CN110397733B - 一种基于模型预测控制的无级变速器夹紧力优化方法 - Google Patents

一种基于模型预测控制的无级变速器夹紧力优化方法 Download PDF

Info

Publication number
CN110397733B
CN110397733B CN201910291380.1A CN201910291380A CN110397733B CN 110397733 B CN110397733 B CN 110397733B CN 201910291380 A CN201910291380 A CN 201910291380A CN 110397733 B CN110397733 B CN 110397733B
Authority
CN
China
Prior art keywords
clamping force
cvt
control
formula
driven pulley
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910291380.1A
Other languages
English (en)
Other versions
CN110397733A (zh
Inventor
韩玲
刘鸿祥
任磊磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN201910291380.1A priority Critical patent/CN110397733B/zh
Publication of CN110397733A publication Critical patent/CN110397733A/zh
Application granted granted Critical
Publication of CN110397733B publication Critical patent/CN110397733B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66227Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members controlling shifting exclusively as a function of speed and torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • F16H61/66272Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing
    • F16H2061/66277Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members characterised by means for controlling the torque transmitting capability of the gearing by optimising the clamping force exerted on the endless flexible member

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

本文公开了一种基于模型预测控制的无级变速器夹紧力优化方法,包括:根据传动系统运动学原理,建立CVT动态方程及状态空间表达式,设计CVT模型预测控制器;考虑夹紧力具体约束限制,将无约束优化问题转化为二次规划问题,利用预测控制器求解每一时刻的夹紧力最优控制序列,构造最优夹紧力输入。

Description

一种基于模型预测控制的无级变速器夹紧力优化方法
技术领域
本发明涉及变速器控制领域,具体涉及一种基于模型预测控制的无级变速器夹紧力优化方法。
背景技术
金属带式无级变速器具有突出的平顺性和较好的燃油经济性,作为一种理想的传动装置被广泛的应用于众多车型上。根据研究表明:同等条件下,装配CVT的车型燃油效率可提高10%~15%,有害物质排放降低10%以上。与此同时,金属带式结构能够使CVT实现速比的连续变化,相比于其他类型的变速器能更好地实现与发动机的匹配,降低传动损失和污染排放。夹紧力是加载在金属带轮上的轴向推力,其变化是否准确、合理将直接影响CVT的传动效率。夹紧力过大会导致额外的传动损失,降低CVT的传动效率,加剧金属带与带轮之间的磨损消耗,夹紧力过小会造成金属带与带轮之间发生宏观滑移,导致金属带传动失效,对传动系统造成不可逆的损伤,严重降低其实际使用寿命。因此,如何合理、准确地控制夹紧力,进一步提高其传动效率,一直是研究的重点与热点。
安全系数法作为夹紧力的传统控制手段,不足之处在于无论实际所需夹紧力过大或是过小,安全系数β恒定,因此该数值通常要满足最恶劣的工况目标进行设定,在不需要大扭矩的工况下,夹紧力安全余量仍然过大。另外,该控制方法在紧急加速、紧急制动等突变工况下没有在线及时应对的控制策略,导致CVT控制系统存在对突变工况反应时滞、带轮易发生打滑及鲁棒性差等不利因素。本发明针对夹紧力优化问题,提出基于模型预测的夹紧力控制策略。MPC控制策略因其具有实时预测、滚动优化及反馈校正的特点,近年来被广泛应用于电力电网、建筑物节能控制等领域。在夹紧力控制方面,MPC控制策略通过不断对优化问题进行在线滚动求解,实现系统的最优夹紧力获取。相较于传统安全系数法的控制策略,MPC控制策略能够准确计算系统实时所需的夹紧力,避免因夹紧力不合理导致的传动效率降低问题,在线重复求解具有鲁棒性强,计算方便等优势,适用于解决CVT系统目标优化控制问题。
发明内容
本发明公开了一种基于模型预测控制的无级变速器夹紧力优化方法,以合理、准确地控制夹紧力,进一步提高CVT传动效率。
本发明所采取的技术方案为:
一种基于模型预测控制的无级变速器夹紧力优化方法,包括如下步骤:
步骤S1、根据传动系统动力学原理建立CVT动态方程:
Figure GDA0002126540620000011
Figure GDA0002126540620000012
式中,ωp为主动带轮的角速度,ωs为从动带轮的角速度,Tin,p为作用于主动轮上的转矩,Fax为加载在从动带轮的轴向推力,Rp、Rs分别为主、从动轮工作半径,μ为金属带轮与主动带轮间的摩擦因数,Tr为车辆行驶阻力转换到CVT从动轴上的阻力矩,Cp、Cs分别为主、从动轴阻尼系数,η为CVT传动效率,λ为锥盘母线与带轮轴线垂面夹角,Jp、Js分别为CVT输入端、输出端转动惯量。
步骤S2、设计基于MPC的夹紧力控制器,其过程包括如下子步骤:
步骤S2.1、根据CVT动态方程及控制需求,定义主、从动带轮的角速度ωp、ωs为状态变量,输入转矩Tin,p、从动带轮的轴向推力Fax为输入变量,从动带轮角速度ωs为输出变量,Tr为车辆行驶阻力转换到CVT从动轴上的阻力矩。
因此,CVT状态空间表达式可以表示为:
Figure GDA0002126540620000021
y=Cx (4)
式中:
x=[ωp ωs]T
u=[Tin,p Fax]T
y=ωs
d=Tr
C=[0 1]
Figure GDA0002126540620000022
Figure GDA0002126540620000023
Figure GDA0002126540620000024
步骤S2.2、对步骤S2.1的状态空间表达式进行离散化,Ts为控制器采样周期,离散化模型如公式(5)(6)所示:
x(k+1)=Acx(k)+Bcu(k)+Bdcd(k) (5)
y(k)=Cx(k) (6)
式中:
Figure GDA0002126540620000025
Figure GDA0002126540620000026
Figure GDA0002126540620000031
为削减夹紧力控制过程中会产生的静差,将离散化模型写为增量模型形式:
Δx(k+1)=AcΔx(k)+BcΔu(k)+BdcΔd(k) (7)
y(k)=CΔx(k)+y(k-1) (8)
步骤S2.3、预测时域Np和控制时域Nu分别取值10和2,以Δx(k)作为预测的起点,由公式可以预测k+1时刻的状态如下:
Δx(k+1|k)=AcΔx(k)+BcΔu(k)+BdcΔd(k) (9)
其中,k+1|k表示在k时刻对k+1时刻做出的预测,并且进一步预测k+Np时刻的状态:
Figure GDA0002126540620000032
同理,由公式预测k+1至k+Np的被控输出为
y(k+1|k)=CΔx(k+1|k)+y(k) (11)
Figure GDA0002126540620000033
y(k+Np|k)=CΔx(k+Np|k)+y(k+Np-1|k) (12)
在k时刻,定义系统的预测输出Y(k+1|k)
Figure GDA0002126540620000034
CVT的输入变量有Tin,p和Fax,其中仅有Fax是夹紧力控制器的可控变量,因此,在k时刻优化控制输入序列ΔU(k)被定义为
Figure GDA0002126540620000035
那么,对系统未来Np步的输出预测可以由下面的预测方程计算:
Y(k+1|k)=SxΔx(k)+Icy(k)+SuΔU(k)+SdΔd(k)(15)
式中:
Ic=[I I … I]T
Figure GDA0002126540620000036
Figure GDA0002126540620000041
Figure GDA0002126540620000042
步骤S2.4、CVT夹紧力控制的优化问题主要是寻求最优夹紧力、提高传动效率并降低整车油耗,即CVT从动带轮角速度ωs能够跟踪期望值Re。因此,CVT夹紧力优化问题描述为目标函数:
Figure GDA0002126540620000043
J=||Γy(Y(k+1|k)-Re(k+1))||2+||ΓuΔU(k)||2+ρε2 (17)
式中:
Figure GDA0002126540620000044
Figure GDA0002126540620000045
在仿真过程中,设定γy,i=0.13,i=1,2,…Np;γu,i=1,i=1,2,…Nu。为减少运算的复杂程度,保证控制的实时性,在目标函数中引入松弛因子ε,ρ为ε的权重系数,当系统跟踪误差较大时取较小值,反之取较大值。
设J1=||Γy(Y(k+1|k)-Re(k+1))||2 (18)
J2=||ΓuΔU(k)||2 (19)
式中,Γy、Γu分别表示误差权系数和控制权系数;Re(k+1)为从动带轮角速度参考序列,因公式(13)中共有Np个对不同时刻的预测,所以定义Re(k+1)=[r(k+1) r(k+2) … r(k+Np)]T,其中
Figure GDA0002126540620000046
i=1,2,…,Np
Figure GDA0002126540620000047
为从动带轮角速度期望轨迹;J1表示预测时域内CVT从动带轮实际输出角速度与参考角速度的差的平方加权值,为使系统预测输出能尽可能跟踪参考值,将二者差值的最小值作为优化目标;J2表示控制时域内夹紧力变化量的平方加权值,起抑制夹紧力变化幅度的作用。
步骤S2.5、实际应用过程中,夹紧力Fax大小受限,优化时分别将转矩可靠传递的最小值及液压管路夹紧力控制阀所能传递的最大值作为Fax的上下限,控制输入具体约束形式如下
Figure GDA0002126540620000051
因此,目标函数可以转化为二次规划问题并进行求解。通过不断求解不同采样时刻的优化问题,并将得到的最优控制序列的第一分量作用于CVT控制系统,获得最终的优化结果。
优选的是,所述作用于主动轮上的转矩Tin,p由公式(21)表示:
Figure GDA0002126540620000052
本发明所具有的有益效果:
基于MPC控制策略所设计的夹紧力控制器能够准确计算系统实时所需的夹紧力,避免因夹紧力不合理导致的传动效率降低问题,在线重复求解具有鲁棒性强,计算方便等优势,适用于解决CVT系统目标优化控制问题。
附图说明
图1为本发明所述的模型预测控制系统结构框图。
图2为本发明所述的CVT动力传动简图。
图3为本发明所述的夹紧力试验台结构简图。
具体实施方式
下面结合附图对本发明进行详细说明。
本发明公开一种基于模型预测控制的无级变速器夹紧力优化方法,如图1所示,包括:
根据传动系统动力学原理建立CVT动态方程,CVT动力传动简图如图2所示。
Figure GDA0002126540620000053
Figure GDA0002126540620000054
由公式(1)、(2)得
Figure GDA0002126540620000055
Fax=Fn cosλ (4)
由公式(3)、(4)得
Figure GDA0002126540620000056
Figure GDA0002126540620000057
式中,Ft为金属带与主动带轮之间的摩擦力;Fn为主动带轮端面垂直夹紧力;Tin,p,Tout,s分别为作用于主、从动轮上的转矩;Rp,Rs分别为主、从动轮工作半径;μ为金属带轮与主动带轮间的摩擦因数;Fax为加载在从动带轮的轴向推力;λ为锥盘母线与带轮轴线垂面夹角。
根据传动系统动力学原理建立CVT动态方程:
Figure GDA0002126540620000061
Figure GDA0002126540620000062
式中,ωp为主动带轮的角速度,ωs为从动带轮的角速度,Tin,p为作用于主动轮上的转矩,Fax为加载在从动带轮的轴向推力,Rp、Rs分别为主、从动轮工作半径,μ为金属带轮与主动带轮间的摩擦因数,Tr为车辆行驶阻力转换到CVT从动轴上的阻力矩,Cp、Cs分别为主、从动轴阻尼系数,η为CVT传动效率,λ为锥盘母线与带轮轴线垂面夹角,Jp、Js分别为CVT输入端、输出端转动惯量。
搭建夹紧力试验台架,夹紧力试验台结构简图如图3所示。其中,驱动电动机和负载电动机分别代表发动机以及路面负载,转矩转速传感器能够采集CVT主、从动轮的转矩Tp、Ts及转速ωp、ωs,激光位移传感器和压力传感器能够分别获得主动可移动缸的位移量Xp以及主、从动缸压力Pp、Ps
设计基于MPC的夹紧力控制器,其过程包括如下子步骤:
子步骤1、根据CVT动态方程及控制需求,定义主、从动带轮的角速度ωp、ωs为状态变量,输入转矩Tin,p、从动带轮的轴向推力Fax为输入变量,从动带轮角速度ωs为输出变量,Tr为车辆行驶阻力转换到CVT从动轴上的阻力矩。因此,CVT状态空间表达式可以表示为:
Figure GDA0002126540620000063
y=Cx (10)
式中:
x=[ωp ωs]T
u=[Tin,p Fax]T
y=ωs
d=Tr
C=[0 1]
Figure GDA0002126540620000064
Figure GDA0002126540620000071
Figure GDA0002126540620000072
子步骤2、对子步骤1的状态空间表达式进行离散化,Ts为控制器采样周期,离散化模型如公式(11)(12)所示:
x(k+1)=Acx(k)+Bcu(k)+Bdcd(k) (11)
y(k)=Cx(k) (12)
式中:
Figure GDA0002126540620000073
Figure GDA0002126540620000074
Figure GDA0002126540620000075
为削减夹紧力控制过程中会产生的静差,将离散化模型写为增量模型形式:
Δx(k+1)=AcΔx(k)+BcΔu(k)+BdcΔd(k) (13)
y(k)=CΔx(k)+y(k-1) (14)
子步骤3、预测时域Np和控制时域Nu分别取值10和2,以Δx(k)作为预测的起点,由公式可以预测k+1时刻的状态如下:
Δx(k+1|k)=AcΔx(k)+BcΔu(k)+BdcΔd(k) (15)
其中,k+1|k表示在k时刻对k+1时刻做出的预测,并且进一步预测k+Np时刻的状态:
Figure GDA0002126540620000076
同理,由公式预测k+1至k+Np的被控输出为
y(k+1|k)=CΔx(k+1|k)+y(k) (17)
Figure GDA0002126540620000077
y(k+Np|k)=CΔx(k+Np|k)+y(k+Np-1|k) (18)
在k时刻,定义系统的预测输出Y(k+1|k)
Figure GDA0002126540620000078
CVT的输入变量有Tin,p和Fax,其中仅有Fax是夹紧力控制器的可控变量,因此,在k时刻优化控制输入序列ΔU(k)被定义为
Figure GDA0002126540620000081
那么,对系统未来Np步的输出预测可以由下面的预测方程计算:
Y(k+1|k)=SxΔx(k)+Icy(k)+SuΔU(k)+SdΔd(k) (21)
式中:
Ic=[I I … I]T
Figure GDA0002126540620000082
Figure GDA0002126540620000083
Figure GDA0002126540620000084
子步骤4、CVT夹紧力控制的优化问题主要是寻求最优夹紧力、提高传动效率并降低整车油耗,即CVT从动带轮角速度ωs能够跟踪期望值Re。因此,CVT夹紧力优化问题描述为目标函数:
Figure GDA0002126540620000085
J=||Γy(Y(k+1|k)-Re(k+1))||2+||ΓuΔU(k)||2+ρε2 (23)
式中:
Figure GDA0002126540620000086
Figure GDA0002126540620000087
在仿真过程中,设定γy,i=0.13,i=1,2,…Np;γu,i=1,i=1,2,…Nu。为减少运算的复杂程度,保证控制的实时性,在目标函数中引入松弛因子ε,ρ为ε的权重系数,当系统跟踪误差较大时取较小值,反之取较大值。
设J1=||Γy(Y(k+1|k)-Re(k+1))||2 (24)
J2=||ΓuΔU(k)||2 (25)
式中,Γy、Γu分别表示误差权系数和控制权系数;Re(k+1)为从动带轮角速度参考序列,因公式(19)中共有Np个对不同时刻的预测,所以定义Re(k+1)=[r(k+1) r(k+2) … r(k+Np)]T,其中
Figure GDA0002126540620000091
i=1,2,…,Np
Figure GDA0002126540620000092
为从动带轮角速度期望轨迹;J1表示预测时域内CVT从动带轮实际输出角速度与参考角速度的差的平方加权值,为使系统预测输出能尽可能跟踪参考值,将二者差值的最小值作为优化目标;J2表示控制时域内夹紧力变化量的平方加权值,起抑制夹紧力变化幅度的作用。
子步骤5、实际应用过程中,夹紧力Fax大小受限,优化时分别将转矩可靠传递的最小值及液压管路夹紧力控制阀所能传递的最大值作为Fax的上下限,控制输入具体约束形式如下
Figure GDA0002126540620000093
因此,目标函数可以转化为二次规划问题并进行求解。通过不断求解不同采样时刻的优化问题,并将得到的最优控制序列的第一分量作用于CVT控制系统,获得最终的优化结果。同时,借助Simulink和AMEsim仿真平台对控制策略有效性进行验证,其中,AMEsim中包括CVT模块、整车模块和系统液压模块,Simulink中包括CVT控制模块、发动机模块和油门、制动踏板模块,建模过程中所需具体参数如表1所示。
表1 模型仿真参数
Figure GDA0002126540620000094
上述内容为本发明的具体实施方案,但本发明并不限于说明书和具体实施方案中的操作运动,对于熟悉本领域的人员来说,本发明可以实现众多变化。

Claims (1)

1.一种基于模型预测控制的无级变速器夹紧力优化方法,其特征在于,包括如下步骤:
步骤S1、根据传动系统中无级变速器的动力学原理建立CVT动态方程:
Figure FDA0003042046490000011
Figure FDA0003042046490000012
式中,ωp为主动带轮的角速度,ωs为从动带轮的角速度,Tin,p为作用于主动轮上的转矩,Fax为加载在从动带轮的轴向推力,Rp、Rs分别为主、从动轮工作半径,μ为金属带轮与主动带轮间的摩擦因数,Tr为车辆行驶阻力转换到CVT从动轴上的阻力矩,Cp、Cs分别为主、从动轴阻尼系数,η为CVT传动效率,λ为锥盘母线与带轮轴线垂面夹角,Jp、Js分别为CVT输入端、输出端转动惯量;
步骤S2、设计基于MPC的夹紧力控制器,其过程包括如下子步骤:
步骤S2.1、根据CVT动态方程及控制需求,定义主、从动带轮的角速度ωp、ωs为状态变量,输入转矩Tin,p、从动带轮的轴向推力Fax为输入变量,从动带轮角速度ωs为输出变量,Tr为车辆行驶阻力转换到CVT从动轴上的阻力矩,因此,CVT状态空间表达式能够表示为:
Figure FDA0003042046490000013
y=Cx (4)
式中:x=[ωp ωs]T
u=[Tin,p Fax]T
y=ωs
d=Tr
C=[0 1]
Figure FDA0003042046490000014
Figure FDA0003042046490000015
Figure FDA0003042046490000021
步骤S2.2、对步骤S2.1的状态空间表达式进行离散化,Ts为控制器采样周期,离散化模型如公式(5)(6)所示:
x(k+1)=Acx(k)+Bcu(k)+Bdcd(k) (5)
y(k)=Cx(k) (6)
式中:
Figure FDA0003042046490000022
Figure FDA0003042046490000023
Figure FDA0003042046490000024
为削减夹紧力控制过程中会产生的静差,将离散化模型写为增量模型形式:
Δx(k+1)=AcΔx(k)+BcΔu(k)+BdcΔd(k) (7)
y(k)=CΔx(k)+y(k-1) (8)
步骤S2.3、预测时域Np和控制时域Nu分别取值10和2,以Δx(k)作为预测的起点,由公式能够预测k+1时刻的状态如下:
Δx(k+1|k)=AcΔx(k)+BcΔu(k)+BdcΔd(k) (9)
其中,k+1|k表示在k时刻对k+1时刻做出的预测,并且进一步预测k+Np时刻的状态:
Δx(k+Np|k)=AcΔx(k+Np-1|k)+BcΔu(k+Np-1)+BdcΔd(k+Np-1) (10)
同理,由公式预测k+1至k+Np的被控输出为
y(k+1|k)=CΔx(k+1|k)+y(k) (11)
Figure FDA0003042046490000025
y(k+Np|k)=CΔx(k+Np|k)+y(k+Np-1|k) (12)
在k时刻,定义系统的预测输出Y(k+1|k)
Figure FDA0003042046490000026
CVT的输入变量有Tin,p和Fax,其中仅有Fax是夹紧力控制器的可控变量,因此,在k时刻优化控制输入序列ΔU(k)被定义为
Figure FDA0003042046490000031
那么,对系统未来Np步的输出预测能够由下面的预测方程计算:
Y(k+1|k)=SxΔx(k)+Icy(k)+SuΔU(k)+SdΔd(k) (15)
式中:Ic=[I I … I]T
Figure FDA0003042046490000032
Figure FDA0003042046490000033
Figure FDA0003042046490000034
步骤S2.4、CVT夹紧力控制的优化问题主要是寻求最优夹紧力、提高传动效率并降低整车油耗,即CVT从动带轮角速度ωs能够跟踪期望值Re,因此,CVT夹紧力优化问题描述为目标函数:
Figure FDA0003042046490000035
J=||Γy(Y(k+1|k)-Re(k+1))||2+||ΓuΔU(k)||2+ρε2 (17)
式中:
Figure FDA0003042046490000036
Figure FDA0003042046490000037
在仿真过程中,设定γy,i=0.13,i=1,2,…Np;γu,i=1,i=1,2,…Nu,为减少运算的复杂程度,保证控制的实时性,在目标函数中引入松弛因子ε,ρ为ε的权重系数,当系统跟踪误差较大时取较小值,反之取较大值;
设J1=||Γy(Y(k+1|k)-Re(k+1))||2 (18)
J2=||ΓuΔU(k)||2 (19)
式中,Γy、Γu分别表示误差权系数和控制权系数;Re(k+1)为从动带轮角速度参考序列,因公式(13)中共有Np个对不同时刻的预测,所以定义Re(k+1)=[r(k+1) r(k+2) … r(k+Np)]T,其中
Figure FDA0003042046490000041
Figure FDA0003042046490000042
为从动带轮角速度期望轨迹;J1表示预测时域内CVT从动带轮实际输出角速度与参考角速度的差的平方加权值,为使系统预测输出能尽可能跟踪参考值,将二者差值的最小值作为优化目标;J2表示控制时域内夹紧力变化量的平方加权值,起抑制夹紧力变化幅度的作用;
步骤S2.5、实际应用过程中,夹紧力Fax大小受限,优化时分别将转矩可靠传递的最小值及液压管路夹紧力控制阀所能传递的最大值作为Fax的上下限,控制输入具体约束形式如下
Figure FDA0003042046490000043
因此,目标函数能够转化为二次规划问题并进行求解,通过不断求解不同采样时刻的优化问题,并将得到的最优控制序列的第一分量作用于CVT控制系统,获得最终的优化结果;
所述作用于主动轮上的转矩Tin,p由公式(21)表示:
Figure FDA0003042046490000044
CN201910291380.1A 2019-04-12 2019-04-12 一种基于模型预测控制的无级变速器夹紧力优化方法 Active CN110397733B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910291380.1A CN110397733B (zh) 2019-04-12 2019-04-12 一种基于模型预测控制的无级变速器夹紧力优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910291380.1A CN110397733B (zh) 2019-04-12 2019-04-12 一种基于模型预测控制的无级变速器夹紧力优化方法

Publications (2)

Publication Number Publication Date
CN110397733A CN110397733A (zh) 2019-11-01
CN110397733B true CN110397733B (zh) 2021-07-09

Family

ID=68322493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910291380.1A Active CN110397733B (zh) 2019-04-12 2019-04-12 一种基于模型预测控制的无级变速器夹紧力优化方法

Country Status (1)

Country Link
CN (1) CN110397733B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110778670B (zh) * 2019-11-01 2021-09-17 长春工业大学 一种基于模型预测控制的无级变速器综合优化控制策略

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19620328A1 (de) * 1996-05-21 1997-11-27 Zahnradfabrik Friedrichshafen Regelung zum Schließen einer Reibschlußverbindung
JP6476025B2 (ja) * 2015-03-17 2019-02-27 ジヤトコ株式会社 車両制御装置、及びその制御方法
US10125712B2 (en) * 2017-02-17 2018-11-13 GM Global Technology Operations LLC Torque security of MPC-based powertrain control
CN108284836B (zh) * 2018-01-25 2019-12-24 吉林大学 一种车辆纵向跟随控制方法

Also Published As

Publication number Publication date
CN110397733A (zh) 2019-11-01

Similar Documents

Publication Publication Date Title
KR101179284B1 (ko) 무단 변속기의 제어 방법
CN100422601C (zh) 变矩器的闭锁控制
CN110949366B (zh) 应用智能车辆纵向速度控制的rbf神经网络的终端滑模控制方法
CN102177359A (zh) 机动车的动力系统装置中的分离离合器的调整方法及动力系统装置
CN110077458B (zh) 一种基于自抗扰控制的智能车转角控制方法
Meng et al. Smooth shift control of an automatic transmission for heavy-duty vehicles
CN109635433A (zh) 一种改进灰色预测的混合动力汽车自适应pid动态控制方法
CN110778670B (zh) 一种基于模型预测控制的无级变速器综合优化控制策略
CN110397733B (zh) 一种基于模型预测控制的无级变速器夹紧力优化方法
US9079574B2 (en) Method for controlling a motor vehicle powertrain
Li et al. Adaptive model predictive control of dual clutch transmission shift based on dynamic friction coefficient estimation
Zhang et al. Optimal clutch pressure control in shifting process of automatic transmission for heavy-duty mining trucks
CN113665558A (zh) 混动车辆变速器发电机调速控制离合器的结合方法
CN111677613B (zh) 一种发动机启动协调控制方法和系统
Cvok et al. An LQR approach of automatic transmission upshift control including use of off-going clutch within inertia phase
CN110737197B (zh) 一种基于无模型的柴油机转速自适应自抗扰控制方法
Yang et al. Integrated control of hydromechanical variable transmissions
JP5134220B2 (ja) 変速シミュレーション装置、変速シミュレーションプログラムおよび自動車
CN115822554A (zh) 一种旋挖钻机节能控制方法
Sakai et al. Torque demand control by nonlinear MPC with constraints for vehicles with variable valve lift engine
CN110018634B (zh) 一种提升控制力矩陀螺带宽的自适应框架控制系统及方法
Yang et al. An adaptive receding horizon-based flexible mode switching control strategy of parallel hybrid electric vehicles
He et al. Multi-state control strategy of starting for a wet friction clutch via a fuzzy logic algorithm
Klaassen et al. The Empact CVT: Modelling, simulation and experiments
Lei et al. Fuzzy PID Based Optimization of Starting Control for AMT Clutch of Heavy-duty Trucks

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant