速等条件,建立颗粒状坚果热加工的离散元仿真模型;并设计正交实验仿真在不同工况下滚筒内坚果的运动状态以及热传导情况,通过方差分析得出最优工况。本发明利用离散元仿真技术模拟坚果炒制,成本更低,费时更少。

Description

一种用于滚筒内颗粒状坚果热加工的仿真计算方法
技术领域
本发明涉及食品热加工仿真技术领域,尤其是一种用于滚筒内颗粒状坚果热加工的仿真计算方法。
背景技术
坚果也称硬果,常指果皮坚硬的果实或者种子,包括花生、核桃、瓜子、杏仁、榛子、栗子、松子等有硬壳的小食品。坚果类种子食物是植物的精华部分,营养丰富、口味浓香。尤其是炒制后的坚果香味更浓,且经现代医学研究发现每日食用坚果有益身体健康,深受广大消费者的喜爱,故市场上对坚果的需求日益剧增,发展前景十分广阔。
我国坚果类炒货食品历史悠久,现有坚果炒制多为开放式的。例如栗子的炒制,即在炒锅中添加栗子、沙子和糖稀等之后,直接开放式炒制。炒制过程中使用煤炭、柴禾等加热炒锅。这种开放式的坚果炒制方法浪费能源炒制效率低下。主要依靠人的经验来判断坚果炒制情况,炒制温度难以精确控制,炒制过程难免会出现炒糊的现象,这就造成一些经济损失。另一种炒制坚果的方式是炒货机炒制,炒锅自动旋转,温度可以根据需要来进行人工调节,翻炒非常均匀,但是对于不同种类的坚果的炒制,炒锅的旋转速度、填充率及所提供的温度也会有所不同,炒制过程也难以精确掌控,也会出现炒糊的现象并造成一些经济损失,为了有效杜绝人为因素对炒制质量的影响,使炒好的坚果口感更酥香、品质更优良。通过实验仿真计算,能对不同种类的坚果,在不同工况下炒制的情况进行模拟,精准掌控炒制的时间,并且可以进一步得出不同坚果炒制品质最佳时所对应的工况,建立了一套比较完整坚果的炒制体系,为颗粒状坚果的炒制提供理论参考;所需成本更低,费时更少,所以对坚果炒制过程进行仿真计算是有必要的。
发明内容
为了解决上述问题,本发明提供一种用于滚筒内颗粒状坚果热加工的仿真计算方法。
本发明专利采用的技术方案是:
一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于,包括以下步骤:
(1)通过技术手段(如颗粒激光扫描)得到颗粒状坚果的形状,统计分析颗粒状坚果的形状系数,确定颗粒状坚果的平均粒径;
(2)获取颗粒状坚果的物性参数(除平均粒径外)、滚筒的材料特性参数和结构参数、滚筒—坚果之间及坚果—坚果之间相互作用参数;
(3)根据步骤2所获得的颗粒状坚果的物性参数和步骤1中的平均粒径,在离散元软件中采用对应的颗粒形状和尺寸来模拟颗粒状坚果,建立与实际相符的颗粒状坚果离散元模型(颗粒);
(4)根据所述滚筒的结构参数,建立滚筒的三维实体模型;
(5)将所述滚筒的三维实体模型转换格式,将其导入至离散元软件中,再通过添加热交换接触模型、周期性边界、重力加速度、滚筒的转速,建立颗粒状坚果热加工的离散元仿真模型;
热交换接触模型具体如下:壁面给定一个恒定的温度场(将滚筒壁厚视为薄壁,不考虑滚筒壁面与壁面的传热),对旋转滚筒中的颗粒流进行单一相仿真时,滚筒与颗粒状坚果之间、坚果与坚果之间进行热交换,其热量满足以下关系:
式中:hc为滚筒与颗粒状坚果之间的热传导系数,hc′为坚果与坚果之间的热传导系数,ΔTpG为滚筒与颗粒状坚果之间的温度差,为坚果与坚果之间的温度差;
每个颗粒的温度变化满足以下关系:
式中:mp、Cp、T分别表示颗粒的质量、比热容、温度;∑Qheat表示对流热和传导热之和;
(6)采用所述颗粒状坚果热加工的离散元仿真模型模拟颗粒状坚果热加工的过程,并设计正交实验仿真在不同工况下滚筒内坚果的运动状态以及热传导情况,通过方差分析计算出σ和M,进一步将M转换为负对数(-lnM),得到坚果温度分布均匀的时间点,从而判断出仿真中相对最优的滚筒转速和填充率。
方差分析具体如下:
式中:σ表示每个网格中颗粒温度的平均值,n表示网格的数量,Ti表示颗粒i的温度
式中:M表示Lacey指数,表示不同温度的颗粒完全分离时混合方差,S2表示不同温度的颗粒实际混合方差,表示不同温度的颗粒完全随机混合方差。
上述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述滚筒与坚果之间、坚果与坚果之间相互作用参数包括:恢复系数、静摩擦因数、动摩擦因数。
上述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述颗粒状坚果的物性参数包括:密度、泊松比、剪切模量、比热容、热导率、初始温度。
上述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述滚筒的材料特性参数包括:密度、泊松比、剪切模量、热导率、壁面的初始温度。
上述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述滚筒的结构参数包括:直径、高度、壁厚、提升条的宽度、提升条的高度、提升条的数目、提升条的排列方式。
上述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述热交换接触模型包括颗粒与颗粒之间的接触模型、颗粒与滚筒之间的接触模型。
上述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述接触模型是先通过VS2013编译生成X64动态库文件,然后再将动态库文件和扩展名为.txt的文本文件放到离散元软件的Contact Model的路径之下。
附图说明
图1为热加工仿真的流程图
图2为热加工仿真初始状态图
图3为热加工仿真最终时刻状态图
图4为热加工仿真模型网格划分图
图5为热加工过程黄豆温度分布的均匀性指标图
具体实施方式
下面结合具体实施例对本发明进一步进行描述。
一种用于滚筒内颗粒状坚果热加工的仿真计算方法,示例材料选用黄豆,示例离散元软件选用EDEM 2.7,包括如下步骤:
(1)通过技术手段(如颗粒激光扫描)得到黄豆的形状,统计分析黄豆的形状系数,确定黄豆的平均粒径;
在本实例中,黄豆的形状近似球形,形状系数为1,黄豆的平均粒径为7mm;
(2)获取黄豆的物性参数(除平均粒径外)、滚筒的材料特性参数和结构参数、滚筒—黄豆之间及黄豆—黄豆之间相互作用参数;
在本实例中,黄豆的物性参数包括密度、泊松比、剪切模量、比热容、热导率、初始温度,滚筒的材料特性参数包括密度、泊松比、剪切模量、热导率、壁面的初始温度,滚筒—黄豆之间及黄豆—黄豆之间相互作用参数包括恢复系数、静摩擦因数、动摩擦因数;具体参数值如表1所示:
表1
(3)根据步骤2所获得的黄豆的物性参数和步骤1中的平均粒径,在离散元软件中采用对应的颗粒形状和尺寸来模拟黄豆,建立与实际相符的黄豆离散元模型(颗粒);
更具体的说,根据步骤1分析得到形状系数,在离散元软件中采用球形颗粒来模拟黄豆;
(4)根据所述滚筒的结构参数,建立滚筒的三维实体模型;
在本实例中,滚筒的结构参数包括直径、高度、壁厚、提升条的宽度、提升条的高度、提升条的数目、提升条的排列方式;具体参数值如表2所示:
表2
(5)将所述滚筒的三维实体模型转换格式,将其导入至离散元软件中,再通过添加接触模型、周期性边界条件、重力加速度、滚筒的转速,建立黄豆热加工的离散元仿真模型;
在本实例中,三维实体模型转换成IGS格式,选用的接触模型为热交换模型,该模型API编译及参数设置如下:先通过VS2013编译生成X64动态库文件,然后再将动态库文件和扩展名为.txt的文本文件放到离散元软件的Contact Model的路径之下;打开扩展名为.txt文件,在该文件里面设置颗粒的导热率和比热容,再设置滚筒的导热率和初始温度,打开EDEM软件,选择particle to particle和particle to geometry,均设置为热交换接触模型,EDEM中颗粒和几何体的名字必须与txt中的名字匹配,如txt中颗粒的名字为Particle,几何体的名字为Cylinder,在颗粒工厂中设置颗粒的初始温度;
热交换模型原理具体如下:壁面给定一个恒定的温度场,(将滚筒壁厚视为薄壁,不考虑滚筒壁面与壁面的传热),对旋转滚筒中的颗粒流进行单一相仿真时,滚筒与黄豆之间、黄豆与黄豆之间进行热交换,其热量满足以下关系:
式中:hc为滚筒与黄豆之间的热传导系数,hc′为黄豆与黄豆之间的热传导系数,ΔTpG为滚筒与黄豆之间的温度差,为黄豆与黄豆之间的温度差;
颗粒状坚果的炒制过程为颗粒流单一相仿真,材料相同,即颗粒与颗粒热传热系数满足:
式中:FN为颗粒的重力,为颗粒的几何平均半径,E*为等效弹性模量, 为颗粒的导热系数,等式右侧方括号中的内容表示颗粒与颗粒之间的接触面积;
每个颗粒的温度变化满足以下关系:
式中,mp、Cp、T分别表示颗粒的质量、比热容、温度,∑Qheat表示对流热和传导热之和;
更具体的说,为了减少仿真的时间及计算量,在Z方向上设置了周期性边界条件,在Y方向添加重力加速度为-9.81m/s2
(6)采用所述颗粒状坚果热加工的离散元仿真模型模拟颗粒状坚果热加工的过程,并设计正交实验仿真在不同工况下滚筒内坚果的运动状态以及热传导情况,通过方差分析计算出σ和M,进一步将M转换为负对数(-lnM),得到坚果温度分布均匀的时间点,从而判断出仿真中相对最优的滚筒转速和填充率。
方差分析具体如下:
式中:σ表示每个网格中颗粒温度的平均值,n表示网格的数量,Ti表示颗粒i的温度
式中:M表示Lacey指数,表示不同温度的颗粒完全分离时混合方差,S2表示不同温度的颗粒实际混合方差,表示不同温度的颗粒完全随机混合方差。
更具体的说,不同的工况包括滚筒的转速、填充率、壁面的温度,在正交试验的组合下,仿真得到各组的黄豆温度分布运动状态以及热传导情况,在EDEM后处理中,将滚筒划分网格(如图4),统计每个网格中黄豆的总共的温度,通过方差分析计算出σ和M,进一步将M转换为负对数(-lnM),绘出各组时间与负对数(-lnM)、σ的关系图(图5为其中的一组),得到各组黄豆温度分布均匀的时间点,再通过正交试验设计中不同因素和水平的试验指标之间的关系,从而判断出仿真中相对最优的滚筒转速和填充率。
以上所述仅为本发明的优选实例方式,并不用以限制本发明,凡在本发明的精神和原则之内所做的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于,包括以下步骤:
(1)通过技术手段(如颗粒激光扫描)得到颗粒状坚果的形状,统计分析颗粒状坚果的形状系数,确定颗粒状坚果的平均粒径;
(2)获取颗粒状坚果的物性参数(除平均粒径外)、滚筒的材料特性参数和结构参数、滚筒—坚果之间及坚果—坚果之间的相互作用参数;
(3)根据步骤2所获得的颗粒状坚果的物性参数和步骤1中的平均粒径,在离散元软件中采用对应的颗粒形状和尺寸来模拟颗粒状坚果,建立与实际相符的颗粒状坚果离散元模型(颗粒);
(4)根据所述滚筒的结构参数,建立滚筒的三维实体模型;
(5)将所述滚筒的三维实体模型转换格式,将其导入至离散元软件中,再通过添加热交换接触模型、周期性边界、重力加速度、滚筒的转速,建立颗粒状坚果热加工的离散元仿真模型;
热交换模型具体如下:壁面给定一个恒定的温度场,(将滚筒壁厚视为薄壁,不考虑滚筒壁面与壁面的传热),对旋转滚筒中的颗粒流进行单一相仿真时,滚筒与颗粒状坚果之间、坚果与坚果之间进行热交换,其热量满足以下关系:
式中:hc为滚筒与颗粒状坚果之间的热传导系数;hc′为坚果与坚果之间的热传导系数;ΔTpG为滚筒与颗粒状坚果之间的温度差;为坚果与坚果之间的温度差;
每个颗粒的温度变化满足以下关系:
式中,mp、Cp、T分别表示颗粒的质量、比热容、温度;∑Qheat表示对流热和传导热之和;
(6)采用所述颗粒状坚果热加工的离散元仿真模型模拟颗粒状坚果热加工的过程,并设计正交实验仿真在不同工况下滚筒内坚果的运动状态以及热传导情况,通过方差分析计算出σ和M,进一步将M转换为负对数(-lnM),得到坚果温度分布均匀的时间点,从而判断出仿真中相对最优的滚筒转速和填充率。
方差分析具体如下:
式中:σ表示每个网格中颗粒温度的平均值,n表示网格的数量,Ti表示颗粒i的温度
式中:M表示Lacey指数,表示不同温度的颗粒完全分离时混合方差,S2表示不同温度的颗粒实际混合方差,表示不同温度的颗粒完全随机混合方差。
2.根据权利要求1所述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述滚筒与颗粒状坚果之间、坚果与坚果间的碰撞参数包括:恢复系数、静摩擦因数、动摩擦因数。
3.根据权利要求1所述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述颗粒状坚果的物性参数包括:密度、泊松比、剪切模量、比热容、热导率、初始温度。
4.根据权利要求1所述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述滚筒的材料特性参数包括:密度、泊松比、剪切模量、热导率、壁面的初始温度。
5.根据权利要求1所述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述滚筒的结构参数包括:直径、高度、壁厚、提升条的宽度、提升条的高度、提升条的数目、提升条的排列方式。
6.根据权利要求1所述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述接触模型包括颗粒与颗粒之间的接触模型、颗粒与滚筒之间的接触模型。
7.根据权利要求1所述的一种用于滚筒内颗粒状坚果热加工的仿真计算方法,其特征在于所述接触模型是先通过VS2013编译生成X64动态库文件,然后再将动态库文件和扩展名为.txt的文本文件放到离散元软件的Contact Model的路径之下。
CN201910692229.9A 2019-07-29 2019-07-29 一种用于滚筒内颗粒状坚果热加工的仿真计算方法 Active CN110414139B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910692229.9A CN110414139B (zh) 2019-07-29 2019-07-29 一种用于滚筒内颗粒状坚果热加工的仿真计算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910692229.9A CN110414139B (zh) 2019-07-29 2019-07-29 一种用于滚筒内颗粒状坚果热加工的仿真计算方法

Publications (2)

Publication Number Publication Date
CN110414139A true CN110414139A (zh) 2019-11-05
CN110414139B CN110414139B (zh) 2022-11-18

Family

ID=68364014

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910692229.9A Active CN110414139B (zh) 2019-07-29 2019-07-29 一种用于滚筒内颗粒状坚果热加工的仿真计算方法

Country Status (1)

Country Link
CN (1) CN110414139B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112699587A (zh) * 2020-12-31 2021-04-23 三一专用汽车有限责任公司 搅拌筒磨损量预测方法、装置和可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253756A1 (en) * 2011-03-31 2012-10-04 Dem Solutions Ltd. Method and apparatus for discrete element modeling involving a bulk material
CN108256270A (zh) * 2018-02-27 2018-07-06 厦门力祺环境工程有限公司 基于物料测试和dem-cfd仿真输煤转运系统结构设计定型方法
CN109740263A (zh) * 2019-01-07 2019-05-10 东北农业大学 一种可破碎谷物颗粒离散元仿真模型构建方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120253756A1 (en) * 2011-03-31 2012-10-04 Dem Solutions Ltd. Method and apparatus for discrete element modeling involving a bulk material
CN108256270A (zh) * 2018-02-27 2018-07-06 厦门力祺环境工程有限公司 基于物料测试和dem-cfd仿真输煤转运系统结构设计定型方法
CN109740263A (zh) * 2019-01-07 2019-05-10 东北农业大学 一种可破碎谷物颗粒离散元仿真模型构建方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112699587A (zh) * 2020-12-31 2021-04-23 三一专用汽车有限责任公司 搅拌筒磨损量预测方法、装置和可读存储介质

Also Published As

Publication number Publication date
CN110414139B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
Debnath et al. Effect of pre-drying on kinetics of moisture loss and oil uptake during deep fat frying of chickpea flour-based snack food
Srivastava et al. Deep bed grain drying modeling
CN101048075B (zh) 方便面及其制造方法
Vaquiro et al. Enthalpy-driven optimization of intermittent drying of Mangifera indica L.
He et al. Microwave-induced deformation behaviors of 4D printed starch-based food products as affected by edible salt and butter content
CN103179867B (zh) 封闭式混合动态食品脱水系统
CN110414139A (zh) 一种用于滚筒内颗粒状坚果热加工的仿真计算方法
Nijdam et al. Assessment of a novel window of dimensional stability for screening food inks for 3D printing
Budžaki et al. Determination of convective heat transfer coefficient during frying of potato dough
Singh et al. Effects of different ingredients and microwave power on popping characteristics of popcorn
Nagaraju et al. Rheology and particle size changes during Idli fermentation
CN105341097A (zh) 一种苦荞面包及其制作方法
Farinu et al. Deep fat frying of foods—transport phenomena
Ramaswamy et al. Effect of process variables on heat-transfer rates to canned particulate Newtonian fluids during free bi-axial rotary processing
Subba et al. Effect of particle size of rice flour on physical and sensory properties of Sel-roti
He et al. Quality properties of crispy winter jujube dried by explosion puffing drying
Díaz‐Ramírez et al. Modelling sorption kinetic of sponge cake crumb added with milk syrup
Banooni et al. Baking of flat bread in an impingement oven: An experimental study of heat transfer and quality aspects
Othman et al. Drying of instant coffee in a spray dryer
Shi et al. Numerical simulation on superheated steam fluidized bed drying: II. Experiments and numerical simulation
Shahapuzi et al. Effect of oven temperature profile and different baking conditions on final cake quality
CN109846034A (zh) 一种营养红稗冲调粉及其制备方法
Cao et al. A novel micro-spiral pneumatic selection system for the separation of fresh tea leaves
Prakash et al. Mathematical modeling of a cross-flow rice dryer
MANGEH III et al. Influence of drying parameters on drying efficiency of a rapeseed hot air cyclone dryer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant