CN110384805A - 一种超顺磁性氧化铁纳米团簇体及其制备方法和应用 - Google Patents

一种超顺磁性氧化铁纳米团簇体及其制备方法和应用 Download PDF

Info

Publication number
CN110384805A
CN110384805A CN201910697492.7A CN201910697492A CN110384805A CN 110384805 A CN110384805 A CN 110384805A CN 201910697492 A CN201910697492 A CN 201910697492A CN 110384805 A CN110384805 A CN 110384805A
Authority
CN
China
Prior art keywords
added
iron oxide
dissolve
solution
superparamagnetic iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910697492.7A
Other languages
English (en)
Inventor
孙夕林
吴丽娜
李迎波
王凯
杨丽丽
杨洁
刘爽
李晓娜
姜萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Harbin Medical University
Original Assignee
Harbin Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Medical University filed Critical Harbin Medical University
Priority to CN201910697492.7A priority Critical patent/CN110384805A/zh
Publication of CN110384805A publication Critical patent/CN110384805A/zh
Priority to NL2025687A priority patent/NL2025687B1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • A61K49/10Organic compounds
    • A61K49/12Macromolecular compounds
    • A61K49/126Linear polymers, e.g. dextran, inulin, PEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles
    • A61K49/1887Agglomerates, clusters, i.e. more than one (super)(para)magnetic microparticle or nanoparticle are aggregated or entrapped in the same maxtrix
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Epidemiology (AREA)
  • Nanotechnology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Compounds Of Iron (AREA)

Abstract

本发明公开了一种超顺磁性氧化铁纳米团簇体及其制备方法和应用。所述超顺磁性氧化铁纳米团簇体是以改进后的溶剂热法进行合成,以六水氯化铁(FeCl3·6H2O)为原料,用水热法合成了团簇状的产物Fe3O4,并通过改变混合溶剂的配比使其尺寸在60‑200nm范围内可调。本发明所制备的超顺磁性氧化铁纳米团簇体由于其良好的生物相容性、独特的磁学特性以及pH响应等特性,不仅可作为MRI‑T2加权纳米探针用于磁共振分子成像,同时还具有对pH响应的特性。

Description

一种超顺磁性氧化铁纳米团簇体及其制备方法和应用
技术领域
本发明属于纳米磁性材料技术领域,涉及一种超顺磁性氧化铁纳米团簇体及其制备方法和应用。
背景技术
在现有技术中,随着开发制造、组装和改性技术的快速发展,纳米材料在高灵敏度、高选择性分离器和传感器等高新技术领域的应用上表现出了良好的前景。研究纳米材料奇特物性及机理,并对其特性加以利用,构成了纳米科学与技术的核心内容。近年来,纳米材料,尤其是用于癌症诊断和治疗的新纳米颗粒的开发,使得纳米生物技术在蛋白质和细胞的磁分离,量子点替代荧光素,磁共振分子成像探针研发和医学诊断等方面都取得了前所未有的进展。
超顺磁性氧化铁纳米粒子(superparamagnetic iron oxide nanoparticles,SPION)是用于生物医学应用的研究最多且功能最多的纳米材料,其具有高度生物相容性,对健康组织的毒性可忽略不计,并因优异的表面化学性质的已广泛用于磁共振成像(MRI),组织修复,免疫测定,热疗,药物递送和细胞分离。纳米Fe3O4作为一种磁性纳米微粒, 具有单磁畴结构, 其矫顽力很高, 用它制作磁记录材料可以提高信噪比, 改善图象质量。由于Fe3O4纳米粒子具有饱和磁化强度高等特点, 故而常用于磁共振T2加权成像。
到目前为止,人们已经研究出了许多制备纳米Fe3O4的工艺,包括共沉淀法、溶胶凝胶(sol-gel)法、微乳液法、微波合成法、多元醇法、机械研磨法、高温分解法和水热法等。超顺磁性氧化铁纳米颗粒(SPION)广泛应用于生物医学领域,如作为MRI-T2加权成像纳米材料用于肝脾、淋巴结和肿瘤等组织的显像,磁热治疗,磁分离以及肿瘤的诊断及治疗,因肿瘤微环境(TME)与正常组织不同,通常具有营养分布不均匀,氧合不足(缺氧),酸性pH(酸中毒)和高氧化还原状态,从而导致肿瘤微环境呈弱酸环境这样的特点。如果能够合成一种Fe3O4纳米粒子,既具备MRI-T2加权成像的特性,又具有肿瘤微环境响应特性,能够在弱酸条件下解离为小尺寸纳米颗粒,穿透至肿瘤深部释放出铁离子,从而联合其他治疗如化学疗法等促进肿瘤细胞凋亡,将对肿瘤诊疗一体化研究具有重要的意义。然而,目前研究合成的Fe3O4未见具有肿瘤微环境响应功能特性的。
发明内容
本发明所要解决的技术问题是针对现有技术的上述不足,研发一种超顺磁性氧化铁纳米团簇体及其制备方法和应用,该方法合成的Fe3O4尺寸可控,且纳米团簇体可响应肿瘤弱酸微环境。
为实现上述目的,本发明研发如下技术方案:
一种超顺磁性氧化铁纳米团簇体制备方法,其特征在于步骤如下:
(1)称取FeCl3·6H2O于容器,加入乙二醇(EG)溶液和二甘醇(DEG)溶液,磁力搅拌,使其溶解;
(2)向溶液中加入聚丙烯酸(PAA),搅拌,使其溶解。
(3)加入乙酸钠(CH3COONa)和氢氧化钠(NaOH),搅拌,并升温使其溶解形成前驱物。
(4)将上述前驱物转移至水热反应釜,密封后放入鼓风干燥箱,加热至180~280℃,反应4~16小时后关闭鼓风干燥箱使其自然冷却。
(5)取出胶状产物,加入无水乙醇和水并超声洗涤,利用磁铁进行分离,同样方法再洗涤分离一次;将分离所得固体置于真空干燥箱常温干燥12~36小时,将得到的Fe3O4干粉密封保存。
上述方案中,EG与DEG溶液的的总体积为30mL,EG/DEG溶液的比例为体积比30/0-10/20(v/v)。
优选,一种超顺磁性氧化铁纳米团簇体制备方法,其特征在于:
(1)称取FeCl3·6H2O于烧杯,加入乙二醇(EG)溶液和二甘醇(DEG)溶液,磁力搅拌10min使其溶解;
(2)向溶液中加入聚丙烯酸(PAA),搅拌30min,使其溶解;
(3)加入乙酸钠(CH3COONa)和氢氧化钠(NaOH),搅拌40min并升温使其溶解形成前驱物;
(4)将上述前驱物转移至水热反应釜,密封后放入鼓风干燥箱,加热至210℃,反应10小时后关闭鼓风干燥箱使其自然冷却;
(5)取出胶状产物,加入无水乙醇和水并超声洗涤,利用磁铁进行分离,同样方法再洗涤分离一次;将分离所得固体置于真空干燥箱常温干燥24小时,将得到的Fe3O4干粉密封保存。
本发明的优点是:
1、本发明操作简便易行,原材料成本低,合成反应在密闭环境中进行,对环境友好。2、合成的纳米团簇体尺寸可控性强,具有良好的单分散性和生物相容性。3、合成的纳米团簇体具有pH响应特性,在不同的pH条件下可分解为不同粒径大小的氧化铁纳米粒子,在磁共振上表现为不同的T2信号强度以及T2弛豫率。4、合成的纳米团簇体具有较高的T2弛豫率,为磁共振诊断或治疗提供了新的方法和技术。
附图说明
图1是本发明制备路线示意图。
图2是不同粒径大小超顺磁性氧化铁纳米颗粒的SEM图像。
图3是超顺磁性氧化铁纳米颗粒不同pH条件下phantom离体MR成像
图4是不同pH条件下测得的T2弛豫率数值。
具体实施方式
实施例1
一种超顺磁性氧化铁纳米团簇体的制备方法,其步骤包括:
(1)称取0.2162gFeCl3·6H2O于烧杯,加入EG溶液和DEG溶液,磁力搅拌10min使其溶解;其中EG与DEG的体积比为30mL:0mL。
(2)向溶液中加入0.5794g PAA,搅拌30min,使其溶解。
(3)加入2.5874g CH3COONa和0.1402g NaOH,搅拌40min并适当升温使其溶解形成前驱物。
(4)将上述前驱物转移至水热反应釜,密封后放入鼓风干燥箱,加热至210℃,反应10小时后关闭鼓风干燥箱使其自然冷却。
(5)取出胶状产物,加入100ml无水乙醇和水并超声洗涤5分钟,利用磁铁进行分离,同样方法再洗涤分离一次。将分离所得固体置于真空干燥箱常温干燥,将得到的Fe3O4干粉密封保存。然后进行进一步的粒径、形貌及磁共振性能的检测。具体结果见图2(200nm)
在合成过程中使用聚丙烯酸作为稳定剂,合成的Fe3O4颗粒在聚丙烯酸的交联作用下自组装形成纳米团簇体,聚丙烯酸具有pH响应的特性,合成的纳米团簇体在不同的pH条件下可分解为不同粒径大小的氧化铁纳米粒子。
通过控制不同体积比的乙二醇(DG)和二甘醇(DEG),该方法合成的Fe3O4尺寸可控。
在酸性条件下,纳米团簇体表面交联的聚丙烯酸(PAA)发生解离,包裹的Fe3O4纳米颗粒从团簇体分离为更小尺寸的纳米颗粒,所以说纳米团簇体可响应肿瘤弱酸微环境。
实施例2
一种超顺磁性氧化铁纳米团簇体的制备方法,其步骤包括:
1)称取0.2162gFeCl3·6H2O于烧杯,加入EG溶液和DEG溶液,磁力搅拌10min使其溶解;其中EG与DEG的体积比为20mL:10mL
(2)向溶液中加入0.5794g PAA,搅拌30min,使其溶解;
(3)加入2.5874g CH3COONa和0.1402g NaOH,搅拌40min并适当升温使其溶解形成前驱物;
(4)将上述前驱物转移至水热反应釜,密封后放入鼓风干燥箱,加热至210℃,反应10小时后关闭鼓风干燥箱使其自然冷却;
(5)取出胶状产物,加入100ml无水乙醇和水并超声洗涤5分钟,利用磁铁进行分离,同样方法再洗涤分离一次。将分离所得固体置于真空干燥箱常温干燥24h,将得到的Fe3O4干粉密封保存。然后进行进一步的粒径、形貌及磁共振性能的检测。然后进行进一步的粒径、形貌及磁共振性能的检测。具体结果见图2(140nm)
实施例3
一种超顺磁性氧化铁纳米团簇体的制备方法,其步骤包括:
(1)称取0.2162gFeCl3·6H2O于烧杯,加入EG溶液和DEG溶液,磁力搅拌10min使其溶解;其中EG与DEG的体积比为15mL:15mL
(2)向溶液中加入0.5794g PAA,搅拌30min,使其溶解;
(3)加入2.5874g CH3COONa和0.1402g NaOH,搅拌40min并适当升温使其溶解形成前驱物;
(4)将上述前驱物转移至水热反应釜,密封后放入鼓风干燥箱,加热至210℃,反应10小时后关闭鼓风干燥箱使其自然冷却;
(5)取出胶状产物,加入100ml无水乙醇和水并超声洗涤5分钟,利用磁铁进行分离,同样方法再洗涤分离一次。将分离所得固体置于真空干燥箱常温干燥24h,将得到的Fe3O4干粉密封保存。然后进行进一步的粒径、形貌及磁共振性能的检测。具体结果见图2(80nm)
实施例4
一种超顺磁性氧化铁纳米团簇体的制备方法,其步骤包括:
(1)称取0.2162gFeCl3·6H2O于烧杯,加入EG溶液和DEG溶液,磁力搅拌10min使其溶解;其中EG与DEG的体积比为10mL:20mL
(2)向溶液中加入0.5794g PAA,搅拌30min,使其溶解;
(3)加入2.5874g CH3COONa和0.1402g NaOH,搅拌40min并适当升温使其溶解形成前驱物;
(4)将上述前驱物转移至水热反应釜,密封后放入鼓风干燥箱,加热至210℃,反应10h后关闭鼓风干燥箱使其自然冷却;
(5)取出胶状产物,加入100ml无水乙醇和水并超声洗涤5分钟,利用磁铁进行分离,同样方法再洗涤分离一次。将分离所得固体置于真空干燥箱常温干燥24h,将得到的Fe3O4干粉密封保存。然后进行进一步的粒径、形貌及磁共振性能的检测。具体结果见图2(60nm)
实验例1
超顺磁性氧化铁纳米团簇体的体外MRI检测:使用粒径大小为60nm的超顺磁性氧化铁纳米团簇体,在pH值为7.4/6.5/5.5的PBS或稀盐酸溶液中分别配制浓度为50μg Fe/mL、25μg Fe/mL、12.5μg Fe/mL、6.25μg Fe/mL、3.125μg Fe/mL的超顺磁氧化铁纳米团簇体的水溶液各200μL,装入容量为250μL的EP管内,在9.4T磁共振扫描仪下检测T2图像与T2 mapping。9.4T磁共振采用如下扫描参数:TurboRARE-T2为重复时间=2000ms,回波时间=8ms,成像视野=60×32mm,层面厚度=1mm,矩阵=256×256,激励次数=1;RARE-T2mapping为复时间=2000ms,回波时间=8-64ms,成像视野=60×32mm,层面厚度=1mm,矩阵=256×256,激励次数=1。测试完成后处理图像数据,进行不同pH条件下弛豫率测定以及T2信号增强的对比。然后进行进一步的粒径、形貌及磁共振性能的检测。具体结果见图3、4。
本发明操作简便易行,原材料成本低。制作的纳米团簇体具有良好的单分散性和生物相容性。在不同的pH条件下可分解为不同粒径大小的氧化铁纳米粒子,在磁共振上表现为不同的T2信号强度以及T2弛豫率。
上面描述,只是本发明的具体实施方式,各种举例说明不对本发明的实质内容构成限制。

Claims (3)

1.一种超顺磁性氧化铁纳米团簇体制备方法,其特征在于步骤如下:
(1)称取FeCl3·6H2O于容器,加入乙二醇溶液和二甘醇溶液,磁力搅拌,使其溶解;
(2)向溶液中加入聚丙烯酸,搅拌,使其溶解;
(3)加入乙酸钠和氢氧化钠,搅拌,并升温使其溶解形成前驱物;
(4)将上述前驱物转移至水热反应釜,密封后放入鼓风干燥箱,加热至180-280℃,反应4-16小时后关闭鼓风干燥箱使其自然冷却;
(5)取出胶状产物,加入无水乙醇和水并超声洗涤,利用磁铁进行分离,同样方法再洗涤分离一次;将分离所得固体置于真空干燥箱常温干燥12-36h,将得到的Fe3O4干粉密封保存。
2.如权利要求1所述的一种超顺磁性氧化铁纳米团簇体制备方法,其特征在于:EG与DEG溶液的的总体积为30mL,EG/DEG溶液的比例为体积比30/0-10/20。
3.如权利要求1所述的一种超顺磁性氧化铁纳米团簇体制备方法,其特征在于:
(1)称取FeCl3·6H2O于烧杯,加入乙二醇溶液和二甘醇溶液,磁力搅拌10min使其溶解;
(2)向溶液中加入聚丙烯酸,搅拌30min,使其溶解;
(3)加入乙酸钠和氢氧化钠,搅拌40min并升温使其溶解形成前驱物;
(4)将上述前驱物转移至水热反应釜,密封后放入鼓风干燥箱,加热至210℃,反应10小时后关闭鼓风干燥箱使其自然冷却;
(5)取出胶状产物,加入无水乙醇和水并超声洗涤,利用磁铁进行分离,同样方法再洗涤分离一次;将分离所得固体置于真空干燥箱常温干燥24h,将得到的Fe3O4干粉密封保存。
CN201910697492.7A 2019-07-30 2019-07-30 一种超顺磁性氧化铁纳米团簇体及其制备方法和应用 Pending CN110384805A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201910697492.7A CN110384805A (zh) 2019-07-30 2019-07-30 一种超顺磁性氧化铁纳米团簇体及其制备方法和应用
NL2025687A NL2025687B1 (en) 2019-07-30 2020-05-27 Superparamagnetic iron oxide nanoclusters and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910697492.7A CN110384805A (zh) 2019-07-30 2019-07-30 一种超顺磁性氧化铁纳米团簇体及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN110384805A true CN110384805A (zh) 2019-10-29

Family

ID=68287850

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910697492.7A Pending CN110384805A (zh) 2019-07-30 2019-07-30 一种超顺磁性氧化铁纳米团簇体及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN110384805A (zh)
NL (1) NL2025687B1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113416538A (zh) * 2021-06-23 2021-09-21 国家纳米科学中心 过渡金属氧化物纳米探针、制备方法及应用
KR20220100393A (ko) * 2021-01-08 2022-07-15 한밭대학교 산학협력단 온열치료용 산화철 나노 클러스터 및 이의 제조 방법
CN115924982A (zh) * 2022-11-04 2023-04-07 济南大学 一种超小Fe3O4纳米颗粒自组装纳米团簇及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805026A (zh) * 2010-03-12 2010-08-18 南京大学 球形超顺磁四氧化三铁纳米簇的制法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101805026A (zh) * 2010-03-12 2010-08-18 南京大学 球形超顺磁四氧化三铁纳米簇的制法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHOUHU XUAN等: "Tuning the Grain Size and Particle Size of Superparamagnetic Fe3O4 Microparticles", 《CHEM. MATER.》 *
WENTAO WANG等: "Size-controlled synthesis of water-dispersible superparamagnetic Fe3O4 nanoclusters and their magnetic responsiveness", 《RSC ADV.》 *
XIAO-JIAO KANG等: "Poly(acrylic acid)-Modified Fe3O4 Microspheres for Magnetic-Targeted and pH-Triggered Anticancer Drug Delivery", 《CHEM. EUR. J.》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220100393A (ko) * 2021-01-08 2022-07-15 한밭대학교 산학협력단 온열치료용 산화철 나노 클러스터 및 이의 제조 방법
KR102503870B1 (ko) * 2021-01-08 2023-02-24 한밭대학교 산학협력단 온열치료용 산화철 나노 클러스터 및 이의 제조 방법
CN113416538A (zh) * 2021-06-23 2021-09-21 国家纳米科学中心 过渡金属氧化物纳米探针、制备方法及应用
CN115924982A (zh) * 2022-11-04 2023-04-07 济南大学 一种超小Fe3O4纳米颗粒自组装纳米团簇及其制备方法和应用

Also Published As

Publication number Publication date
NL2025687B1 (en) 2021-06-08
NL2025687A (en) 2020-07-23

Similar Documents

Publication Publication Date Title
Huang et al. Magnetic nanomaterials for magnetic bioanalysis
Barick et al. Novel and efficient MR active aqueous colloidal Fe 3 O 4 nanoassemblies
Lee et al. Designed synthesis of uniformly sized iron oxide nanoparticles for efficient magnetic resonance imaging contrast agents
Huang et al. Tunable T 1 and T 2 contrast abilities of manganese-engineered iron oxide nanoparticles through size control
Yang et al. The roles of morphology on the relaxation rates of magnetic nanoparticles
CA1301063C (en) Biologically degradable superparamagnetic materials for use in clinicalapplications
Patel et al. Cu2+-labeled, SPION loaded porous silica nanoparticles for cell labeling and multifunctional imaging probes
EP2184262B1 (en) Process for production of surface-coated inorganic particles
CN110384805A (zh) 一种超顺磁性氧化铁纳米团簇体及其制备方法和应用
Rezaei et al. Magnetic nanoparticles: a review on synthesis, characterization, functionalization, and biomedical applications
Xu et al. In situ one-pot synthesis of Fe2O3@ BSA core-shell nanoparticles as enhanced T1-weighted magnetic resonance imagine contrast agents
Pour et al. Carboxymethyl cellulose (CMC)-loaded Co-Cu doped manganese ferrite nanorods as a new dual-modal simultaneous contrast agent for magnetic resonance imaging and nanocarrier for drug delivery system
Kačenka et al. Dual imaging probes for magnetic resonance imaging and fluorescence microscopy based on perovskite manganite nanoparticles
CN105936820A (zh) 一种水溶性生物相容性荧光磁性纳米团簇及其制备方法
Clavijo‐Jordan et al. Principles and emerging applications of nanomagnetic materials in medicine
Yang et al. Ultrasensitive detection and molecular imaging with magnetic nanoparticles
Atashi et al. Synthesis of cytocompatible Fe3O4@ ZSM-5 nanocomposite as magnetic resonance imaging contrast agent
US20230092055A1 (en) Nmr logging method using superparamagnetic iron oxide nanoparticles
Alves et al. Magnetite/polypyrrole hybrid nanocomposites as a promising magnetic resonance imaging contrast material
CN116370657A (zh) 一种手性铁基超粒子纳米材料及其制备方法与应用
Xu et al. Doping engineering and functionalization of iron oxide nanoclusters for biomedical applications
Kim et al. Biomedical application of ferrofluids containing magnetite nanoparticles
Faham et al. Peg decorated glycine capped mn-ferrite nanoparticles synthesized by co-precipitation method for biomedical application
Lekha et al. Colloidal magnetic metal oxide nanocrystals and their applications
Waqar et al. Monodisperse magnetic lecithin-PFP submicron bubbles as dual imaging contrast agents for ultrasound (US) and MRI

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191029