CN110382138A - 用于增材制造的核壳合金粉末、增材制造方法和增材制造的沉淀弥散强化合金构件 - Google Patents

用于增材制造的核壳合金粉末、增材制造方法和增材制造的沉淀弥散强化合金构件 Download PDF

Info

Publication number
CN110382138A
CN110382138A CN201780088053.5A CN201780088053A CN110382138A CN 110382138 A CN110382138 A CN 110382138A CN 201780088053 A CN201780088053 A CN 201780088053A CN 110382138 A CN110382138 A CN 110382138A
Authority
CN
China
Prior art keywords
alloy
alloy powder
oxygen
increasing material
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201780088053.5A
Other languages
English (en)
Inventor
楼晓原
马丁·马修·莫拉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN110382138A publication Critical patent/CN110382138A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0093Welding characterised by the properties of the materials to be welded
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/10Non-vacuum electron beam-welding or cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/123Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases
    • B23K26/125Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of particular gases of mixed gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/126Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an atmosphere of gases chemically reacting with the workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/10Pre-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/0062Heat-treating apparatus with a cooling or quenching zone
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/059Making alloys comprising less than 5% by weight of dispersed reinforcing phases
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0026Matrix based on Ni, Co, Cr or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0031Matrix based on refractory metals, W, Mo, Nb, Hf, Ta, Zr, Ti, V or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0036Matrix based on Al, Mg, Be or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising
    • C23C8/12Oxidising using elemental oxygen or ozone
    • C23C8/14Oxidising of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0824Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/02Nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/03Oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/35Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/20Nitride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2302/00Metal Compound, non-Metallic compound or non-metal composition of the powder or its coating
    • B22F2302/25Oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种用于增材制造的核壳结构合金粉末、一种增材制造的沉淀弥散强化合金构件,以及一种用于增材制造该构件的方法。合金粉末包含多个颗粒,其中,所述多个颗粒中的一个以上包含合金粉末核和设置于至少一部分合金粉末核上的富氧或富氮壳。合金粉末核包含具有一种以上的反应性元素的合金成分基体,其中,反应性元素被配置成与氧、氮或二者反应。该合金成分基体包含不锈钢、铁基合金、镍基合金、镍铁基合金、钴基合金、铜基合金、铝基合金、钛基合金或它们的组合。合金成分基体包含反应性元素,存在的反应性元素的量为合金粉末总重量的约0.01wt%至10wt%。

Description

用于增材制造的核壳合金粉末、增材制造方法和增材制造的 沉淀弥散强化合金构件
本发明是在美国政府的支持(美国能源部授予的合同No.DE-NE0008428)下完成的。美国政府在本发明中享有一定的权利。
技术领域
本说明书的实施方式涉及沉淀弥散强化合金(precipitation dispersionstrengthened alloy),更具体地,本说明书的实施方式涉及具有纳米级氧化物或氮化物析出物的氧化物或氮化物沉淀弥散强化合金及其制备方法。
背景技术
制备氧化物弥散强化(ODS,oxide dispersion strengthened)或氮化物弥散强化合金的常规方法是基于:使用机械球磨工艺,混合纳米级氧化物或氮化物颗粒与金属合金粉末,随后将混合物热凝固(hot consolidation)形成一本体(body)。有时,这些经研磨的粉末混合物(含有金属合金粉末和纳米级氧化物或氮化物颗粒)用于激光束或电子束粉末床(electron beam powder bed)增材制造(additive manufacturing),以形成具有复杂几何形状的构件。然而,这些经研磨的粉末混合物的激光束或电子束熔化和凝固通常导致预加工的纳米级氧化物或氮化物颗粒的不希望的粗化(coarsening)、团聚(agglomeration)、不均匀分布。
因此,使用经研磨的粉末混合物(含有纳米级氧化物或氮化物颗粒)增材制造的构件一般具有大的、团聚的和非均匀分布的颗粒(形成于与增材制造相关的激光束或电子束加工期间和/或之后)。这些大的、团聚的和非均匀分布的颗粒(形成于增材制造工艺期间和/或之后)不利地影响构件的物理性质,因此是不希望的。此外,常规使用的球磨工艺耗时且昂贵。而且,球磨粉末的粉末质量可能不可靠并且不可复制用于大规模粉末生产。
发明内容
在一个实施方式中,用于增材制造的核壳结构的合金粉末包含多个颗粒,其中,一个以上的所述多个颗粒包含合金粉末核和富氧或富氮壳,该富氧或富氮壳被设置于至少一部分合金粉末核上。该合金粉末核包含合金成分基体,该合金成分基体具有一种以上反应性元素,其中,该反应性元素被配置成与氧、氮或二者反应。该合金成分基体包含不锈钢、铁基合金、镍基合金、镍铁基合金、钴基合金、铜基合金、铝基合金、钛基合金或它们的组合,并且其中,该合金成分基体包含反应性元素(reactive element),该反应性元素的量为合金粉末总重量的约0.01wt%至10wt%。
在另一个实施方式中,增材制造沉淀弥散强化合金成分(由基于激光束或电子束的增材制造工艺生产)包含金属合金基基体(metal alloy based matrix),以及纳米级析出物(包含氧化物、氮化物或二者)。纳米级析出物均匀地分散于金属合金基基体中,其中,纳米级析出物在金属合金基基体中存在于晶间、晶内或二者中。
在另一个实施方式中,提供一种用于增材制造沉淀弥散强化合金构件的方法,该沉淀弥散强化合金构件包含分散于金属合金基基体中的氧化物、氮化物或二者的纳米级析出物。该方法包括提供核壳结构的合金粉末,并使用基于激光束或电子束的粉末床工艺增材制造该合金构件。该方法还包括对该构件进行热处理以优化氧化物、氮化物或二者的纳米级析出物。在增材制造构件、热处理构件或二者期间,在构件中原位(in-situ)形成纳米级析出物。
附图说明
当参考附图阅读以下具体实施方式时,将更好地理解本发明实施方式的这些和其他特征和方面,在附图中,整个附图中相同的附图标记表示相同的部分,其中:
图1显示了根据本说明书实施方式的用于增材制造的核壳结构合金粉末的示例性核壳结构的示意图;
图2显示了根据本说明书实施方式的具有纳米级氧化硅的氧化物沉淀弥散强化不锈钢的透射电子图像;
图3是根据本说明书实施方式的具有纳米级氧化钇和氧化钛的氧化物沉淀弥散强化不锈钢的背散射电子(backscattered electron)图像;
图4是根据本说明书实施方式的具有纳米级氧化铪、氧化钇和氧化钛的氧化物弥散强化不锈钢的背散射电子图像;以及
图5是根据本说明书实施方式制备含有氧化物、氮化物或二者的纳米级析出物的氧化物或氮化物沉淀弥散强化合金的示例性方法的流程图。
具体实施方式
各种实施方式公开了具有核壳结构的颗粒的核壳结构合金粉末。通过粉末床增材制造(例如,基于激光束或电子束的粉末床增材制造),核壳结构合金粉末用于生产具有氧化物、氮化物或二者的纳米级析出物的沉淀弥散强化合金。在某些实施方式中,核壳结构合金粉末包含合金粉末核和富氧或富氮壳,该富氧或富氮壳被设置于至少一部分合金粉末核上。合金粉末核包含合金成分基体,该合金成分基体具有一种以上的反应性元素。反应性元素被配置成与氧、氮或二者反应。合金成分基体包含不锈钢、铁基合金、镍基合金、镍铁基合金、钴基合金、铜基合金、铝基合金、钛基合金或它们的组合。合金成分基体中不锈钢的非限制性实例包括奥氏体不锈钢、铁素体不锈钢、双相不锈钢、马氏体不锈钢等,或它们的组合。在一些实施方式中,反应性元素的量为合金粉末总重量的约0.01wt%至10wt%。
在增材制造工艺或者随后的热处理工艺(可以在增材制造工艺之后进行)期间,核壳结构的合金粉末提供了一种沉淀弥散强化合金,该沉淀弥散强化合金包含均匀地分散于金属合金基基体中的氧化物、氮化物或二者的纳米级析出物。在某些实施方式中,纳米级析出物在金属合金基基体中可以存在于晶间、晶内或二者中。纳米级析出物包含原位形成的氧化物、氮化物或二者。在某些实施方式中,对于纳米级析出物,沉淀弥散强化合金中纳米级析出物的体积分数为0.1%至40%。
在一些实施方式中,制造沉淀弥散强化合金和沉淀弥散强化合金构件的方法包括:基于电子束或激光束熔化技术的粉末床融合工艺(powder bed fusion process)。在本说明书中,在增材制造和后热处理(post heat treatment)的激光束或电子束熔化工艺期间,所确定的反应性元素的氧化或氮化性质使得能够在合金中形成纳米级氧化物析出物、纳米级氮化物析出物或二者。有利地,使用本说明书的核壳结构合金粉末和增材制造方法形成的构件表现出增强的机械性能、耐辐射性。此外,与其传统对应物相比,本说明书的增材制造的构件制造成本更低。
图1显示了核壳结构合金粉末的示例性颗粒100的示意图,其中,颗粒100包含核壳结构102。多个颗粒100形成本说明书的核壳结构合金粉末。多个颗粒中的一些或全部可具有核壳结构102。示例性颗粒100包含合金粉末核104和富氧或富氮壳106,壳106至少部分地围绕核104。颗粒100的核壳结构102的核104由金属合金基基体的材料制成,并且核104包含与氧、氮或二者反应的反应性元素。壳106包含高浓度的氧、氮或二者。合金粉末中反应性元素的浓度为合金粉末总重量的约0.01wt%至10wt%。在增材制造和后热处理期间,存在于合金粉末中的反应性元素形成氧化物、氮化物或二者的纳米级析出物。合金粉末中反应性元素的浓度基于所得构件中纳米级析出物的所需浓度。
在某些实施方式中,存在于沉淀弥散强化合金和由这些合金制成的构件中的纳米级氧化物或氮化物析出物的平均尺寸为约0.5nm至约500nm。在整个说明书中,术语“析出物”和“弥散体(dispersoid)”可互换使用。举例来说,术语“纳米级氧化物或氮化物析出物”和“纳米级氧化物或氮化物弥散体”在本说明书中可以互换使用。纳米级析出物的形状取决于析出物的界面能相对于金属合金基基体的界面能。纳米级析出物通常为球形。然而,在本说明书的范围内也可以设想其他形状的纳米级析出物。
在一些实施方式中,金属合金基基体由不锈钢或其它铁基合金、镍基合金、钴基合金、铜基合金、铝基合金、钛基合金和它们的组合组成。不锈钢的非限制性实例包括合金,例如但不限于奥氏体不锈钢、铁素体不锈钢、双相不锈钢、马氏体不锈钢、析出强化(precipitation strengthened)不锈钢等,以及它们的组合。金属合金基基体还包含反应性元素,该反应性元素包括铁、铬、镍、铝、钴、碳、钼、锰、镁、硅、铜、氮、铌、钛、难熔金属、钽、铪、钇、钒、钨、锆、硼,以及它们的组合。特别地,氧反应性元素包括钇、铝、硅、铪、钛、锆、锰、镁,以及它们的组合,并且氮反应性元素包括铝、钛、难熔金属、锆、铪、铬、硅、钒、硼,以及它们的组合。除了反应性元素外,金属合金基基体中还存在一种或多种的过渡金属,该过渡金属包括铁、铬、镍、铝、钴、碳、钼、锰、硅、铜、铌、钛、钽、铪、钇、钒、钨、锆、硼,以及它们的组合。
纳米级氧化物析出物的非限制性实例包括氧化钇、氧化铝、氧化硅、氧化铪、氧化钛、氧化锆、氧化锰、氧化镁,以及它们的组合。纳米级氮化物析出物的非限制性实例包括氮化铝、氮化钛、难熔金属氮化物、氮化锆、氮化铪、氮化铬、氮化硅、氮化钒、氮化硼,以及它们的组合。存在于金属合金基基体中的过渡金属(例如铁、铬、镍、铝、钴、碳、钼、钨、锰、硅、铜、氮、铌、钛、钽,以及它们的组合)也可参与纳米氧化物析出物或纳米特征的形成。因此,所得的氧化物和氮化物沉淀弥散强化合金可包含反应性元素的纳米级氧化物或氮化物析出物以及超过一种的这些过渡金属的纳米级氧化物或氮化物析出物。在一个实例中,钇和钛可用于形成氧化物弥散强化(ODS)不锈钢,其中过渡金属锰和钼存在于不锈钢中。所得沉淀弥散强化合金可包含氧化钇和氧化钛的纳米级氧化物析出物,其中化学掺杂有过渡金属中的锰和钼的氧化物。
高密度的氧化物、氮化物或二者的纳米级析出物均匀分布于金属合金基基体中。金属合金基基体中纳米级析出物的均匀分布导致合金和所得构件的材料性能增强,例如但不限于屈服强度(yield strength)、拉伸强度、耐腐蚀性、抗裂性、抗蠕变性、高温机械性能、增强的辐射损伤耐受性,以及它们的组合。具体地,增强的辐射损伤耐受性是所需的并且可用于核环境。在一些实施方式中,具有纳米级析出物的氧化物或氮化物弥散强化金属基合金可用于发电应用、航空航天应用、汽车应用、医疗领域等。在某些实施方式中,沉淀弥散强化合金中纳米级析出物的体积分数为0.1%至40%。有利地,与常规或现有工艺(包括球磨)以及类似耗时的工艺所需的制造时间相比,本说明书的沉淀强化合金的增材制造允许更短的制造时间。此外,在激光粉末床工艺期间,原位形成的氧化物、氮化物或二者的纳米级析出物增强了所得氧化物或氮化物弥散强化合金的机械性能。在某些实施方式中,如此形成的氧化物或氮化物分散合金表现出增强的高温机械性能。
在某些实施方式中,在激光束或电子束粉末床增材制造的熔化和凝固期间,通过存在于粉末表面层(壳)的氧和/或氮成分与存在于合金粉末核中的反应性元素之间的反应,原位形成纳米级氧化物或氮化物析出物。激光束粉末床增材制造的非限制性实例包括直接金属激光烧结(DMLS,direct metal laser sintering)、选择性激光熔化(SLM,selective laser melting)和选择性激光烧结(SLS,selective laser sintering)中的一个或多个。选择激光束或电子束工艺参数以控制纳米级氧化物和/或氮化物析出物的尺寸和分布。
在一些实施方式中,所述工艺包括使增材制造的金属构件经受一种以上后热处理,以优化金属的晶粒微结构和控制纳米级氧化物或氮化物析出物的稳定性、尺寸、分布和密度,以产生稳定的、纳米级、均匀分布的纳米级析出物。在某些实施方式中,纳米级氧化物或氮化物析出物在金属合金基基体中分布于晶内、晶间或二者中。在一次以上的热处理期间,选择性地形成反应性元素的氧化物和氮化物。在一些实施方式中,一次以上的热处理可包括全构件炉热处理(whole component furnace heat treatment)、局部热处理(包括表面加热、激光加热、电子束加热)等。
应注意,以所需方式形成纳米级氧化物或氮化物析出物取决于该核壳结构合金粉末的化学参数(例如,反应性元素的浓度、氧的量、氮的量、激光工艺参数、电子束参数、后热处理参数或它们的组合)。
在某些实施方式中,将具有确定合金化学参数的核壳结构合金粉末(例如,反应性元素、氧和氮的浓度)用作增材制造的前体粉末。可以通过商业气体雾化工艺生产合金粉末。在激光束或电子束增材制造期间以及后热处理期间,可以分别通过反应性元素的原位氧化、氮化来形成纳米级氧化物或氮化物析出物。激光束和电子束增材制造期间使用的高冷却速率有助于形成具有纳米级特征且在金属合金基基体中稳定的氧化物和氮化物。
与常规机械球磨工艺(通常用于生产ODS合金)相反,本说明书使用增材制造来生产沉淀弥散强化合金及使用此种合金的构件。有利地,本说明书的方法和构件的生产方式节约时间和成本。本说明书提供了一种采用增材制造来生产沉淀弥散强化合金构件的成功方法,其中,该构件包含纳米级氧化物、氮化物或二者的析出物。由于与增材制造工艺相关的各种优点,长期以来一直需要采用增材制造来制造金属合金构件,然而过去曾多次尝试采用增材制造来生产构件并同时保持纳米级范围内析出物的尺寸,却并未成功。在本领域中,预先存在于起始粉末中的氧化物或氮化物易于产生不希望的粗化、团聚和不均匀分布。相反,由于使用原位过程中反应形成纳米级析出物,存在于本说明书的沉淀弥散强化合金和构件中的纳米级析出物在化学和微观结构上是不可变的。本说明书的方法消除了使用增材制造在前体合金混合物中氧化物或氮化物(用于生产合金和构件)存在的需要。特别地,本说明书的方法被设计为:在粉末床增材制造或后沉积的沉积期间(例如,增材制造之后进行热处理),原位且在过程中形成氧化物或氮化物。
一般认为,氧或氮污染是激光束或电子束增材制造工艺的前体粉末所不希望的。因此,在增材制造的此种前体粉末的粉末气体雾化期间,氧和氮污染被防止。在本说明书中,在激光束或电子束增材制造期间,谨慎地将氧、氮或二者以确定的量混合,以促进纳米级析出物的沉淀。
图2显示氧化物弥散强化(ODS)奥氏体不锈钢200(具有氧化硅析出物作为纳米氧化物析出物)的透射电子图像。采用激光粉末床增材制造来生产氧化物弥散强化奥氏体不锈钢。ODS不锈钢200具有不锈钢基基体(stainless steel based matrix)202,纳米级氧化硅析出物204分散于该基体202中。纳米级氧化硅析出物204均匀地分布于整个金属合金基基体202中。
图3显示了ODS奥氏体不锈钢300(具有富钇氧化物和富钛氧化物析出物作为纳米氧化物析出物)的背散射电子图像。采用激光粉末床增材制造来生产ODS奥氏体不锈钢300。ODS不锈钢300具有不锈钢基基体302和分散于基体302中的纳米级氧化钇和氧化铪析出物304。纳米级氧化钇和氧化铪析出物304均匀地分布于整个金属合金基基体302中。
图4显示了氧化物弥散强化奥氏体不锈钢(具有氧化钛、氧化钇和氧化铪析出物作为纳米氧化物析出物)的背散射电子图像。在所示实施方式中,对氧化物弥散强化奥氏体不锈钢进行后热处理。在该氧化物弥散强化奥氏体不锈钢中,在晶内和晶间形成纳米级氧化物。
图5显示了制造沉淀弥散强化合金(例如,氧化物沉淀弥散强化合金、氮化物沉淀弥散强化合金或二者)的示例性方法的流程图500。在框502处,提供了具有特定浓度的反应性元素的核壳结构合金粉末。在某些实施方式中,通过气体雾化方法生产并筛分核壳结构合金粉末以获得确定的粒度分布(particle size distribution)。在一个实施方式中,粒度分布可为约-325M/+15μm。合金粉末中反应性元素的重量百分比为0.01wt%至10wt%。
在某些实施方式中,反应性元素包括氧反应性元素、氮反应性元素或二者。反应性元素的非限制性实例包括金属元素,例如但不限于钇、铝、硅、铪、钛、锆、镁、锰、难熔金属、硼、铬、钒,以及它们的组合。除了反应性元素之外,合金粉末还可包含过渡金属。在一些实施方式中,氧或氮反应性元素可以是分别易于与氧或氮反应以分别形成纳米级氧化物或纳米级氮化物的元素。反应性元素具有相对高的负自由能变化以形成氧化物和/或氮化物。因此,与金属合金基基体中存在的其他元素相比,反应性金属元素具有更高的与金属粉末或气氛中的氧或氮反应以形成稳定的氧化物析出物或氮化物析出物或二者的倾向。氧反应性金属元素包括钇、铝、硅、铪、钛、锆、镁,以及它们的组合。氮反应性金属元素包括铝、钛、难熔金属、硼、锆、铪、铬、硅、钒,以及它们的组合。
在一些实施方式中,提供核壳结构合金粉末,包括提供一种具有合金成分基体和反应性元素的前体合金熔体(precursor alloy melt)。在某些实施方式中,前体合金熔体包含选自铁、铬、镍、铝、钴、碳、钼、锰、铜、氮、铌、钛、钽、铪、钇、钒、钨、锆、碳、硼、硅,以及它们的组合中的一种以上。此外,前体合金熔体包含一种以上的反应性元素,该反应性元素为合金粉末总重量的约0.01wt%至10wt%。
对前体合金熔体进行气体雾化,以形成包含合金成分基体的合金粉末核。在气体雾化期间或之后,将富氧或富氮壳引入至至少一部分合金粉末核上,以形成核壳结构合金粉末。在某些实施方式中,用于增材制造工艺的合金粉末在粉末表面上富含氧、氮或二者。在一些实施方式中,可以在惰性气体流(如氩气或氮气)(具有0.1体积%至约20体积%的氧气)下,或在惰性气体流(如氩气)(具有0.1体积%至约100体积%的含氮气体,例如氮气和氨气)下,通过粉末气体雾化引入所需水平的氧或氮(作为金属粉末的表面层)。在一些其他实施方式中,在气体雾化过程之后,还可以在受控的氧气氛、氮气氛、含氮气体(例如但不限于氨气)的气氛或它们的组合中,通过合金粉末的后氧化(post oxidization)或后氮化(post nitridation)来引入所需水平的氧、氮或二者。在某些实施方式中,还可以通过使用流化床粉末涂覆(fluidized bed powder coating)工艺在粉末上涂覆富含氧或氮的层来引入氧或氮。取决于所选择的反应性金属元素,在核壳结构合金粉末中,所得氧浓度、氮浓度或氧和氮的总浓度可以为约100ppm至约5000ppm。
可以以各种方式将富氧或富氮壳引入至合金粉末核上。在一个实施方式中,引入富氧壳包括:在氧浓度为约0.1体积%至20体积%的惰性气体流下,提供粉末气体雾化。在另一个实施方式中,引入富氧壳包括:在气体雾化过程之后,在受控的氧气氛中进行前体合金粉末的后氧化。在又一个实施方式中,引入富氧壳包括:使用流化床粉末涂覆工艺,在至少一部分前体合金粉末上涂覆富氧层。
在一个实施方式中,引入富氮壳包括:在约0.1体积%至100体积%的含氮惰性气体流、含氮气体流下或二者下,提供粉末气体雾化。在另一个实施方式中,引入富氮壳包括:在气体雾化过程之后,在受控气氛中对前体合金粉末进行后氮化,其中,受控气氛包含氮、含氮气体或二者。在又一个实施方式中,引入富氮壳包括:使用流化床粉末涂覆工艺在至少一部分合金粉末上涂覆富氮壳。
在框504,采用激光束或电子束基粉末床增材制造,将合金粉末用于生产金属合金构件。在一些实施方式中,在增材制造和后处理期间,除了反应性元素之外,合金粉末中固有存在的过渡金属可以来自氧化物、氮化物或二者。基于激光束或电子束的粉末床融合增材制造使用激光束或电子束作为热源,以特定方式逐层熔化金属粉末,以产生三维几何形状。激光束或电子束和粉末层由计算机软件和自动化机器控制。可以在受控气氛中进行增材制造,该受控气氛包含确定浓度的氧、氮、含氮气体或它们的组合。
受控气氛包含保护屏蔽气体(protection shield gas)。在一个实施方式中,保护屏蔽气体包含由氩、氦、氮或它们的组合以及至多约20体积%的氧组成的混合物。在另一个实施方式中,保护屏蔽气体包含由氩、氦或二者以及至多约100体积%的氮、至多约100体积%的含氮气体或二者组成的混合物。
激光束或电子束工艺参数被设置为促进金属合金基基体中纳米级析出物的原位均匀产生。这些参数的非限制性示例可包括但不限于:激光束或电子束的能量输出、扫描间距(hatch spacing)、沉积层的厚度、激光束或电子束的扫描速度、保护屏蔽气体流量、氧的量、氮的量、反应性元素的量或浓度、扫描策略或扫描方式等,以及它们的组合。可以理解,这些参数可以是相互依赖的,并且可以基于金属合金基基体和反应性元素的性质而变化。在一个实施方式中,具有确定氧浓度的保护屏蔽气体也可用于促进析出物的内部氧化或氮化。保护屏蔽气体中氧浓度可以为至多约20体积%。对于氮化物强化合金,保护屏蔽气体包含由氩和/或氦和至多100体积%的氮和/或至多100体积%的氨组成的混合物。
在金属熔化期间,激光束或电子束工艺具有极快的加热和冷却速率。在增材制造期间,通过激光或电子熔化的此种快速凝固过程有助于纳米级析出物的形成。通过控制激光束或电子束凝固加热/冷却速率,对于合金,可以优化尺寸分布、合金基体中颗粒空间分布和纳米级氧化物或氮化物析出物的体积密度中的一个以上。例如,如果凝固太快,则金属粉末中的反应性元素可能没有足够的反应时间与预掺杂的氧化物或氮化物结合以形成高密度的纳米级氧化物/氮化物析出物。快速凝固还可能导致构件中的裂缝和孔隙。然而,以另一个例子为例,如果扫描速度太慢,则氧化物/氮化物析出物可能变大,这可能不利地影响由这些析出物提供的强化功能。增材制造过程的加热/冷却速率由激光束或电子束的能量输出、扫描间距、沉积层厚度、扫描速度、屏蔽气流、扫描策略/方式、层厚度等组合控制。在某些实施方式中,目前认识到特定设计的激光束或电子束参数可能是某种反应性金属元素的氧化或氮化所需的。可以控制激光束或电子束粉末床增材制造工艺的激光束或电子束功率、扫描速度以及其他参数以产生所需的尺寸、体积密度和纳米级氧化物或氮化物析出物的分布。
在一个实施例中,为得到金属合金基基体中所需的平均尺寸和纳米级氧化物析出物的密度,可选择激光输出能量的范围为100瓦特至800瓦特。扫描间距可以是熔池(meltpool)尺寸的函数,并且受激光的能量输出和扫描速度的影响。例如,在一些实施方式中,扫描间距可以为30μm至500μm。此外,在一些实施方式中,层厚度可以为10μm至100μm。激光的扫描速度是激光在金属粉末层上移动的速度。在一些实施方式中,扫描速度可以为0.1m/s(米/秒)至5m/s。在一个实施例中,扫描速度为约0.6m/s。
进一步地,在增材制造期间,富含氧或富含氮或富含氨的气体可被选为基于沉淀强化合金期望的性质的保护屏蔽气体。保护屏蔽气体中的氧浓度可以为0体积%至20体积%的氧气。在激光粉末床增材制造期间,屏蔽气体中的氧进一步促进氧化金属粉末中的反应性金属元素。保护屏蔽气体中氮或含氮气体(例如但不限于氨)的浓度可以为至多100体积%。在激光束或电子束粉末床增材制造期间,保护屏蔽气体中存在的氮或氨进一步促进金属粉末中氮反应性金属元素的氮化。
在框506中,在激光束或电子束增材制造(以限定该构件的形状)之后,利用热处理和/或热等静压(hot isostatic pressing)中一个以上的步骤对产物进行进一步加工,以进一步优化金属合金基基体中纳米级氧化物/氮化物析出物的尺寸、体积密度和分布以及材料微观结构。可以使用不同类型的热源进行热处理(例如但不限于炉加热、激光加热、超声加热、微波加热、感应加热和等离子加热)。热处理还可包括热等静压以加固构件。在一些实施方式中,金属构件的热处理可以基于炉加热。在其他实施方式中,也可以通过激光、超声波、微波、感应和等离子体使用其他热源进行热处理。对于某些金属(例如奥氏体不锈钢合金),热处理(或热等静压)温度参数可以为1000°F(华氏度)至2300°F,并且热处理(或热等静压)时间参数可以为0.1小时至100小时。可以在空气或惰性气体气氛中进行热处理。此外,水淬(water quench)或油淬(oil quench)也可用于热处理。
本说明书中的合金的质量和特性可以基于富含氧或富含氮的金属合金粉末、用于增材制造金属合金构件的参数,以及金属合金基基体的热处理和/或热等静压。起始富含氧或富含氮的金属合金基粉末的参数的非限制性实例可包括:反应性元素的类型、反应性元素的浓度、基底合金基体的组成、形状和粉末颗粒、粉末颗粒的晶粒尺寸、粉末颗粒的尺寸分布等。
虽然本文仅显示和描述了本发明的某些特征,但本领域的技术人员可以对其进行许多修改和变化。因此,应该理解,所附权利要求旨在覆盖落入本发明范围内的所有这些修改和变化。

Claims (21)

1.一种用于增材制造的核壳结构合金粉末,所述合金粉末包含多个颗粒,其中,所述多个颗粒的一个或多个包含:
合金粉末核,所述合金粉末核具有合金成分基体,所述合金成分基体含有一种以上反应性元素,所述反应性元素被配置成与氧、氮或二者反应;以及
富氧或富氮壳,所述壳设置于至少一部分所述合金粉末核上,
其中,所述合金成分基体包含不锈钢、铁基合金、镍基合金、镍铁基合金、钴基合金、铜基合金、铝基合金、钛基合金或它们的组合,所述合金成分基体包含反应性元素,所述反应性元素含量为所述合金粉末总重量的约0.01重量%至10重量%。
2.如权利要求1所述的核壳结构合金粉末,其中,氧反应性元素包括钇、铝、硅、铪、钛、锆、锰、镁,以及它们的组合。
3.如权利要求1所述的核壳结构合金粉末,其中,氮反应性元素包括铝、钛、难熔金属、锆、铪、铬、硅、钒、硼,以及它们的组合。
4.如权利要求1所述的核壳结构合金粉末,其中,所述合金成分基体包含一种以上过渡金属,所述过渡金属包括铁、铬、镍、铝、钴、碳、钼、锰、硅、铜、铌、钛、钽、铪、钇、钒、钨、锆、硼,以及它们的组合。
5.如权利要求1所述的核壳结构合金粉末,其中,富氧或富氮壳中的氧浓度、氮浓度或氧和氮的总浓度为约100ppm至5000ppm。
6.如权利要求1所述的核壳结构合金粉末,其中,所述不锈钢包括奥氏体不锈钢、铁素体不锈钢、双相不锈钢、马氏体不锈钢、沉淀硬化不锈钢,以及它们的组合。
7.一种增材制造的沉淀弥散强化合金构件,所述构件通过基于激光束或电子束的增材制造工艺制得,所述构件包含:
金属合金基基体;以及
均匀分散于金属合金基基体中的纳米级析出物,所述纳米级析出物包含氧化物、氮化物或二者,其中,纳米级析出物在金属合金基基体中存在于晶间、晶内或二者中。
8.如权利要求7所述的增材制造的沉淀弥散强化合金构件,其中,纳米级析出物的平均尺寸为约0.5nm至约500nm。
9.如权利要求7所述的增材制造的合金构件,其中,沉淀弥散强化合金中纳米级析出物的体积分数为0.1%至40%。
10.一种通过基于激光或电子的工艺来增材制造沉淀弥散强化合金构件的方法,所述构件包含分散于金属合金基基体中的氧化物、氮化物或二者的纳米级析出物,所述方法包括:
·提供包含多个颗粒的核壳结构合金粉末,其中,所述多个颗粒中的一个或多个包含:
·合金粉末核,所述合金粉末核含有合金成分基体,所述合金成分基体含有一种以上反应性元素,所述反应性元素被配置成与氧、氮或二者反应;以及
·富氧或富氮壳,所述壳设置于至少一部分所述合金粉末核上,
其中,合金成分基体包含不锈钢、铁基合金、镍基合金、镍铁基合金、钴基合金、铜基合金、铝基合金、钛基合金,或它们的组合,合金成分基体包含占合金粉末总重量的约0.01重量%-10重量%的反应性元素;
·使用基于激光束或电子束的粉末床增材制造将核壳结构合金粉末生产为构件;以及
·使用一个以上热处理步骤来加工增材制造的构件。
11.如权利要求10所述的方法,其中,提供核壳结构合金粉末包括:
提供前体合金熔体,所述前体合金熔体包含合金成分基体和反应性元素;
采用气体雾化将前体合金熔体制造成包含合金成分基体的合金粉末核;以及
在气体雾化期间或之后,在至少一部分合金粉末核上引入富氧或富氮壳,形成核壳结构合金粉末。
12.如权利要求11所述的方法,其中,所述前体合金熔体包含:
铁、铬、镍、铝、钴、碳、钼、锰、铜、氮、铌、钛、钽、铪、钇、钒、钨、锆、碳,硼,硅,以及它们的组合中的一种或多种;以及
一种以上反应性元素,所述反应性元素占合金粉末总重量的约0.01重量%至10重量%。
13.如权利要求11所述的方法,其中,引入富氧壳包括:在氧浓度为约0.1体积%至20体积%的惰性气体流下,提供粉末气体雾化。
14.如权利要求13所述的方法,其中,引入富氧壳包括:在气体雾化工艺之后,在受控的氧气氛中进行前体合金粉末的后氧化。
15.如权利要求11所述的方法,其中,引入富氧壳包括:使用流化床粉末涂覆工艺,在至少一部分前体合金粉末上涂覆富氧层。
16.如权利要求11所述的方法,其中,引入富氮壳包括:在约0.1体积%至100体积%的含氮惰性气体流、含氮气体流或二者下提供粉末气体雾化。
17.如权利要求13所述的方法,其中,引入富氮壳包括:在气体雾化工艺之后,在受控气氛中进行前体合金粉末的后氮化,其中,所述受控气氛包括氮、含氮气体或二者。
18.如权利要求13所述的方法,其中,引入富氮壳包括:采用流化床粉末涂覆工艺,在至少一部分合金粉末上涂覆富氮壳。
19.如权利要求10所述的方法,其中,所述方法包括:在受控气氛中使用基于激光束或电子束的粉末床增材制造,其中,所述受控气氛包含确定浓度的氧、氮、含氮气体或它们的组合。
20.如权利要求19所述的方法,其中,所述受控气氛包含保护屏蔽气体,所述保护屏蔽气体包含由氩、氦、氮或它们的组合以及至多约20体积%的氧组成的混合物。
21.如权利要求19所述的方法,其中,所述受控气氛包含保护屏蔽气体,所述保护屏蔽气体包含由氩、氦或二者以及至多约100体积%的氮、至多约100体积%的含氮气体或两者组成的混合物。
CN201780088053.5A 2017-01-06 2017-09-26 用于增材制造的核壳合金粉末、增材制造方法和增材制造的沉淀弥散强化合金构件 Pending CN110382138A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15/399,832 2017-01-06
US15/399,832 US20180193916A1 (en) 2017-01-06 2017-01-06 Additive manufacturing method and materials
PCT/US2017/053394 WO2018128656A1 (en) 2017-01-06 2017-09-26 Core-shell alloy powder for additive manufacturing, an additive manufacturing method and an additively manufactured precipitation dispersion strengthened alloy component

Publications (1)

Publication Number Publication Date
CN110382138A true CN110382138A (zh) 2019-10-25

Family

ID=60186345

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780088053.5A Pending CN110382138A (zh) 2017-01-06 2017-09-26 用于增材制造的核壳合金粉末、增材制造方法和增材制造的沉淀弥散强化合金构件

Country Status (4)

Country Link
US (1) US20180193916A1 (zh)
EP (1) EP3565681B1 (zh)
CN (1) CN110382138A (zh)
WO (1) WO2018128656A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110711862A (zh) * 2019-11-04 2020-01-21 中南大学 一种6系铝合金的3d打印专用合金的制备方法
CN113215470A (zh) * 2021-04-29 2021-08-06 西安建筑科技大学 一种纳米级氧化物强化低活化钢复合材料及其制备方法
CN113249634A (zh) * 2021-04-27 2021-08-13 淮阴工学院 不锈钢及其成形件制备方法
CN113967744A (zh) * 2020-07-22 2022-01-25 中国航发上海商用航空发动机制造有限责任公司 一种多功能一体化零件及制备其的方法
CN114054747A (zh) * 2022-01-11 2022-02-18 爱柯迪股份有限公司 发动机用氮化硼粉末复合掺杂不锈钢活塞环及制备方法
CN115297977A (zh) * 2020-04-24 2022-11-04 史密夫和内修有限公司 增材制造的医疗植入物、用于形成其的方法和用于形成其的锆合金粉末
CN115380127A (zh) * 2020-01-31 2022-11-22 Hrl实验室有限责任公司 铝-铬-锆合金
CN116033982A (zh) * 2022-05-30 2023-04-28 清华大学 合金及其制备方法
CN116096516A (zh) * 2022-10-12 2023-05-09 清华大学 纯钛制件及其制备方法
WO2023231267A1 (zh) * 2022-05-30 2023-12-07 清华大学 合金及其制备方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3623488B1 (en) * 2018-05-21 2021-05-05 Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr" Aluminum alloy powder for additive techniques and parts produced from the powder
US20210291275A1 (en) * 2018-07-19 2021-09-23 Heraeus Additive Manufacturing Gmbh Use of powders of highly reflective metals for additive manufacture
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
IT201800009553A1 (it) * 2018-10-17 2020-04-17 Andrea Brovelli Metodo per la realizzazione di viti per fissazioni intraossee e viti ottenute con tale metodo
DE102018127401A1 (de) * 2018-11-02 2020-05-07 AM Metals GmbH Hochfeste Aluminiumlegierungen für die additive Fertigung von dreidimensionalen Objekten
EP3880387A1 (en) * 2018-11-15 2021-09-22 Katholieke Universiteit Leuven Copper, gold, or silver powder for powder bed additive manufacturing and method of manufacturing such powder
WO2020154114A1 (en) * 2019-01-22 2020-07-30 Exxonmobil Research And Engineering Company Composite components fabricated by in-situ reaction synthesis during additive manufacturing
EP3941664A4 (en) * 2019-04-30 2022-09-21 Siemens Aktiengesellschaft LAMINATED IRON CORE AND METHOD OF MANUFACTURE THEREOF
US11519063B2 (en) * 2019-09-17 2022-12-06 Youping Gao Methods for in situ formation of dispersoids strengthened refractory alloy in 3D printing and/or additive manufacturing
JP7381267B2 (ja) * 2019-09-18 2023-11-15 ナブテスコ株式会社 金属付加製造用粉粒体、その製造方法、その選別装置、その選別方法、粉体の純度判定装置、粉体の純度判定方法、粉体の保管方法、粉体の保管容器、金属造形物の製造方法、および、金属造形物の製造装置
FR3102942B1 (fr) * 2019-11-07 2022-05-13 Commissariat Energie Atomique Procédé de traitement d'un matériau en acier optimisé.
EP3834962A1 (en) * 2019-12-09 2021-06-16 Linde GmbH Method and system for generating a three-dimensional workpiece
DE102020200574A1 (de) 2020-01-20 2021-07-22 Volkswagen Aktiengesellschaft Verfahren und System zur Nachbehandlung von mittels additiven Fertigungsverfahren hergestellten Objekten
FR3106512B1 (fr) * 2020-01-23 2022-06-17 Thales Sa Procédé de fabrication d’une pièce multi-matériaux par fabrication additive, selon la technique de fusion sélective ou de frittage sélectif de lit de poudre par laser
US20210237151A1 (en) * 2020-01-30 2021-08-05 Ap&C Advanced Powders & Coatings Inc. System and method for treating additive powder
CN111922331B (zh) * 2020-06-24 2023-04-28 广东省科学院新材料研究所 一种纳米颗粒增强铝合金粉末及其制备方法
CN113695594B (zh) * 2020-07-28 2022-05-31 中南大学 选区激光熔化铝合金的评价方法
CN116323040A (zh) * 2020-09-29 2023-06-23 西门子股份公司 3d打印粉末以及3d打印方法
CN112453413B (zh) * 2020-11-20 2023-05-12 中科南京绿色制造产业创新研究院 一种3d打印用氧化物弥散强化钢球形粉体的制备方法
CN112828289A (zh) * 2020-12-30 2021-05-25 南方科技大学 一种减少热裂的沉淀强化镍基高温合金激光粉床熔融成形方法
CN113458594B (zh) * 2021-07-22 2022-10-11 哈尔滨电气动力装备有限公司 核主泵定心块激光熔敷钴基合金粉末焊接方法
US20230260686A1 (en) * 2022-02-14 2023-08-17 General Electric Company Bulk dual phase soft magnetic components having three-dimensional magnetic flux and manufacturing methods
US12087483B2 (en) 2022-02-14 2024-09-10 General Electric Company Dual phase soft magnetic particle combinations, components and manufacturing methods
CN115055694B (zh) * 2022-05-23 2024-09-13 上海交通大学 一种增材制造超高强塑积的超高强不锈钢材料的制备方法
WO2024118546A1 (en) * 2022-11-29 2024-06-06 Addman Intermediate Holdings, Llc Methods for in situ formation of disperoids strengthened refractory alloy in 3d printing and additive manufacturing

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219901A (ja) * 1999-01-29 2000-08-08 Nisshin Flour Milling Co Ltd 酸化物被覆金属微粒子およびその製造方法
US20090317557A1 (en) * 2008-06-20 2009-12-24 Toyota Motor Engineering & Manufacturing North America, Inc. Process To Make Core-Shell Structured Nanoparticles
CN102248171A (zh) * 2011-07-12 2011-11-23 中南大学 氧过饱和铁基合金粉末的气体雾化制备方法
US20150093279A1 (en) * 2013-10-02 2015-04-02 Honywell International Inc. Methods for forming oxide dispersion-strengthened alloys
WO2015106113A1 (en) * 2014-01-09 2015-07-16 United Technologies Corporation Material and processes for additively manufacturing one or more parts
CN105764634A (zh) * 2013-07-04 2016-07-13 斯内克马公司 采用适用于目标方法/材料对的粉末,通过用高能束熔融或烧结粉末颗粒来叠加制造部件的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5296062A (en) * 1986-10-17 1994-03-22 The Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
EP3092097B1 (en) * 2014-01-08 2023-04-05 Raytheon Technologies Corporation Solid-state method for forming an alloy
US20180178282A1 (en) * 2016-12-22 2018-06-28 Metal Industries Research & Development Centre Compound Particles and Product Manufactured Therefrom

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000219901A (ja) * 1999-01-29 2000-08-08 Nisshin Flour Milling Co Ltd 酸化物被覆金属微粒子およびその製造方法
US20090317557A1 (en) * 2008-06-20 2009-12-24 Toyota Motor Engineering & Manufacturing North America, Inc. Process To Make Core-Shell Structured Nanoparticles
CN102248171A (zh) * 2011-07-12 2011-11-23 中南大学 氧过饱和铁基合金粉末的气体雾化制备方法
CN105764634A (zh) * 2013-07-04 2016-07-13 斯内克马公司 采用适用于目标方法/材料对的粉末,通过用高能束熔融或烧结粉末颗粒来叠加制造部件的方法
US20150093279A1 (en) * 2013-10-02 2015-04-02 Honywell International Inc. Methods for forming oxide dispersion-strengthened alloys
WO2015106113A1 (en) * 2014-01-09 2015-07-16 United Technologies Corporation Material and processes for additively manufacturing one or more parts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RIEKEN J R: "Reactive gas atomization processing for Fe-based ODS alloys", 《JOURNAL OF NUCLEAR MATERIALS》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110711862A (zh) * 2019-11-04 2020-01-21 中南大学 一种6系铝合金的3d打印专用合金的制备方法
CN115380127A (zh) * 2020-01-31 2022-11-22 Hrl实验室有限责任公司 铝-铬-锆合金
CN115297977A (zh) * 2020-04-24 2022-11-04 史密夫和内修有限公司 增材制造的医疗植入物、用于形成其的方法和用于形成其的锆合金粉末
CN113967744A (zh) * 2020-07-22 2022-01-25 中国航发上海商用航空发动机制造有限责任公司 一种多功能一体化零件及制备其的方法
CN113249634A (zh) * 2021-04-27 2021-08-13 淮阴工学院 不锈钢及其成形件制备方法
CN113215470A (zh) * 2021-04-29 2021-08-06 西安建筑科技大学 一种纳米级氧化物强化低活化钢复合材料及其制备方法
CN114054747A (zh) * 2022-01-11 2022-02-18 爱柯迪股份有限公司 发动机用氮化硼粉末复合掺杂不锈钢活塞环及制备方法
CN116033982A (zh) * 2022-05-30 2023-04-28 清华大学 合金及其制备方法
WO2023231267A1 (zh) * 2022-05-30 2023-12-07 清华大学 合金及其制备方法
CN116096516A (zh) * 2022-10-12 2023-05-09 清华大学 纯钛制件及其制备方法

Also Published As

Publication number Publication date
WO2018128656A1 (en) 2018-07-12
EP3565681B1 (en) 2024-08-07
EP3565681A1 (en) 2019-11-13
US20180193916A1 (en) 2018-07-12

Similar Documents

Publication Publication Date Title
CN110382138A (zh) 用于增材制造的核壳合金粉末、增材制造方法和增材制造的沉淀弥散强化合金构件
Deevi Advanced intermetallic iron aluminide coatings for high temperature applications
Turk et al. Advances in maraging steels for additive manufacturing
Baudana et al. Electron beam melting of Ti-48Al-2Nb-0.7 Cr-0.3 Si: feasibility investigation
EP1586665B1 (en) Producing nickel-base cobalt-base iron-base iron-nickel-base or iron-nickel-cobalt-base alloy articles by reduction of nonmetallic precursor compounds and melting
CN109072349A (zh) 含铁、硅、钒和铜并且其中具有较大体积的陶瓷相的铝合金
KR102432787B1 (ko) Ods 합금 분말, 플라즈마 처리에 의한 이의 제조 방법, 및 그 용도
Verma et al. Effect of boron addition on microstructure, hardness and wear performance of Ti-6Al-4 V alloy manufactured by laser powder bed fusion additive manufacturing
KR102051514B1 (ko) 분산강화 분말의 제조방법 및 이에 의해 제조된 분말
JP7324803B2 (ja) 付加製造用ステンレス鋼粉末
CN105728725B (zh) 3d打印制备多元素过渡界面协同增强镍基复合材料的方法
WO2002092979A1 (fr) Ensemble de guidage de gaz d'echappement pour turbocompresseur de type vgs a resistance a chaud amelioree, procede de production d'elements resistant a la chaleur utilisables pour cet ensemble, et procede de production de matieres premieres a aubes variables utilisables dans cet ensemble
Yuan et al. Laser-clad FeCrAl/TiC composite coating on ferrite/martensitic steel: Significant grain refinement and wear resistance enhancement induced by adding TiC
US20240068074A1 (en) Titanium alloy and methods of manufacture
Sun et al. In-situ synthesis of CoCrFeMnNi high-entropy alloy by selective laser melting
Jeong et al. Manufacturing of Ti–Nb–Cr–V–Ni high entropy alloy using directed energy deposition and evaluation of materials properties
Dada et al. Electrical resistivity and oxidation behavior of Cu and Ti doped laser deposited high entropy alloys
Huang et al. New insight on mechanisms of Si element improving the oxidation resistance of titanium matrix composites
Ma et al. Ni-based ODS alloy prepared by direct energy deposition process: powder fabrication, microstructure, mechanical property, and oxidation resistance
Gao et al. A reactive molecular dynamics study of bi-modal particle size distribution in binder-jetting additive manufacturing using stainless-steel powders
JP7524547B2 (ja) Cr-Ni系合金部材およびその製造方法
JP6513968B2 (ja) 表面処理方法
JPS60208402A (ja) 分散強化型銅合金粉末の製造方法
Apparao et al. Experimental investigation on maraging steel metal deposition using DMLS process
Irrinki Material-process-property relationships of 17-4 stainless steel fabricated by laser-powder bed fusion followed by hot isostatic pressing.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination