CN110412585B - 一种基于mvdr的下视合成孔径三维成像方法及系统 - Google Patents

一种基于mvdr的下视合成孔径三维成像方法及系统 Download PDF

Info

Publication number
CN110412585B
CN110412585B CN201910589093.9A CN201910589093A CN110412585B CN 110412585 B CN110412585 B CN 110412585B CN 201910589093 A CN201910589093 A CN 201910589093A CN 110412585 B CN110412585 B CN 110412585B
Authority
CN
China
Prior art keywords
synthetic aperture
sub
imaging
cross
mvdr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910589093.9A
Other languages
English (en)
Other versions
CN110412585A (zh
Inventor
王朋
张羽
刘纪元
黄海宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Acoustics CAS
Original Assignee
Institute of Acoustics CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Acoustics CAS filed Critical Institute of Acoustics CAS
Priority to CN201910589093.9A priority Critical patent/CN110412585B/zh
Publication of CN110412585A publication Critical patent/CN110412585A/zh
Application granted granted Critical
Publication of CN110412585B publication Critical patent/CN110412585B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52003Techniques for enhancing spatial resolution of targets

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明公开了一种基于MVDR的下视合成孔径三维成像方法及系统,所述方法包括:根据声纳系统工作参数计算声纳回波数字信号,对声纳回波数字信号进行深度向脉冲压缩处理,获得深度向压缩后信号;对深度向压缩后信号进行沿航向合成孔径处理,同时实现跨航向的相位补偿,由此获得成像信号;在空域上将跨航向合成孔径划分成若干个子阵,计算成像信号在跨航向的每个子阵的MVDR波束形成的加权因子,由此计算跨航向波束形成,形成最后的三维图像。本发明提出的基于MVDR下视合成孔径高分辨成像方法,可有效的提高下视合成孔径成像声纳跨航向成像分辨率。

Description

一种基于MVDR的下视合成孔径三维成像方法及系统
技术领域
本发明涉及成像声纳系统领域,特别涉及一种基于MVDR的下视合成孔径三维成像方法及系统。
背景技术
下视合成孔径三维成像技术是一种基于合成孔径技术新的三维成像体制,该技术不仅具有与传统侧视合成孔径成像声纳的方位向的高分辨率,并具有目标深度向测量的能力。该成像体制在声波传播方向(深度向)和方位向(沿航向)可以通过脉冲压缩和合成孔径技术获得高分辨成像,但跨航向分辨能力受到接收阵长度的限制,通过增加跨航向接收阵的长度可以有效提高跨航向分辨率,但其系统实现的难度、复杂度和成本均会急剧增加。
发明内容
本发明的目的在于:针对下视合成孔径三维成像声纳跨航向成像分辨率受到物理孔径约束,分辨率难以提高的问题,提出了一种基于MVDR处理技术的高分辨下视合成孔径三维成像方法,该方法的跨航向成像分辨率获得了明显的提高,改善了跨航向成像质量。
为了实现上述目的,本发明提出了一种基于MVDR的下视合成孔径三维成像方法,该方法包括:
根据声纳系统工作参数计算声纳回波数字信号,对声纳回波数字信号进行深度向脉冲压缩处理,获得深度向压缩后信号;
对深度向压缩后信号进行沿航向合成孔径处理,同时实现跨航向的相位补偿,由此获得成像信号;
在空域上将跨航向合成孔径划分成若干个子阵,计算成像信号在跨航向的每个子阵的MVDR波束形成的加权因子,由此计算跨航向波束形成,形成最后的三维图像。
作为上述方法的一种改进,所述根据声纳系统工作参数计算声纳回波数字信号,对声纳回波数字信号进行深度向脉冲压缩处理,获得深度向压缩后信号;具体包括:
步骤1-1)下视合成孔径声纳沿y方向以速度v匀速直线航行,则第m个接收阵元的位置(xm,yR,0):
Figure BDA0002115497690000021
其中,0≤m≤M-1,M为接收阵元的个数;L表示接收阵孔径,y表示接收阵所在的沿航向坐标值;η表示沿航向基阵运动的慢变时间,v表示运动速度;
采用等效相位中心(Xm,Y,0)表示接收阵第m个阵元的位置:
Figure BDA0002115497690000022
其中,t2r表示发射阵与接收阵所在的xOz之间的距离;
步骤1-2)计算等效相位中心(Xm,Y,0)与水下三维场景中目标点T=(x0,y0,z0)的距离Rm为:
Figure BDA0002115497690000023
由此得到下视合成孔径声纳各接收阵元的时延τ=2R/c,c为声速;
步骤1-3)采用线性调频信号的声纳发射信号为:
Figure BDA0002115497690000024
其中f表示载波频率,Kr表示线性调频信号的调频率,Tr为脉冲宽度,tk表示第k个时域采样时刻;
经目标反射后的回波信号经过解调后表示为:
Figure BDA0002115497690000025
其中,σ表示回波信号幅度;
步骤1-4)对回波信号进行深度向脉冲压缩处理,获得深度向压缩后信号eem(tk,y):
eem(tk,y)=Ar sinc[KrTp(tk-2Rm/c)]·exp(-j4πf Rm/c) (7)
其中,Ar表示目标散射强度。
作为上述方法的一种改进,所述对深度向压缩后信号进行沿航向合成孔径处理,同时实现跨航向的相位补偿,由此获得成像信号;具体包括:
步骤2-1)计算每个像素点每个阵元的时延参数Δtm,i
Figure BDA0002115497690000031
其中,i表示第i个像素点;(xi,yi,zi)为第i个像素点的坐标值;
步骤2-2)沿航向合成孔径成像处理表达式为:
Figure BDA0002115497690000032
其中,方位向慢变时间η=pη×prt,prt表示脉冲重复周期,P表示第i个像素点声波照射的脉冲个数。
作为上述方法的一种改进,所述在空域上将跨航向合成孔径划分成若干个子阵,计算成像信号的跨航向的MVDR波束形成的加权因子,由此计算跨航向波束形成,形成最后的三维图像,具体包括:
步骤3-1)在空域上将跨航向实孔径阵列分成多个子阵,每个子阵包含Msub个阵元,第sn个子阵序列表示为:
Figure BDA0002115497690000033
其中,0≤sn≤NSn=M-Msub;NSn表示空域平均的子阵数;
步骤3-2)计算空域-时域平均的协方差矩阵:
Figure BDA0002115497690000034
其中,NQ=2Q+1表示时域平均的采样点数,Q为前后向采样点数;若k-Q≤0,则
Figure BDA0002115497690000035
为Msub×Msub维的协方差矩阵;
步骤3-3)对协方差矩阵
Figure BDA0002115497690000036
进行对角加载处理,得到加载处理后的矩阵
Figure BDA0002115497690000037
Figure BDA0002115497690000041
其中,I表示Msub×Msub维的单位矩阵,tr{·}表示矩阵的迹;
步骤3-4)根据矩阵
Figure BDA0002115497690000042
计算MVDR波束形成的加权因子w(tk):
Figure BDA0002115497690000043
其中,a表示Msub×1维的单位矢量;
步骤3-5)根据MVDR波束形成的加权因子,计算跨航向MVDR波束形成,三维成像第i个像素点的波束能量Ii的计算表示式为:
Figure BDA0002115497690000044
本发明提出了一种基于MVDR的下视合成孔径三维成像系统,所述系统包括:
深度向脉冲压缩处理模块,用于根据声纳系统工作参数计算声纳回波数字信号,对声纳回波数字信号进行深度向脉冲压缩处理,获得深度向压缩后信号;
沿航向合成孔径处理模块,用于对深度向压缩后信号进行沿航向合成孔径处理,同时实现跨航向的相位补偿,由此获得成像信号;
跨航向的相位补偿处理模块,用于在空域上将跨航向合成孔径划分成若干个子阵,计算成像信号的跨航向的MVDR波束形成的加权因子,由此计算跨航向波束形成,形成最后的三维图像。
本发明提出了一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现上述的方法。
本发明提出了一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被处理器执行时使所述处理器执行上述的方法。
本发明的优势在于:
在下视合成孔径三维成像声纳回波模型的基础上,本发明提出了一种基于MVDR技术的高分辨成像方法,该方法有效的提高了跨航向成像分辨率,改善了跨航向成像质量。
附图说明
图1为本发明的下视合成孔径三维成像声纳回波信号几何模型示意图;
图2(a)为使用本发明的方法得到的油管目标的跨航向-沿航向二维图;
图2(b)为使用本发明的方法得到的油管目标的沿航向-深度向二维图;
图2(c)为使用本发明的方法得到的油管目标的跨航向-深度向二维图;
图3(a)为使用典型的时域下视合成孔径三维成像算法得到的油管目标的跨航向-沿航向二维图;
图3(b)为使用典型的时域下视合成孔径三维成像算法得到的油管目标的沿航向-深度向二维图;
图3(c)为使用典型的时域下视合成孔径三维成像算法得到的油管目标的跨航向-深度向二维图。
具体实施方式
现结合附图和实施例对本发明作进一步的描述。
本发明关键的部分是在近场情况下实现了基于MVDR的高分辨下视合成孔径三维成像处理,下视合成孔径三维成像声纳主要工作在近场情况下,这样其跨航向、沿航向与深度向是相互耦合的,对于高分辨处理方法很难应用于其中,本发明针对跨航向分辨率难以提高和近场难以处理的这一问题,实现了近场情况下基于MVDR的高分辨下视合成孔径三维成像方法,实现了高分辨成像。
实施例1
本发明的实施例1提供了一种近场的基于MVDR(the Minimum VarianceDistortionless Response,最小方差无失真响应)的下视合成孔径三维成像方法,该方法包括:
步骤1)根据声纳系统工作参数,计算声纳回波数字信号,对数字信号进行深度向脉冲压缩处理;
下视合成孔径声纳回波信号几何模型如图1所示,发射接收阵距离海底高度为H,下视合成孔径声纳沿y方向以速度v匀速直线航行。其中圆形表示接收阵,方形表示发射阵,共M个接收阵元。根据图1中下视合成孔径声纳目标回波模型,目标的位置坐标为(x0,y0,z0),获得距离R0处目标波束方向的单位矢量表达式为u=(ux,uy,uz)=(x0,y0,z0)/R0,其中
Figure BDA0002115497690000061
发射阵元的位置为(0,yT,0),接收阵元的位置为v=(xm,yR,0),对应与图1中的几何位置关系可以将接收阵元表示为:
Figure BDA0002115497690000062
其中,0≤m≤M-1,M为接收阵元的个数;L表示接收阵孔径,y表示接收阵所在的沿航向坐标值;η表示沿航向基阵运动的慢变时间,v表示沿航向基阵的运动速度;
发射阵元表示为yT=yR+t2r,其中t2r表示发射阵与接收阵所在的xOz之间的距离,为了简化模型,本发明采用等效相位中心描述换能器阵列的位置表示为:
Figure BDA0002115497690000063
利用等效相位中心的假设,计算等效的接收单元与水下三维场景中目标点T=(x0,y0,z0)的距离为:
Figure BDA0002115497690000064
所以可以得到下视合成孔径声纳各接收单元的时延表达式表示为τ=2Rm/c,声纳发射信号采用线性调频信号为:
Figure BDA0002115497690000065
其中,f0表示载波频率,Kr表示线性调频信号的调频率,Tr为脉冲宽度,tk表示第k个时域采样时刻;
经目标反射后的第m个阵元回波信号经过解调后表示为:
Figure BDA0002115497690000066
其中,σ表示回波信号幅度;
利用快速傅里叶变换(FFT)进行Nf点FFT获得频域的回波信号表示为:
Figure BDA0002115497690000071
其中,K表示时域采样总数;nf表示频点序号;
对频域回波信号进行匹配滤波处理,在频域完成参考函数的相乘处理,然后进行傅里叶反变换,处理表示为:
Figure BDA0002115497690000072
其中,Ar表示目标散射点稀疏;Kr表示LFM脉冲信号的调频率;Tp表示LFM脉冲信号的脉冲宽度;
Figure BDA0002115497690000075
表示第nf个频点的频率;
Figure BDA0002115497690000076
表示深度向匹配滤波参考函数,表示为:
Figure BDA0002115497690000073
步骤2)对深度向脉冲压缩后信号进行近场沿航向时域成像处理,获得沿航向成像结果,同时完成跨航向的相位补偿;
沿航向的合成孔径处理与跨航向的相位补偿是本发明的关键部分之一,对沿航向进行合成孔径处理获得沿航向的成像结果,同时完成跨航向的相位补偿,为步骤3)跨航向的高分辨成像处理奠定基础。
步骤2)的计算方法如下:
对每个接收阵元进行沿航向逐点延时叠加处理,完成沿航向的合成孔径成像处理,每个阵元的时延参数表示为:
Figure BDA0002115497690000074
其中Δtm,i表示第m个阵元与第i个像素点之间的时延,i表示第i个像素点;(xi,yi,zi)为第i个像素点的坐标值;
沿航向合成孔径成像处理表达式为:
Figure BDA0002115497690000081
其中,方位向慢变时间η=pη×prt,prt表示脉冲重复周期,P表示第i个像素点声波照射的脉冲个数。
步骤3)对步骤2)得到的沿航向成像结果进行分块空间与时域滑动的MVDR高分辨处理,获得跨航向高分辨成像,最后形成三维图像。
跨航向高分辨(基于MVDR)成像处理方法是本发明的关键部分之一,对步骤2)中获得的信号Sm,i(tk)进行跨航向MVDR波束形成处理,获得跨航向成像结果,最后形成成像结果。
步骤3)的计算方法如下:
步骤2)处理后获得的信号Sm,i(tk)表示成矩阵的形式:
Figure BDA0002115497690000082
其中,U为像素点的个数;
第i个像素点的时间序列为Si=[S0,i(tk) S1,i(tk) … SM-1,i(tk)]T,利用该时间序列计算空域-时域平均的协方差矩阵,空域上对跨航向实孔径阵列分成多个子阵,每个子阵包含Msub个阵元,所以子阵序列可以表示为:
Figure BDA0002115497690000083
计算空域-时域平均的协方差矩阵表示为:
Figure BDA0002115497690000084
其中NQ=2Q+1表示时域平均的采样点数,Q为前后向采样点数:若k-Q≤0,则
Figure BDA0002115497690000085
NSn=M-Msub表示空域平均的子阵数;
Figure BDA0002115497690000086
为Msub×Msub维的协方差矩阵。
为了避免协方差矩阵出现秩亏现象,本发明中利用对角加载方法对协方差矩阵进行修正,表示为:
Figure BDA0002115497690000091
其中I表示Msub×Msub维的单位矩阵,tr{·}表示矩阵的迹。
根据协方差矩阵计算MVDR波束形成的加权因子,计算式表示为:
Figure BDA0002115497690000092
其中a表示Msub×1维的单位矢量。
根据所求得的MVDR波束形成加权因子,可计算跨航向MVDR波束形成结果,三维成像第i个像素点的波束能量Ii的计算表示式为:
Figure BDA0002115497690000093
通过海上试验对本发明提出的基于MVDR技术的高分辨下视合成孔径三维成像方法进行验证,海上试验选取半掩埋的输油管道目标进行三维成像,典型的油管目标成像结果如图2(a)、图2(b)和图2(c)所示;从图中可以看出,本发明的方法能够有效的对目标进行三维成像,验证了本发明方法的有效性。
为了说明本发明方法的跨航向的高分辨成像结果,使用典型的时域下视合成孔径三维成像算法的成像结果如图3(a)、图3(b)和图3(c)所示,对比本发明成像结果(图2(a)、图2(b)和图2(c)),本发明方法的跨航向成像分辨率得到了明显提升,进一步说明了本发明方法的有效性。
实施例2
本发明的实施例2提供了一种基于MVDR的下视合成孔径三维成像系统,所述系统包括:
深度向脉冲压缩处理模块,用于根据声纳系统工作参数计算声纳回波数字信号,对声纳回波数字信号进行深度向脉冲压缩处理,获得深度向压缩后信号;
沿航向合成孔径处理模块,用于对深度向压缩后信号进行沿航向合成孔径处理,由此获得成像信号;
跨航向的相位补偿处理模块,用于在空域上将跨航向合成孔径划分成若干个子阵,计算成像信号的跨航向的MVDR波束形成的加权因子,由此计算跨航向波束形成,形成最后的三维图像。
实施例3
本发明的实施例3提供了一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现实施例1的方法。
实施例4
本发明的实施例4提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被处理器执行时使所述处理器执行实施例1的的方法。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (5)

1.一种基于MVDR的下视合成孔径三维成像方法,所述方法包括:
根据声纳系统工作参数计算声纳回波数字信号,对声纳回波数字信号进行深度向脉冲压缩处理,获得深度向压缩后信号;
对深度向压缩后信号进行沿航向合成孔径处理,同时实现跨航向的相位补偿,由此获得成像信号;
在空域上将跨航向合成孔径划分成若干个子阵,计算成像信号在跨航向的每个子阵的MVDR波束形成的加权因子,由此计算跨航向波束形成,形成最后的三维图像;
所述根据声纳系统工作参数计算声纳回波数字信号,对声纳回波数字信号进行深度向脉冲压缩处理,获得深度向压缩后信号;具体包括:
步骤1-1)下视合成孔径声纳沿y方向以速度v匀速直线航行,则第m个接收阵元的位置(xm,yR,0):
Figure FDA0002822778270000011
其中,0≤m≤M-1,M为接收阵元的个数;L表示接收阵孔径,y表示接收阵所在的沿航向坐标值;η表示沿航向基阵运动的慢变时间,v表示运动速度;
发射阵元的位置为(0,yT,0),yT=yR+t2r;采用等效相位中心(Xm,Y,0)表示接收阵第m个阵元的位置:
Figure FDA0002822778270000012
其中,t2r表示发射阵与接收阵所在的xOz之间的距离;
步骤1-2)计算等效相位中心(Xm,Y,0)与水下三维场景中目标点T=(x0,y0,z0)的距离Rm为:
Figure FDA0002822778270000013
由此得到下视合成孔径声纳各接收阵元的时延τ=2R/c,c为声速;
步骤1-3)采用线性调频信号的声纳发射信号为:
Figure FDA0002822778270000021
其中f表示载波频率,Kr表示线性调频信号的调频率,Tr为脉冲宽度,tk表示第k个时域采样时刻;
经目标反射后的回波信号经过解调后表示为:
Figure FDA0002822778270000022
其中,σ表示回波信号幅度;
步骤1-4)对回波信号进行深度向脉冲压缩处理,获得深度向压缩后信号eem(tk,y):
eem(tk,y)=Arsinc[KrTp(tk-2Rm/c)]·exp(-j4πfRm/c) (7)
其中,Tp表示LFM脉冲信号的脉冲宽度;Ar表示目标散射强度。
2.根据权利要求1所述的基于MVDR的下视合成孔径三维成像方法,其特征在于,所述对深度向压缩后信号进行沿航向合成孔径处理,同时实现跨航向的相位补偿,由此获得成像信号;具体包括:
步骤2-1)计算每个像素点每个阵元的时延参数Δtm,i
Figure FDA0002822778270000023
其中,i表示第i个像素点;(xi,yi,zi)为第i个像素点的坐标值;
步骤2-2)沿航向合成孔径成像处理表达式为:
Figure FDA0002822778270000024
其中,方位向慢变时间η=pη×prt,prt表示脉冲重复周期,P表示第i个像素点声波照射的脉冲个数。
3.根据权利要求2所述的基于MVDR的下视合成孔径三维成像方法,其特征在于,所述在空域上将跨航向合成孔径划分成若干个子阵,计算成像信号的跨航向的MVDR波束形成的加权因子,由此计算跨航向波束形成,形成最后的三维图像,具体包括:
步骤3-1)在空域上将跨航向实孔径阵列分成多个子阵,每个子阵包含Msub个阵元,第sn个子阵序列表示为:
Figure FDA0002822778270000031
其中,0≤sn≤NSn=M-Msub;NSn表示空域平均的子阵数;
步骤3-2)计算空域-时域平均的协方差矩阵:
Figure FDA0002822778270000032
其中,NQ=2Q+1表示时域平均的采样点数,Q为前后向采样点数;若k-Q≤0,则
Figure FDA0002822778270000033
Figure FDA0002822778270000034
为Msub×Msub维的协方差矩阵;
步骤3-3)对协方差矩阵
Figure FDA0002822778270000035
进行对角加载处理,得到加载处理后的矩阵
Figure FDA0002822778270000036
Figure FDA0002822778270000037
其中,I表示Msub×Msub维的单位矩阵,tr{·}表示矩阵的迹;
步骤3-4)根据矩阵
Figure FDA0002822778270000038
计算MVDR波束形成的加权因子w(tk):
Figure FDA0002822778270000039
其中,a表示Msub×1维的单位矢量;
步骤3-5)根据MVDR波束形成的加权因子,计算跨航向MVDR波束形成,则三维成像第i个像素点的波束能量Ii的计算表示式为:
Figure FDA00028227782700000310
4.一种计算机设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至3中任一项所述的方法。
5.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序当被处理器执行时使所述处理器执行权利要求1至3任一项所述的方法。
CN201910589093.9A 2019-07-02 2019-07-02 一种基于mvdr的下视合成孔径三维成像方法及系统 Active CN110412585B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910589093.9A CN110412585B (zh) 2019-07-02 2019-07-02 一种基于mvdr的下视合成孔径三维成像方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910589093.9A CN110412585B (zh) 2019-07-02 2019-07-02 一种基于mvdr的下视合成孔径三维成像方法及系统

Publications (2)

Publication Number Publication Date
CN110412585A CN110412585A (zh) 2019-11-05
CN110412585B true CN110412585B (zh) 2021-03-16

Family

ID=68358687

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910589093.9A Active CN110412585B (zh) 2019-07-02 2019-07-02 一种基于mvdr的下视合成孔径三维成像方法及系统

Country Status (1)

Country Link
CN (1) CN110412585B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111487628B (zh) * 2020-05-19 2022-05-03 中国科学院声学研究所 一种下视多波束合成孔径成像声纳“零度”干扰抑制方法
CN113009464B (zh) * 2021-03-05 2022-08-26 中国人民解放军海军航空大学 基于线性约束最小方差准则的稳健自适应脉冲压缩方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2803658B2 (ja) * 1996-11-06 1998-09-24 日本電気株式会社 合成開口ソーナーシステム
CN102176008B (zh) * 2010-12-22 2013-07-10 中国船舶重工集团公司第七一五研究所 一种三维地层成像的相控方位滤波方法
CN103576157A (zh) * 2012-07-18 2014-02-12 中国科学院声学研究所 一种基于多维波形编码的合成孔径声纳成像方法及系统
CN104330787B (zh) * 2013-12-30 2017-01-18 河南科技大学 水下运动阵列多目标检测和方位估计一体化方法
CN105022050A (zh) * 2014-04-16 2015-11-04 中国科学院声学研究所 一种多传感器阵列的水声信道离散噪声源抑制方法
CN109444901B (zh) * 2018-11-14 2021-02-26 杭州电子科技大学 一种异构环境下多子阵sas子孔径成像方法

Also Published As

Publication number Publication date
CN110412585A (zh) 2019-11-05

Similar Documents

Publication Publication Date Title
Hunter et al. The wavenumber algorithm for full-matrix imaging using an ultrasonic array
CN112505710B (zh) 一种多波束合成孔径声呐三维成像算法
CN103033816B (zh) 基于圆弧扫描转换的合成孔径聚焦超声成像实现方法
CN110907938B (zh) 一种近场的快速下视合成孔径三维成像方法
Moghimirad et al. Synthetic aperture ultrasound Fourier beamformation using virtual sources
CN108490443B (zh) 基于解析解及NUFFT的多子阵合成孔径声纳ωk成像算法
CN112505666B (zh) 一种二维多波束合成孔径声呐目标回波仿真方法
CN110412587B (zh) 一种基于解卷积的下视合成孔径三维成像方法及系统
CN109407070B (zh) 一种高轨平台地面运动目标检测方法
CN110412585B (zh) 一种基于mvdr的下视合成孔径三维成像方法及系统
CN109489796B (zh) 一种基于单元辐射法的水下复杂结构辐射噪声源定位识别与声辐射预报方法
CN109100711B (zh) 一种深海环境下单基地主动声纳低运算量三维定位方法
CN109061654B (zh) 一种深海环境下单圆环阵主动三维定位方法
CN110879391B (zh) 基于电磁仿真和弹载回波仿真的雷达图像数据集制作方法
CN109991608B (zh) 一种基于逆合成孔径原理的水下目标声纳成像方法
CN111487628A (zh) 一种下视多波束合成孔径成像声纳“零度”干扰抑制方法
CN106886025A (zh) 同向双基地多波束合成孔径声纳的快速时域成像方法
Wang et al. Upsampling based back projection imaging algorithm for multi-receiver synthetic aperture sonar
Wei et al. Theoretical and experimental study on multibeam synthetic aperture sonar
Liu et al. High-resolution swath bathymetry using MIMO sonar system
CN111580112A (zh) 基于平面波的水下声呐传感器阵列成像方法
CN116794643A (zh) 一种基于声反射断层扫描成像的逆投影方法
Yang et al. Improved FK migration based on interpolation method for GPR imaging
CN106918809B (zh) 快速干涉合成孔径声纳原始回波时域仿真方法
Murino et al. A confidence-based approach to enhancing underwater acoustic image formation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant