CN110376435A - 一种基于带外-多频率模型的同步相量测量方法 - Google Patents

一种基于带外-多频率模型的同步相量测量方法 Download PDF

Info

Publication number
CN110376435A
CN110376435A CN201910715375.9A CN201910715375A CN110376435A CN 110376435 A CN110376435 A CN 110376435A CN 201910715375 A CN201910715375 A CN 201910715375A CN 110376435 A CN110376435 A CN 110376435A
Authority
CN
China
Prior art keywords
frequency
band
phasor
indicate
fundamental
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201910715375.9A
Other languages
English (en)
Inventor
符玲
潘晨玥
熊思宇
雷煜民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Jiaotong University
Original Assignee
Southwest Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Jiaotong University filed Critical Southwest Jiaotong University
Priority to CN201910715375.9A priority Critical patent/CN110376435A/zh
Publication of CN110376435A publication Critical patent/CN110376435A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/02Arrangements for measuring frequency, e.g. pulse repetition rate; Arrangements for measuring period of current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R25/00Arrangements for measuring phase angle between a voltage and a current or between voltages or currents

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Frequencies, Analyzing Spectra (AREA)

Abstract

本发明涉及电力系统同步相量测量技术领域,且公开了一种基于带外‑多频率模型的同步相量测量方法,包括以下步骤,选择旋转频率不同但在真实带外频率附近的两个子相量表示带外相量Xb(t),得到带外干扰的多频率模型;以频率fs对电压/电流信号进行采样,得到离散序列x(n);频谱分析,然后根据频谱的峰值和次峰值分别确定基波频率预估值和带外频率预估值求得未知泰勒导数;计算报告时刻的基波相量值X(trep)、精确频率值frep以及频率变化率值ROCOF。该一种基于带外‑多频率模型的同步相量测量方法,能够对信号中的带外干扰进行合理的相量建模,避免了复杂的基波频谱和带外频谱的相互影响分析和分离过程,减小基波综合相量和基波频率的测量误差。

Description

一种基于带外-多频率模型的同步相量测量方法
技术领域
本发明涉及电力系统同步相量测量技术领域,具体为一种基于带外-多频率模型的同步相量测量方法。
背景技术
随着我国交直流混联电网格局的逐步形成,各类新型电力电子器件的使用、输电线路电容的投切、发电机定子接地保护装置的运行等操作会向一次系统注入干扰信号。该干扰信号的频率离基频较近、能量较大,在IEEE同步相量测量评价标准中被视作带外干扰。带外干扰会通过电压互感器进入二次回路,从而直接影响同步相量测量单元(PhasorMeasurement Units,PMUs)对基波相量的准确提取。因此,研究带外干扰下基波同步相量测量方法,对研发性能更加完善的下一代PMU装置的具有一定的参考价值。
根据IEEE Std C37.118.1TM-2014,当电力系统基波频率表示为f0,PMU相量报告频率表示为Fs时,频率在[10Hz,f0-Fs/2Hz]和[f0+Fs/2Hz,2f0Hz]范围内的正弦信号是带外干扰。带外干扰的频率相较于各类谐波频率而言更加接近基波频率,它的频谱会与基波频谱相互交叉形成较大频谱干扰。目前研究学者主要通过以下两种途径抑制带外干扰对PMU同步相量测量产生的影响:滤波器法和压缩感知法。前者通过在带外干扰频率处设置特定的级联滤波器可以达到滤除带外干扰的目的,但是滤波参数的设计和滤波器的实现需要复杂的计算与优化,同时,该方法还会不可避免的导致算法延迟和执行时间变长。后者将带外干扰视作一种频率靠近基频的间谐波,提出一种泰勒-傅利叶多频率相量模型,通过严格的迭代搜索正交匹配追踪法检测信号中频谱成分,获得带外干扰信息。这种方法计算量大、需要高分辨率和多次迭代、且效率低。
因此,有必要重新考虑一种带外干扰下的同步相量测量方法,将带外干扰相量进行多频率泰勒展开的同时与动态基波相量共同构成一种新的复合相量模型,通过简单易实现的离散傅里叶变换预估模型中的基波频率和带外频率值,最后直接采用最小二乘拟合得到精确的基波同步相量和基波频率值。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种基于带外-多频率模型的同步相量测量方法,具备能够对信号中的带外干扰进行合理的相量建模,避免了复杂的基波频谱和带外频谱的相互影响分析和分离过程,减小基波综合相量和基波频率的测量误差的优点,解决了在带外干扰条件下,现有同步相量测量算法提取基波相量和基波频率的能力下降,难以满足IEEE同步相量测量评价标准的问题。
(二)技术方案
1.为实现对信号中的带外干扰进行合理的相量建模,避免了复杂的基波频谱和带外频谱的相互影响分析和分离过程,减小基波综合相量和基波频率的测量误差的目的,本发明提供如下技术方案:一种基于带外-多频率模型的同步相量测量方法,包括以下步骤,
S1:选择旋转频率不同但在真实带外频率附近的两个子相量表示带外相量Xb(t),得到带外干扰的多频率模型;并结合基波动态相量X0(t),共同构成信号的复合相量X(t);
S2:以频率fs对电压/电流信号进行采样,得到离散序列x(n);利用离散傅里叶变换对x(n)在[10Hz,2f0Hz]频率范围内进行频谱分析,滤波频率设置为ωx=2πfx/fs,然后根据频谱的峰值和次峰值分别确定基波频率预估值和带外频率预估值
S3:选择长度为2M+1的电压/电流采样序列建立2M+1个方程,利用最小二乘法求解复合相量模型得到未知泰勒导数;
S4:根据各阶泰勒导数计算报告时刻的基波相量值X(trep)、精确频率值frep以及频率变化率值ROCOF。
进一步的,所述S1包括如下步骤:
步骤1.1:利用真实带外频率附近的两个不同旋转频率的子相量合成带外干扰相量:
其中,X1(t)和X2(t)表示带外子相量,分别由低频带限信号b1(t)、b2(t)和恒定旋转矢量组成,表示在真实带外频率附近的旋转频率;表示预估带外频率,可由离散傅里叶变换扫频求得;Δfb表示频点之间的频率间隔且
步骤1.2:结合动态基波相量X0(t),得到电力信号的复合相量模型:
其中,X0(t)由低频带限信号a(t)和恒定旋转矢量组成,其中表示由DFT求得的预估基波频率;
步骤1.3:通过欧拉公式可以由上述复合相量得到电力信号表达式如下:
低频带限信号a(t)、b1(t)和b2(t)在短时间间隔内可利用K阶泰勒级数近似表示为:
其中,K表示泰勒级数的最高阶数,a(k)和bi (k)分别是a(t)和bi(t)在t时刻的k阶导数值;Δa和Δbi均表示由泰勒近似产生的误差。
进一步的,所述S2包括如下步骤:
步骤2.1:以恒定采样频率fs对电力信号进行采样,可得到离散电力信号序列x(n):
式中,n=t·fs,表示第n个采样时刻;表示基波角频率;表示靠近真实带外频率的两个角频率;α(k)=a(k)·(fs)-k;β1 (k)=b1 (k)·(fs)-k
步骤2.2:利用欧拉公式将泰勒导数的虚实部分离,得到离散信号:
式中,[g]R表示矩阵的实部,[g]I表示矩阵的虚部。A表示由K+1阶基波泰勒导数组成的向量,B1和B2表示由K+1阶带外泰勒导数组成的向量,C(n)、D(n)、E(n)、F(n)、G(n)和H(n)均表示系数矩阵,它们的具体表达式如下:
A=[α(0)(1)…,α(K)]T
B1=[β1 (0)1 (1)…,β1 (K)]T,B2=[β2 (0)2 (1)…,β2 (K)]T
步骤2.3:利用离散傅里叶变换对采样信号进行[10Hz,2f0Hz]频率范围内的频谱分析:
式中,nl表示当前时刻的采样点;x(ε)表示长度为NP的采样序列;h(ε)表示截断的矩形数据窗;fx表示DFT的滤波频率,fx分别取[10Hz,2f0Hz],步进频率是1Hz。
因此,基波频率的预估值和带外频率的预估值由扫频结果求得:
式中,表示[f0-5Hz,f0+5Hz]范围内频谱峰值所对应的频率值;f2 max对应[10Hz,f0-Fs/2Hz]和[f0+Fs/2Hz,2f0Hz]两个范围内的频谱峰值;表示取整操作。
进一步的,所述S3包括如下步骤:
步骤3.1:采用长度为2M+1的电压/电流采样序列建立2M+1个方程求解泰勒导数,序列中心时刻即是算法的参考时刻tref,得到方程组(须满足:2M+1≥3K+3):
式中:
X=[x(-M),…,x(1),x(0),x(2),…,x(M)]T
步骤3.2:将3.1中方程组进行虚实部分离,并写成矩阵形式如下所示:
X=YZ
式中,
X=[XR XI]T
Z=[AR AI B1R B1I B2R B2I]T
利用最小二乘法求解得到:
Z=(YTY)-1YTX。
进一步的,所述S4包括如下步骤:
通过相移操作得到PMU报告时刻的基波相量如下所示:
式中,Δτ=tref-trep表示两个时刻之间的时间差。frep表示当前时刻的精确频率值,利用各阶基波泰勒导数求得如下:
frep=facc_0+Δτ·ROCOF
(三)有益效果
与现有技术相比,本发明提供了一种基于带外-多频率模型的同步相量测量方法,具备以下有益效果:
1.本发明采用的基于带外-多频率模型的同步相量测量算法能够对信号中的带外干扰进行合理的相量建模,通过最小二乘法可以精确求解模型中的各阶泰勒导数。
2.本发明利用简单易行的DFT算法在[10Hz,2f0Hz]频率范围内进行频谱分析,根据谱峰值和次普峰值可以得到基波频率和带外频率的预估计值,为后续精确求解基波频率奠定了重要的基础。
3.本发明算法避免了复杂的基波频谱和带外频谱的相互影响分析和分离过程,在测量评价标准IEEE Std C37.118.1TM-2014中的带外干扰工况下,基波综合相量测量误差小于1.3%,基波频率测量误差小于0.01Hz,二者均能满足测量要求。
附图说明
图1为本发明方法流程图。
具体实施方式
本发明公开了一种基于带外-多频率模型的同步相量测量方法,本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。需要特别指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。下面结合实施例,进一步阐述本发明。
一种基于带外-多频率模型的同步相量测量方法,如图1所示,包括以下步骤:
S1:考虑电力信号中的带外干扰成分,选择旋转频率不同但在真实带外频率附近的两个子相量表示带外相量Xb(t),得到带外干扰的多频率模型;并结合基波动态相量X0(t),共同构成信号的复合相量X(t);
S2:以频率fs对电压/电流信号进行采样,得到离散序列x(n);利用离散傅里叶变换(Discrete Fourier Transform,DFT)对x(n)在[10Hz,2f0Hz]频率范围内进行频谱分析,滤波频率设置为ωx=2πfx/fs,然后根据频谱的峰值和次峰值分别确定基波频率预估值和带外频率预估值
S3:选择长度为2M+1的电压/电流采样序列建立2M+1个方程,利用最小二乘法求解复合相量模型得到未知泰勒导数;
S4:根据各阶泰勒导数计算报告时刻的基波相量值X(trep)、精确频率值frep以及频率变化率值ROCOF。
S1具体包括以下步骤:
步骤1.1:利用真实带外频率附近的两个不同旋转频率的子相量合成带外干扰相量:
其中,X1(t)和X2(t)表示带外子相量,分别由低频带限信号b1(t)、b2(t)和恒定旋转矢量组成。表示在真实带外频率附近的旋转频率;表示预估带外频率,可由DFT扫频求得;Δfb表示频点之间的频率间隔且
步骤1.2:结合动态基波相量X0(t),得到电力信号的复合相量模型:
其中,X0(t)由低频带限信号a(t)和恒定旋转矢量组成,其中表示由DFT求得的预估基波频率;
步骤1.3:由欧拉公式可以由上述复合相量得到电力信号表达式如下:
由于电力系统是一个大的惯性系统,电力信号变化缓慢,因此低频带限信号a(t)、b1(t)和b2(t)在短时间间隔内可利用K阶泰勒级数近似表示为:
其中,K表示泰勒级数的最高阶数,a(k)和bi (k)分别是a(t)和bi(t)在t时刻的k阶导数值;Δa和Δbi均表示由泰勒近似产生的误差,当K足够大时这部分近似误差可以忽略不计。
S2具体包括以下步骤:
步骤2.1:以恒定采样频率fs对电力信号进行采样,可得到离散电力信号序列x(n):
式中,n=t·fs,表示第n个采样时刻;表示基波角频率;表示靠近真实带外频率的两个角频率;α(k)=a(k)·(fs)-k;β1 (k)=b1 (k)·(fs)-k
步骤2.2:利用欧拉公式将泰勒导数的虚实部分离,得到离散信号:
式中,[g]R表示矩阵的实部,[g]I表示矩阵的虚部。A表示由K+1阶基波泰勒导数组成的向量,B1和B2表示由K+1阶带外泰勒导数组成的向量,C(n)、D(n)、E(n)、F(n)、G(n)和H(n)均表示系数矩阵,它们的具体表达式如下:
A=[α(0)(1)…,α(K)]T
B1=[β1 (0)1 (1)…,β1 (K)]T,B2=[β2 (0)2 (1)…,β2 (K)]T
步骤2.3:利用DFT对采样信号进行[10Hz,2f0Hz]频率范围内的频谱分析:
式中,nl表示当前时刻的采样点;x(ε)表示长度为NP的采样序列;h(ε)表示截断的矩形数据窗;fx表示DFT的滤波频率,根据IEEE标准对基波频率偏移量和对带外频率范围定义的描述,fx分别取[10Hz,2f0Hz],步进频率是1Hz。
因此,基波频率的预估值和带外频率的预估值由扫频结果求得:
式中,表示[f0-5Hz,f0+5Hz]范围内频谱峰值所对应的频率值;f2 max对应[10Hz,f0-Fs/2Hz]和[f0+Fs/2Hz,2f0Hz]两个范围内的频谱峰值;表示取整操作。
S3具体包括以下步骤:
步骤3.1:由于向量A、B1和B2一共包含了3(K+1)个待求的泰勒导数,因此至少需要建立3(K+1)个方程才可以对上述复合相量模型进行求解,采用长度为2M+1的电压/电流采样序列建立2M+1个方程求解泰勒导数,序列中心时刻即是算法的参考时刻tref,得到方程组(注意:2M+1≥3K+3):
式中:
X=[x(-M),…,x(1),x(0),x(2),…,x(M)]T
步骤3.2:为了减轻数据信号处理单元的的运算负担,避复数运算,将3.1中方程组进行虚实部分离,并写成矩阵形式如下所示:
X=YZ
式中,
X=[XR XI]T
Z=[AR AI B1R B1I B2R B2I]T
利用最小二乘法求解得到:
Z=(YTY)-1YTX。
S4具体包括以下步骤:
由于PMU的相量报告时刻trep来源于全球定位系统的卫星接收器,是一个绝对时间。在实际工程应用中很难与算法的参考时刻tref保持一致,因此,有必要通过相移操作得到PMU报告时刻的基波相量如下所示:
式中,Δτ=tref-trep表示两个时刻之间的时间差,frep表示当前时刻的精确频率值,利用各阶基波泰勒导数求得如下:
frep=facc_0+Δτ·ROCOF
本发明新增了带外信号的泰勒相量模型以及对带外信号频率、幅值的提取和判断过程,通过判断是否存在带外干扰建立不同的相量模型,调用不同基波相量修正矩阵,在增加有限运算量的基础上补充了现有基于泰勒模型的动态同步相量测量算法的不足。能够有效判断带外干扰是否存在于电力信号中,当带外干扰和频率偏移同时存在时,提高了电力信号基波同步相量的测量精度,满足测量标准要求。
仿真实验:
为验证本发明方法是否能够满足最新测量标准IEEE Std C37.118.1TM-2014对带外干扰工况下基波相量和基波频率的测量精度要求,评价指标分别为基波综合相量测量误差和基波频率测量误差。在matlab仿真软件中设置如下参数:系统的额定基波频率为50Hz,PMU的报告频率为50Hz,则带外干扰的频率范围为[10Hz,25Hz]∪[75Hz,100Hz],信号的采样频率为2450Hz,两个子带外相量的旋转频率之间的频率间隔Δfb为0.2Hz,基波相量和两个带外子相量均采用2阶泰勒展开,进行频谱分析所需要的采样序列长度NP为2450。分别用本发明方法和已发表的考虑频率偏移的动态同步相量测量算法(A Modified DynamicSynchrophasor Estimation Algorithm Considering Frequency Deviation,MDSEA)进行对比测试。
由于电力系统的动态特征,很难保证电力信号的频率恒等于额定频率。因此在带外干扰测试下,除了在基波信号上额外叠加一个带外正弦信号外,还需要对基波频率设定一定程度频率偏移,信号表达式如下所示:
x(t)=cos[2π(f0+Δf)t]+0.1cos(2πfbt)
式中,Δf表示基波频率偏移,偏移范围是-2.5Hz~2.5Hz,设置其步进增量是0.1Hz;fb表示带外频率,其范围是10Hz:25Hz和75Hz:100Hz,设置其步进增量是1Hz。
统计2s运行时间内,在各个带外频率fb下的基波综合相量测量误差最大值和基波频率测量误差最大值,统计结果分别如表1至表4所示。可以看出,MDSEA算法受带外干扰的影响很大,所得到的测量结果不能满足IEEE Std C37.118.1TM-2014中对基波相量和基波频率的测量要求,部分基波综合相量测量误差值大于1.3%,基波频率测量误差值大于0.01Hz。而本文所提出的算法在带外干扰和频率偏移同时发生时,获得的基波综合相量测量误差和基波频率测量误差值均能满足测量要求。
表1为当基波频率在范围内变化且带外干扰频率在范围内变化时,MDSEA算法和本发明算法在每个带外频点下得到的基波综合相量测量误差最大值:
表1
表2为当基波频率在范围内变化且带外干扰频率在范围内变化时,MDSEA算法和本发明算法在每个带外频点下得到的基波频率测量误差最大值;
表2
表3为当基波频率在范围内变化且带外干扰频率在范围内变化时,MDSEA算法和本发明算法在每个带外频点下得到的基波综合相量测量误差最大值;
表3
表4为当基波频率在范围内变化且带外干扰频率在[75Hz,100Hz]范围内变化时,MDSEA算法和本发明算法在每个带外频点下得到的基波频率测量误差最大值。
表4
需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (5)

1.一种基于带外-多频率模型的同步相量测量方法,其特征在于:包括以下步骤,
S1:选择旋转频率不同但在真实带外频率附近的两个子相量表示带外相量Xb(t),得到带外干扰的多频率模型;并结合基波动态相量X0(t),共同构成信号的复合相量X(t);
S2:以频率fs对电压/电流信号进行采样,得到离散序列x(n);利用离散傅里叶变换对x(n)在[10Hz,2f0Hz]频率范围内进行频谱分析,滤波频率设置为ωx=2πfx/fs,然后根据频谱的峰值和次峰值分别确定基波频率预估值和带外频率预估值
S3:选择长度为2M+1的电压/电流采样序列建立2M+1个方程,利用最小二乘法求解复合相量模型得到未知泰勒导数;
S4:根据各阶泰勒导数计算报告时刻的基波相量值X(trep)、精确频率值frep以及频率变化率值ROCOF。
2.根据权利要求1所述的一种基于带外-多频率模型的同步相量测量方法,其特征在于:所述S1包括如下步骤:
步骤1.1:利用真实带外频率附近的两个不同旋转频率的子相量合成带外干扰相量:
其中,X1(t)和X2(t)表示带外子相量,分别由低频带限信号b1(t)、b2(t)和恒定旋转矢量组成,表示在真实带外频率附近的旋转频率;表示预估带外频率,可由离散傅里叶变换扫频求得;Δfb表示频点之间的频率间隔且
步骤1.2:结合动态基波相量X0(t),得到电力信号的复合相量模型:
其中,X0(t)由低频带限信号a(t)和恒定旋转矢量组成,其中表示由DFT求得的预估基波频率;
步骤1.3:通过欧拉公式可以由上述复合相量得到电力信号表达式如下:
低频带限信号a(t)、b1(t)和b2(t)在短时间间隔内可利用K阶泰勒级数近似表示为:
其中,K表示泰勒级数的最高阶数,a(k)和bi (k)分别是a(t)和bi(t)在t时刻的k阶导数值;Δa和Δbi均表示由泰勒近似产生的误差。
3.根据权利要求1所述的一种基于带外-多频率模型的同步相量测量方法,其特征在于:所述S2包括如下步骤:
步骤2.1:以恒定采样频率fs对电力信号进行采样,可得到离散电力信号序列x(n):
式中,n=t·fs,表示第n个采样时刻;表示基波角频率;表示靠近真实带外频率的两个角频率;α(k)=a(k)·(fs)-k
步骤2.2:利用欧拉公式将泰勒导数的虚实部分离,得到离散信号:
式中,[g]R表示矩阵的实部,[g]I表示矩阵的虚部,A表示由K+1阶基波泰勒导数组成的向量,B1和B2表示由K+1阶带外泰勒导数组成的向量,C(n)、D(n)、E(n)、F(n)、G(n)和H(n)均表示系数矩阵,它们的具体表达式如下:
A=[α(0)(1)…,α(K)]T
B1=[β1 (0)1 (1)…,β1 (K)]T,B2=[β2 (0)2 (1)…,β2 (K)]T
步骤2.3:利用离散傅里叶变换对采样信号进行[10Hz,2f0Hz]频率范围内的频谱分析:
式中,nl表示当前时刻的采样点;x(ε)表示长度为NP的采样序列;h(ε)表示截断的矩形数据窗;fx表示DFT的滤波频率,fx分别取[10Hz,2f0Hz],步进频率是1Hz,基波频率的预估值和带外频率的预估值由扫频结果求得:
式中,表示[f0-5Hz,f0+5Hz]范围内频谱峰值所对应的频率值;f2 max对应[10Hz,f0-Fs/2Hz]和[f0+Fs/2Hz,2f0Hz]两个范围内的频谱峰值;表示取整操作。
4.根据权利要求1所述的一种基于带外-多频率模型的同步相量测量方法,其特征在于:所述S3包括如下步骤:
步骤3.1:采用长度为2M+1的电压/电流采样序列建立2M+1个方程求解泰勒导数,序列中心时刻即是算法的参考时刻tref,得到方程组(须满足:2M+1≥3K+3):
式中:
X=[x(-M),…,x(1),x(0),x(2),…,x(M)]T
步骤3.2:将3.1中方程组进行虚实部分离,并写成矩阵形式如下所示:
X=YZ
式中,
X=[XR XI]T
Z=[AR AI B1R B1I B2R B2I]T
利用最小二乘法求解得到:
Z=(YTY)-1YTX。
5.根据权利要求1所述的一种基于带外-多频率模型的同步相量测量方法,其特征在于:所述S4包括如下步骤:
通过相移操作得到PMU报告时刻的基波相量如下所示:
式中,Δτ=tref-trep表示两个时刻之间的时间差,frep表示当前时刻的精确频率值,利用各阶基波泰勒导数求得如下:
frep=facc_0+Δτ·ROCOF
CN201910715375.9A 2019-08-05 2019-08-05 一种基于带外-多频率模型的同步相量测量方法 Withdrawn CN110376435A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910715375.9A CN110376435A (zh) 2019-08-05 2019-08-05 一种基于带外-多频率模型的同步相量测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910715375.9A CN110376435A (zh) 2019-08-05 2019-08-05 一种基于带外-多频率模型的同步相量测量方法

Publications (1)

Publication Number Publication Date
CN110376435A true CN110376435A (zh) 2019-10-25

Family

ID=68257941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910715375.9A Withdrawn CN110376435A (zh) 2019-08-05 2019-08-05 一种基于带外-多频率模型的同步相量测量方法

Country Status (1)

Country Link
CN (1) CN110376435A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115343532A (zh) * 2022-08-09 2022-11-15 国网福建省电力有限公司 基于压缩感知的含扰动电能质量信号压缩重构方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589299A (zh) * 2017-08-03 2018-01-16 西南交通大学 基于多频率相量模型的电力信号同步相量测量方法
CN108776262A (zh) * 2018-06-04 2018-11-09 西南交通大学 一种考虑带外干扰的电力系统频率测量方法
CN109444537A (zh) * 2018-10-18 2019-03-08 西南交通大学 一种计及带外干扰的自适应同步相量测量方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589299A (zh) * 2017-08-03 2018-01-16 西南交通大学 基于多频率相量模型的电力信号同步相量测量方法
CN108776262A (zh) * 2018-06-04 2018-11-09 西南交通大学 一种考虑带外干扰的电力系统频率测量方法
CN109444537A (zh) * 2018-10-18 2019-03-08 西南交通大学 一种计及带外干扰的自适应同步相量测量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
梁建英 等: "消除相互影响的基波及谐波相量测量算法", 《西南交通大学学报》 *
熊思宇: "基于多频率-泰勒模型的动态相量测量算法研究", 《中国优秀硕士学位论文全文数据库 工程科技II辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115343532A (zh) * 2022-08-09 2022-11-15 国网福建省电力有限公司 基于压缩感知的含扰动电能质量信号压缩重构方法

Similar Documents

Publication Publication Date Title
CN105223418B (zh) 次同步和超同步谐波相量的测量方法及测量装置
US9488681B2 (en) Convolution integral for synchronized phasor
CN106707007B (zh) 变电设备绝缘在线监测系统的工作方法
CN107247182A (zh) 一种基于量测相量数据的间谐波分量还原方法
CN102288807A (zh) 一种测量电网电压闪变的方法
JP6416072B2 (ja) 同期フェーザ測定装置およびパルス生成装置
CN104502707A (zh) 一种基于三次样条插值的电力系统同步相量测量方法
CN109581103A (zh) 基于广域监测的电网谐波源定位方法
CN110031680A (zh) 一种系统侧谐波阻抗估计方法和系统
CN104316768A (zh) 一种三相不平衡扰动源定位的负序阻抗参数估算方法
CN108896944B (zh) 一种同步测量装置实验室校准仪及其同步相量测量方法
CN106226590A (zh) 一种电力系统同步相量测量方法
CN110222309A (zh) 一种基于鲁棒容积卡尔曼滤波的发电机动态估计方法
CN104502703A (zh) 基于频域动态模型的电力信号同步相量测量方法
CN110376435A (zh) 一种基于带外-多频率模型的同步相量测量方法
CN109444537A (zh) 一种计及带外干扰的自适应同步相量测量方法
CN105866576A (zh) 智能变电站二次侧电能计量误差影响的模拟检测系统及其检测分析方法
CN106383280B (zh) 基于二节点架空线模型的电压互感器模型测试方法
Wu et al. Effect of frequency offset on power measurement error in digital input electricity meters
CN106156489B (zh) 一种电力系统同步相量快速计算方法
CN109655676A (zh) 一种电力核相的方法
CN104850751A (zh) 一种电流质量评估方法
Mauryan et al. Phasor measurement units in power system networks-a review
CN103592513B (zh) 电力信号谐波分析方法和装置
Liu et al. An adaptive DFT algorithm for measuring power system synchrophasors based on rectangular coordinate

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20191025