CN110376666B - 一种中红外波段的超宽带完美吸收器及其制备方法 - Google Patents

一种中红外波段的超宽带完美吸收器及其制备方法 Download PDF

Info

Publication number
CN110376666B
CN110376666B CN201910674090.5A CN201910674090A CN110376666B CN 110376666 B CN110376666 B CN 110376666B CN 201910674090 A CN201910674090 A CN 201910674090A CN 110376666 B CN110376666 B CN 110376666B
Authority
CN
China
Prior art keywords
layer
metal
nanometers
ultra
infrared band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201910674090.5A
Other languages
English (en)
Other versions
CN110376666A (zh
Inventor
刘正奇
唐鹏
柳叶
刘桂强
刘晓山
付国兰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi Normal University
Original Assignee
Jiangxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi Normal University filed Critical Jiangxi Normal University
Priority to CN201910674090.5A priority Critical patent/CN110376666B/zh
Publication of CN110376666A publication Critical patent/CN110376666A/zh
Application granted granted Critical
Publication of CN110376666B publication Critical patent/CN110376666B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/003Light absorbing elements

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Optical Filters (AREA)

Abstract

本发明提供了一种中红外波段的超宽带完美吸收器及其制备方法。该吸收器由下及上依次设有基底层、非金属介质层、金属吸收层和非金属抗反射层,金属吸收层连接于非金属介质层上表面和顶部非金属抗反射层下表面,非金属介质层连接于基底层上表面。所述金属吸收层由多个金属吸收单元组成,该吸收器具有吸收效率高、角度不敏感、工作波段宽、热稳定性好的优点,在性能上超越了传统的吸收器。

Description

一种中红外波段的超宽带完美吸收器及其制备方法
技术领域
本发明涉及吸波器技术领域,具体涉及一种中红外波段的超宽带完美吸收器及其制备方法。
背景技术
随着现代科学技术的迅猛发展,宽带完美吸收体一直以来都是科技领域的热点课题;尤其是可见光红外波段宽带吸收,因其在太阳能采集、红外探测、信息传感、光热利用领域的重要应用需求,更是受到了人们的广泛关注。
近年来,人们设计了各种各样的吸波结构,例如,平面金属/介质结构、反射金属光栅结构、超材料结构和基于表面等离激元的结构。基于等离激元超构材料体系实现全吸收的方案有很多,金属颗粒-介质层-金属层超构材料体系是实现超吸收的典型结构之一。与传统方法相比,该体系具有亚波长特性,一般体系的整体厚度只有工作波长的几百分之一。但这种结构一般工作波段较窄。另外超材料结构和表面等离激元的新型吸波结构凭借近乎完美的吸收效率、随角度偏振不敏感、结构单元小、质量轻的特性,在设计选择性热发射器,生物传感器和太阳能收集系统领域具有很大的潜在应用价值。所以,设计吸收效率高、角度不敏感、工作波段宽、热稳定性好的高效宽谱吸波结构仍是该领域的一大挑战。
发明内容
为了解决现有技术制备的宽带吸收器工作波段窄、吸收效率低、角度敏感、热稳定性差的问题,本发明提供一种中红外波段的超宽带完美吸收器及其制备方法。
本发明提供的一种中红外波段的超宽带完美吸收器,包括:
基底层;
设置在基底层上的非金属介质层;
设置在非金属介质层上的金属吸收层;
设置在金属吸收层上的非金属抗反射层;
其中,金属吸收层由两个纳米圆环和两个椭圆纳米盘按周期阵列而成。
进一步地,所述基底层由不透明耐火金属材料制成,不透明耐火金属优选为钛、钨、镍或铬。
进一步地,所述非金属介质层采用半导体材料制作而成,半导体材料优选为二氧化硅。
进一步地,所述金属吸收层采用不透明耐火金属铬制作而成。
进一步地,所述非金属抗反射层采用半导体材料制作而成,半导体材料优选为二氧化硅。
进一步地,所述基底层、非金属介质层、金属吸收层和非金属抗反射层的厚度分别为300纳米、50纳米、70纳米、200纳米。
进一步地,所述两个纳米圆环的外半径(R)为160纳米,内半径(r)为50纳米;所述两个椭圆纳米盘的长半轴(D)为150纳米,短半轴(d)为60纳米;所述周期(P)为400纳米。
上述中红外波段的超宽带完美吸收器的制备方法,包括以下步骤:
步骤1、准备洁净的玻璃片;
步骤2、在步骤1玻璃片上蒸镀一层金属膜,形成基底层;
步骤3、在步骤2的基底层上蒸镀一层半导体材料,形成非金属介质层;
步骤4、在经步骤3的非金属介质层上铺设金属纳米结构,形成金属吸收层;
步骤5、在步骤4的金属吸收层上蒸镀一层半导体材料,形成非金属抗反射层,得到中红外波段的超宽带完美吸收器。
进一步地,在步骤4中,通过在非金属介质层表面上自旋涂覆光刻胶,并利用电子束曝光和显影技术形成目标结构的逆结构,然后利用电子束沉积一定厚度的金属层;其中目标结构为两个纳米圆环和两个椭圆纳米盘按周期阵的结构。
进一步地,在步骤5中,通过磁溅射法蒸镀一层半导体材料,形成非金属抗反射层,然后剥离多余的光刻胶并对非金属抗反射层表面进行平面化,得到中红外波段的超宽带完美吸收器。
进一步地,步骤2、3和5中的镀膜采用磁控溅射法镀膜。
本发明的有益效果:本发明提供了一种中红外波段的超宽带完美吸收器及其制备方法,该吸收器具有吸收效率高、角度不敏感、工作波段宽、热稳定性好的优点,在性能上超越了传统的吸收器;在入射光即太阳光的照射下,对1022~3372纳米的太阳光波段的平均吸收率超过93.9%,从而实现对太阳光的完全抗反射和太阳能的高效吸收。该吸收器结构简单,易于制备,简化实验制备流程,节省人力物力,具有很高的实用价值。
附图说明
以下将结合附图对本发明做进一步详细说明。
图1为本发明中红外波段的超宽带完美吸收器的结构示意图。
图2为本发明实施例1中红外波段的超宽带完美吸收器的吸收光谱。
图3为本发明实施例1中红外波段的超宽带完美吸收器在0°-50°斜入射下对应的吸收光谱;
图4为本发明实施例1~5中红外波段的超宽带完美吸收器顶部非金属抗反射层4厚度H从0纳米至200纳米对应的吸收光谱。
图5为本发明实施例1、6、7、8、9中红外波段的超宽带完美吸收器金属吸收层3中纳米圆环外半径R=160纳米,内半径r从30纳米至70纳米对应的吸收光谱。
图6为本发明实施例1、10、11、12、13中红外波段的超宽带完美吸收器金属吸收层3中纳米圆环内半径r=50纳米,外半径R从120纳米至160纳米对应的吸收光谱。
在图1中:1、基底层;2、非金属介质层;3、金属吸收层;4、顶部非金属抗反射层。
具体实施方式
如图1c所示,本发明的一种中红外波段的超宽带完美吸收器,由下及上依次设有基底层1、非金属介质层2、金属吸收层3和非金属抗反射层4,金属吸收层3连接于非金属介质层2上表面和顶部非金属抗反射层4下表面,非金属介质层2连接于基底层1上表面。金属吸收层3由两个纳米圆环和两个椭圆纳米盘组成的结构单元按周期阵列而成。基底层1由不透明耐火金属材料制成,不透明耐火金属材料可以是钛、钨、镍或铬。非金属介质层2和非金属抗反射层4均由半导体材料制成,半导体材料可以为二氧化硅。金属吸收层3由铬制成。
上述中红外波段的超宽带完美吸收器的制备方法,包括以下步骤:
步骤1、准备洁净的玻璃片;
步骤2、镀膜,在步骤1的玻璃片上蒸镀一层金属膜,形成基底层1;
步骤3、镀膜,在步骤2的基底层1上蒸镀一层半导体材料,形成非金属介质层2;
步骤4、铺设金属纳米结构,在经步骤3的非金属介质层2上铺设金属纳米结构,形成金属吸收层3;
步骤5、镀膜,在步骤4的金属吸收层3上蒸镀一层半导体材料,形成顶部非金属抗反射层4,得到中红外波段的超宽带完美吸收器。
在步骤4中,通过在非金属介质层2表面上自旋涂覆光刻胶,并利用电子束曝光和显影技术形成目标结构的逆结构,然后利用电子束沉积一定厚度的金属层。在步骤5中,通过磁溅射法蒸镀一层半导体材料,形成顶部非金属抗反射层4,然后剥离多余的光刻胶并对非金属抗反射层4表面进行平面化形成中红外波段的超宽带完美吸收器。步骤2、3和5中的镀膜采用磁控溅射法镀膜。
实施例1:
本实施例的一种中红外波段的超宽带完美吸收器,具体如下:
基底层1,材料为钛,厚度h3=300纳米;
非金属介质层2,材料为二氧化硅,厚度h2=50纳米;
金属吸收层3,材料为铬,厚度h1=70纳米;
非金属抗反射层4,材料为二氧化硅,厚度h4=200纳米;
其中,金属吸收层3由两个纳米圆环和两个椭圆纳米盘按周期阵列而成,阵列周期(P)为400纳米;纳米圆环的外半径(R)为160纳米,内半径(r)为50纳米;椭圆形纳米盘的长半轴(D)为150纳米,短半轴(d)为60纳米。
图2显示了本实施例中红外波段的超宽带完美吸收器的吸收光谱,可以清楚的看到,吸收率大于90%的吸收光谱范围的宽度达到2350纳米,覆盖了近红外和中红外波段的主要频率范围,实现了对太阳光的宽频吸收。由此可见,耐火材料的金属基底可以提供更宽频率范围的太阳能吸波响应。
图3显示了本实施例中红外波段的超宽带完美吸收器在0°-50°斜入射下的吸收光谱,可以清楚的看到,在50°斜入射下时吸收率大于90%的吸收光谱范围是965纳米到3165纳米,光谱宽度达到2200纳米,实现了对太阳光的宽频吸收。
实施例2:
在实施例1的基础上,去除非金属抗反射层4,其他与实施例1相同。即非金属抗反射层4的厚度为0纳米。
实施例3:
在实施例1的基础上,将非金属抗反射层4的厚度修改为50纳米,其他与实施例1相同。
实施例4:
在实施例1的基础上,将非金属抗反射层4的厚度修改为100纳米,其他与实施例1相同。
实施例5:
在实施例1的基础上,将非金属抗反射层4的厚度修改为150纳米,其他与实施例1相同。
图4显示了实施例1~5的中红外波段的超宽带完美吸收器顶部非金属抗反射层4厚度H从0纳米-200纳米对应的吸收光谱,可以清楚的看到,当顶部非金属抗反射层4厚度H=200纳米时,吸收率大于90%的吸收光谱是最优的,实现了对太阳光的宽频吸收。
实施例6:
在实施例1的基础上,将纳米圆环的内半径(r)修改为30纳米,其他与实施例1相同。
实施例7:
在实施例1的基础上,将纳米圆环的内半径(r)修改为40纳米,其他与实施例1相同。
实施例8:
在实施例1的基础上,将纳米圆环的内半径(r)修改为60纳米,其他与实施例1相同。
实施例9:
在实施例1的基础上,将纳米圆环的内半径(r)修改为70纳米,其他与实施例1相同。
图5显示了实施例1、6、7、8、9的中红外波段的超宽带完美吸收器金属吸收层3中纳米圆环外半径R=160纳米,内半径r从30纳米-70纳米对应的吸收光谱,可以清楚的看到,当纳米圆环内半径为50纳米时,吸收率大于90%的吸收光谱是最优的,实现了对太阳光的宽频吸收。
实施例10:
在实施例1的基础上,将纳米圆环的外半径(R)修改为120纳米,其他与实施例1相同。
实施例11:
在实施例1的基础上,将纳米圆环的外半径(R)修改为130纳米,其他与实施例1相同。
实施例12:
在实施例1的基础上,将纳米圆环的外半径(R)修改为140纳米,其他与实施例1相同。
实施例13:
在实施例1的基础上,将纳米圆环的外半径(R)修改为150纳米,其他与实施例1相同。
图6显示了实施例1、10、11、12、13的中红外波段的超宽带完美吸收器金属吸收层3中纳米圆环外半径r=50纳米,内半径R从120纳米-160纳米对应的吸收光谱,可以清楚的看到,当纳米圆环外半径为160纳米时,吸收率大于90%的吸收光谱是最优的,实现了对太阳光的宽频吸收。
综上所述,本发明的中红外波段的超宽带完美吸收器可以实现对太阳光的完全抗反射和对太阳能的高效吸收。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (5)

1.一种中红外波段的超宽带完美吸收器,包括:
基底层;
设置在基底层上的非金属介质层;
设置在非金属介质层上的金属吸收层;
设置在金属吸收层上的非金属抗反射层;
其中,所述金属吸收层由两个纳米圆环和两个椭圆纳米盘按周期阵列而成,所述基底层由不透明耐火金属材料制成,所述非金属介质层采用半导体材料制作而成,所述金属吸收层采用不透明耐火金属材料制作而成,所述非金属抗反射层采用半导体材料制作而成,所述不透明耐火金属为钛、钨、镍或铬,所述半导体材料为二氧化硅;所述基底层、非金属介质层、金属吸收层和非金属抗反射层的厚度分别为300纳米、50纳米、70纳米、200纳米;所述两个纳米圆环的外半径为160纳米,内半径为50纳米;所述两个椭圆纳米盘的长半轴为150纳米,短半轴为60纳米;所述周期为400纳米。
2.根据权利要求1所述的中红外波段的超宽带完美吸收器的制备方法,包括以下步骤:
步骤1、准备洁净的玻璃片;
步骤2、在步骤1玻璃片上蒸镀一层金属膜,形成基底层;
步骤3、在步骤2的基底层上蒸镀一层半导体材料,形成非金属介质层;
步骤4、在经步骤3的非金属介质层上铺设金属纳米结构,形成金属吸收层;
步骤5、在步骤4的金属吸收层上蒸镀一层半导体材料,形成非金属抗反射层,得到中红外波段的超宽带完美吸收器。
3.根据权利要求2所述的方法,其特征在于:在步骤4中,通过在非金属介质层表面上自旋涂覆光刻胶,并利用电子束曝光和显影技术形成目标结构的逆结构,然后利用电子束沉积一定厚度的金属层;其中目标结构为两个纳米圆环和两个椭圆纳米盘按周期阵的结构。
4.根据权利要求3所述的方法,其特征在于:在步骤5中,通过磁溅射法蒸镀一层半导体材料,形成非金属抗反射层,然后剥离多余的光刻胶并对非金属抗反射层表面进行平面化,得到中红外波段的超宽带完美吸收器。
5.根据权利要求2所述的方法,其特征在于:步骤2、3和5中的镀膜采用磁控溅射法镀膜。
CN201910674090.5A 2019-07-25 2019-07-25 一种中红外波段的超宽带完美吸收器及其制备方法 Expired - Fee Related CN110376666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910674090.5A CN110376666B (zh) 2019-07-25 2019-07-25 一种中红外波段的超宽带完美吸收器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910674090.5A CN110376666B (zh) 2019-07-25 2019-07-25 一种中红外波段的超宽带完美吸收器及其制备方法

Publications (2)

Publication Number Publication Date
CN110376666A CN110376666A (zh) 2019-10-25
CN110376666B true CN110376666B (zh) 2022-07-26

Family

ID=68255704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910674090.5A Expired - Fee Related CN110376666B (zh) 2019-07-25 2019-07-25 一种中红外波段的超宽带完美吸收器及其制备方法

Country Status (1)

Country Link
CN (1) CN110376666B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111239866A (zh) * 2020-03-04 2020-06-05 江西师范大学 一种超宽带的中红外波段完美吸波器及其制备方法
CN112799159B (zh) * 2021-01-28 2022-08-05 浙江大学 一种紫外-可见-红外全波段吸收器及其制备方法
CN113075755A (zh) * 2021-03-25 2021-07-06 桂林电子科技大学 一种基于lspr效应的陷光结构及其制备方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090023033A (ko) * 2007-08-29 2009-03-04 삼성코닝정밀유리 주식회사 디스플레이 장치용 필터 및 이를 구비하는 디스플레이 장치
CN102821589A (zh) * 2012-08-03 2012-12-12 深圳光启创新技术有限公司 一种吸波材料
CN102856663A (zh) * 2012-08-24 2013-01-02 电子科技大学 一种超材料宽带红外吸波结构材料
US8554022B1 (en) * 2009-12-21 2013-10-08 University Of Washington Through Its Center For Commercialization Silicon-graphene waveguide photodetectors, optically active elements and microelectromechanical devices
WO2014087256A1 (en) * 2012-12-03 2014-06-12 Indian Institute Of Technology Kanpur Metamaterial structures for q-switching in lasers
WO2015035127A1 (en) * 2013-09-06 2015-03-12 Massachusetts Institute Of Technology Metallic dielectric photonic crystals and methods of fabrication
WO2015038203A1 (en) * 2013-09-11 2015-03-19 Purdue Research Foundation Refractory plasmonic metamaterial absorber and emitter for energy harvesting
WO2015061808A1 (en) * 2013-10-25 2015-04-30 Mcalister Technologies, Llc Combustion chamber gaskets and associated methods of use and manufacture
CN104656170A (zh) * 2014-12-24 2015-05-27 江西师范大学 一种宽波段光全吸收器及其制备方法
US9357116B1 (en) * 2015-07-22 2016-05-31 Ic Real Tech, Inc. Isolating opposing lenses from each other for an assembly that produces concurrent non-overlapping image circles on a common image sensor
CN107390305A (zh) * 2017-07-21 2017-11-24 江西师范大学 双频带全光吸收器结构
CN107942428A (zh) * 2017-11-15 2018-04-20 江西师范大学 一种红外光完美吸收器及其制备方法
CN108333654A (zh) * 2018-03-05 2018-07-27 江西师范大学 一种钛材料电磁波完美吸收器
CN108333653A (zh) * 2018-03-05 2018-07-27 江西师范大学 基于耐火材料的电磁波吸收器
CN108520903A (zh) * 2018-05-10 2018-09-11 江西师范大学 一种可见-近红外区域宽波段完美吸收器及其制备方法
CN109152678A (zh) * 2016-03-09 2019-01-04 宝洁公司 具有可活化材料的吸收制品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6915850B2 (en) * 2001-04-24 2005-07-12 Shell Oil Company In situ thermal processing of an oil shale formation having permeable and impermeable sections
US20060049190A1 (en) * 2004-08-25 2006-03-09 Middleton Scott W Absorbent microwave interactive packaging
US9472699B2 (en) * 2007-11-13 2016-10-18 Battelle Energy Alliance, Llc Energy harvesting devices, systems, and related methods
US8143578B2 (en) * 2009-04-21 2012-03-27 The United States Of America As Represented By The Secretary Of The Army Ferroelectric radiation detector employing frequency modulated readout

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090023033A (ko) * 2007-08-29 2009-03-04 삼성코닝정밀유리 주식회사 디스플레이 장치용 필터 및 이를 구비하는 디스플레이 장치
US8554022B1 (en) * 2009-12-21 2013-10-08 University Of Washington Through Its Center For Commercialization Silicon-graphene waveguide photodetectors, optically active elements and microelectromechanical devices
CN102821589A (zh) * 2012-08-03 2012-12-12 深圳光启创新技术有限公司 一种吸波材料
CN102856663A (zh) * 2012-08-24 2013-01-02 电子科技大学 一种超材料宽带红外吸波结构材料
WO2014087256A1 (en) * 2012-12-03 2014-06-12 Indian Institute Of Technology Kanpur Metamaterial structures for q-switching in lasers
WO2015035127A1 (en) * 2013-09-06 2015-03-12 Massachusetts Institute Of Technology Metallic dielectric photonic crystals and methods of fabrication
WO2015038203A1 (en) * 2013-09-11 2015-03-19 Purdue Research Foundation Refractory plasmonic metamaterial absorber and emitter for energy harvesting
WO2015061808A1 (en) * 2013-10-25 2015-04-30 Mcalister Technologies, Llc Combustion chamber gaskets and associated methods of use and manufacture
CN104656170A (zh) * 2014-12-24 2015-05-27 江西师范大学 一种宽波段光全吸收器及其制备方法
US9357116B1 (en) * 2015-07-22 2016-05-31 Ic Real Tech, Inc. Isolating opposing lenses from each other for an assembly that produces concurrent non-overlapping image circles on a common image sensor
CN109152678A (zh) * 2016-03-09 2019-01-04 宝洁公司 具有可活化材料的吸收制品
CN107390305A (zh) * 2017-07-21 2017-11-24 江西师范大学 双频带全光吸收器结构
CN107942428A (zh) * 2017-11-15 2018-04-20 江西师范大学 一种红外光完美吸收器及其制备方法
CN108333654A (zh) * 2018-03-05 2018-07-27 江西师范大学 一种钛材料电磁波完美吸收器
CN108333653A (zh) * 2018-03-05 2018-07-27 江西师范大学 基于耐火材料的电磁波吸收器
CN108520903A (zh) * 2018-05-10 2018-09-11 江西师范大学 一种可见-近红外区域宽波段完美吸收器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Metal-Insulator-Metal-Based Plasmonic Metamaterial Absorbers at Visible and Infrared Wavelengths: A Review";Shinpei Ogawa等;《Materials》;20180320(第11期);全文 *
"基于纳米压印的超材料近红外吸收器制备研究";姜祎祎;《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》;20161115(第11期);全文 *

Also Published As

Publication number Publication date
CN110376666A (zh) 2019-10-25

Similar Documents

Publication Publication Date Title
CN110376666B (zh) 一种中红外波段的超宽带完美吸收器及其制备方法
CN210535829U (zh) 一种基于多层结构的环形超材料吸波器
CN101740722B (zh) 一种宽波段的近完美吸收结构
CN110346853A (zh) 一种可见-近红外波段的可调谐双频完美吸收器
CN111338011B (zh) 一种采用复合微结构实现超宽带光吸收增强的方法
CN111273384B (zh) 一种紫外-可见光-近红外波段的超宽带吸收器
CN110673242B (zh) 一种偏振可调谐硅基光学吸波器及其制备方法
CN108732663A (zh) 宽带双向广角吸波结构及其制备方法
CN110196464A (zh) 一种实现超宽带光吸收的方法以及一种复合微结构
JPWO2018043298A1 (ja) 光吸収体、ボロメーター、赤外線吸収体、太陽熱発電装置、放射冷却フィルム、及び光吸収体の製造方法
CN110389398A (zh) 一种超宽带完美吸收器及其制备方法
CN110687622B (zh) 一种偏振可调光谱双重差异性响应的完美光学吸波器及其制备方法
CN105807353A (zh) 可见光及红外波段的宽波段吸收滤光结构及其制备方法
CN210294582U (zh) 一种可见光宽波段吸收结构
Zheng et al. Research status and application prospects of manufacturing technology for micro–nano surface structures with low reflectivity
CN110346854A (zh) 一种与偏振无关的超窄多频带可调谐完美吸收器
CN110007381A (zh) 一种可见光宽波段吸收器及其制作方法
CN105480931A (zh) 一种可见光双向吸收体结构
CN112856837A (zh) 一种用于太阳能水气化的光谱选择性吸光结构
CN109932766A (zh) 一种可见光和近红外波段的吸波器
CN108515743B (zh) 一种金属/介质超宽带吸收薄膜及其制备方法
Song et al. An ultra-broadband high-performance solar energy perfect absorber from deep ultraviolet to mid-infrared
CN108333654A (zh) 一种钛材料电磁波完美吸收器
CN113161763A (zh) 基于石墨烯的全介质太赫兹可调谐吸波器
CN108375811A (zh) 基于氮化钛材料的光学吸收器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220726

CF01 Termination of patent right due to non-payment of annual fee