CN110373248A - 一种纳米镓基液态金属润滑添加剂的制备及应用 - Google Patents

一种纳米镓基液态金属润滑添加剂的制备及应用 Download PDF

Info

Publication number
CN110373248A
CN110373248A CN201910769940.XA CN201910769940A CN110373248A CN 110373248 A CN110373248 A CN 110373248A CN 201910769940 A CN201910769940 A CN 201910769940A CN 110373248 A CN110373248 A CN 110373248A
Authority
CN
China
Prior art keywords
nano
additive
preparation
room temperature
base fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910769940.XA
Other languages
English (en)
Inventor
杨军
程军
郭杰
刘维民
朱圣宇
谈辉
孙奇春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Institute of Chemical Physics LICP of CAS
Original Assignee
Lanzhou Institute of Chemical Physics LICP of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanzhou Institute of Chemical Physics LICP of CAS filed Critical Lanzhou Institute of Chemical Physics LICP of CAS
Priority to CN201910769940.XA priority Critical patent/CN110373248A/zh
Publication of CN110373248A publication Critical patent/CN110373248A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M125/00Lubricating compositions characterised by the additive being an inorganic material
    • C10M125/04Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M169/00Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
    • C10M169/04Mixtures of base-materials and additives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/04Elements
    • C10M2201/05Metals; Alloys
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/14Inorganic compounds or elements as ingredients in lubricant compositions inorganic compounds surface treated with organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/028Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms
    • C10M2205/0285Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers containing aliphatic monomers having more than four carbon atoms used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/16Paraffin waxes; Petrolatum, e.g. slack wax
    • C10M2205/163Paraffin waxes; Petrolatum, e.g. slack wax used as base material
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/055Particles related characteristics
    • C10N2020/06Particles of special shape or size
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/04Detergent property or dispersant property
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Lubricants (AREA)

Abstract

本发明涉及一种纳米镓基液态金属润滑添加剂的制备,是将镓基室温液态金属加入修饰剂的无水乙醇溶液中,于5~25℃超声处理1~3h;先将混合液通过低速离心去除尺寸较大的颗粒,再高速离心收集纳米颗粒,无水乙醇清洗,室温干燥即得。本发明利用简单的超声法获得了一种油溶性纳米镓基室温液态金属添加剂,在非极性溶剂中具有很好的分散性,可以稳定分散在润滑油中制得性能优异的润滑油,能够实现在重载、高温等苛刻环境下高效、高可靠性的使役。另外,本发明制备的润滑油添加剂的制备方法简单,成本低,工艺可控性强,适用性广,而且可以方便的从废油中回收、再利用。

Description

一种纳米镓基液态金属润滑添加剂的制备及应用
技术领域
本发明涉及一种润滑添加剂,尤其涉及一种纳米镓基液态金属润滑添加剂的制备方法,用于改善润滑油的润滑性能,属于润滑油技术领域。
背景技术
随着我国空天、核能、高端制造业等领域的快速发展,各种机械运动传动部件更为苛刻的使役环境对润滑油提出了越来越高的要求。纳米添加剂已经被广泛证实具有显著提高润滑油抗极压性能和润滑性能的作用,诸多纳米添加剂润滑油已成功应用于各工业领域。如青岛索孚润化工科技有限公司开发的一种油性纳米硼酸添加剂,将其应用于内燃机油,可以使摩擦系数减小25%~35%,磨斑直径减小15%~20%,百公里油耗降低3.8%~8.5%(公开号:106381191B);雅富顿化学公司开发的纳米球状或杆状氧化铈润滑油添加剂,将其应用于全配方客车发动机油(PCMO),可以使摩擦系数减小50%左右(公开号:102643706B)。因此,开发性能优异的纳米添加剂是实现润滑油在重载、高温等苛刻环境下高效、高可靠性使役的重要手段。
镓基液态金属是一种室温下呈液态的合金,其以镓元素为主体,配以铟、锡、锌中的一种或多种元素。从摩擦学的角度看,镓基液态金属具有无毒、高热导率、低蒸气压、耐高温、高承载和良好的流动性,满足绿色液体润滑剂的所有特性需求。最新研究表明,镓基液态金属表现出优异的润滑性,如Ga-In-Sn液态金属具有极高的承载能力(ACS AppliedMaterials & Interfaces 2017;9;(6):5638-5644),能够阻止极端高载条件下滑动界面的焊合;Ga-In-Sn液态金属在室温至600℃对T91/Al2O3摩擦副表现出优异的减摩和抗磨性能(Materialia 2018;4;10-19)。从制备的角度看,纳米镓基液态金属的制备过程已经比较成熟,而且具有设备要求低、工艺简单、表面可功能化、在介质中可长期稳定分散的特点。如Ga-In液态金属通过简单的超声和表面接枝有机物的方法,实现了纳米颗粒在生物质缓冲液中稳定分散60天(Nanoscale 2018;10;19871-19878)。因此,镓基液态金属优异的润滑性和其纳米颗粒的易制备性决定了其是一种优越的润滑添加剂。
发明内容
本发明的目的是提供一种纳米镓基液态金属润滑添加剂的制备方法。
一、纳米镓基液态金属润滑添加剂的制备
本发明制备纳米镓基液态金属润滑添加剂的方法,是将镓基室温液态金属加入修饰剂的无水乙醇溶液中,于5~25℃超声处理1~3h;将混合液先通过低速离心去除尺寸较大的颗粒,再通过高速离心收集纳米颗粒,无水乙醇清洗,室温干燥,制得含纳米镓基室温液态金属润滑油添加剂。
所述镓基室温液态金属的结构通式为Ga-X,其中,X为In、In-Sn或In-Sn-Zn。
所述修饰剂为尾端含有巯基或羧基的长链脂肪族有机物,且该长链脂肪族有机物所含的碳原子数介于12和20之间。修饰剂的无水乙醇溶液中,修饰剂的浓度为0.01~1M。
镓基室温液态金属与修饰剂的质量比为100:1~0.2:1。
所述低速离心的转速在1000~2000rpm之间,离心时间2~10min;高速离心的转速在10000~12000rpm之间,离心时间为2~10min。
所制备的含纳米镓基室温液态金属润滑添加剂颗粒的粒径为5nm~500nm。
二、高性能润滑油的制备
将上述制备的纳米镓基室温液态金属润滑添加剂与润滑油按0.01%~2%、99.99%~98%的质量百分数混合,于-30~100℃超声处理5min~1h,即得含纳米镓基液态金属添加剂的润滑剂。
所述润滑剂的极性弱于苯,介电常数小于或等于2.5。润滑油为油、油脂或天然润滑剂,也可以是合成的矿物润滑油,还可以是烃、酯、有机硅、聚乙二醇或离子液体等。
三、含纳米镓基液态金属添加剂的结构和性能
利用TEM观察本发明制备的纳米镓基液态金属添加剂在以甲苯为代表的非极性溶剂中的分散性。图1为本发明制备的纳米镓基液态金属在甲苯中的分散性。图1的结果显示,纳米镓基液态金属润滑添加剂在甲苯中具有优良的分散性。
利用DLS测量本发明制备的纳米镓基液态金属在PAO10润滑油中的粒径分布。图2为本发明制备的含纳米镓基液态金属在PAO10润滑油中的粒径分布。图2的结果显示,纳米镓基液态金属的粒径大小主要分布于286纳米左右。
利用SRV-IV摩擦磨损试验机表征PAO10润滑油和含本发明制备的添加剂的PAO10润滑油(NPs-PAO10)的润滑性能。摩擦条件为添加剂质量分数0.17%,GCr15钢-GCr15钢,载荷200N,振幅1mm,频率25Hz,室温。利用三维轮廓仪表征材料的磨损体积。图3为含有纳米镓基液态金属润滑添加剂的PAO10润滑油(NPs-PAO10)与纯PAO10润滑油性能对比。从图3可知,含纳米镓基液态金属添加剂的PAO10润滑油(NPs-PAO10)较纯PAO10润滑油摩擦系数降低39%,磨损率降低93%。说明使用含纳米镓基液态金属添加剂的PAO10润滑油(NPs-PAO10)的润滑性能明显优于PAO10润滑油。
综上所述,本发明利用简单的超声法获得了一种油溶性纳米镓基室温液态金属添加剂,在非极性溶剂中具有很好的分散性,可以稳定分散在润滑油中制得性能优异的润滑油,能够实现在重载、高温等苛刻环境下高效、高可靠性的使役。另外,本发明制备的润滑油添加剂的制备方法简单,成本低,工艺可控性强,适用性广,而且可以方便的从废油中回收、再利用。
附图说明
图1为本发明制备的纳米镓基液态金属添加剂在甲苯中的分散性。
图2为本发明制备的纳米镓基液态金属添加剂在PAO10润滑油中的粒径分布。
图3为添加纳米镓基液态金属润滑添加剂的PAO10润滑油(NPs-PAO10)与纯PAO10润滑油的性能对比。
具体实施方式
下面通过具体实施例对本发明纳米镓基液态金属润滑添加剂的制备和应用作进一步说明。
实施例1
取0.2g的Ga-In液态金属,加入到2ml正十二烷基硫醇/无水乙醇溶液中(0.5M),于20℃水浴超声处理2h;先将混合液在1000rpm下离心5min以去除尺寸较大的颗粒,再在10000rpm下离心5min,收集纳米颗粒,无水乙醇多次清洗,室温下干燥,制得纳米镓基室温液态金属润滑添加剂;
将纳米镓基室温液态金属润滑添加剂与PAO10润滑油按质量百分数0.17%、99.83%混合,于20℃水浴超声处理30min,即得高性能润滑油NPs-PAO10。NPs-PAO10的摩擦系数较PAO10降低39%,磨损率降低93%。
实施例2
取0.4g的Ga-In-Sn液态金属,加入到5ml正十八烷基硫醇/无水乙醇溶液中(0.2M),于10℃杆式超声处理1h;先将混合液在1500rpm下离心5min以去除尺寸较大的颗粒,再在12000rpm下离心5min,收集纳米颗粒,无水乙醇多次清洗,室温下干燥,制得纳米镓基室温液态金属润滑添加剂;
将纳米镓基室温液态金属润滑添加剂与PAO10润滑油按质量百分数0.17%、99.83%混合,于10℃杆式超声处理10min,即得高性能润滑油NPs-PAO10。NPs-PAO10的摩擦系数较PAO10降低35%,磨损率降低87%。
实施例3
取1.5g的Ga-In-Sn-Zn液态金属,加入到10ml正十二酸/无水乙醇溶液中(0.3M),于15℃水浴超声处理2h;先将混合液在1000rpm下离心5min以去除尺寸较大的颗粒,再在11000rpm下离心5min,收集纳米颗粒,无水乙醇多次清洗,室温下干燥,制得纳米镓基室温液态金属润滑添加剂;
将纳米镓基室温液态金属润滑添加剂与PAO10润滑油按质量百分数0.17%、99.83%混合,于15℃水浴超声处理30min,即得高性能润滑油NPs-PAO10。NPs-PAO10的摩擦系数较PAO10降低27%,磨损率降低85%。
实施例4
取0.2g的Ga-In液态金属,加入到2ml正十二硫醇/无水乙醇溶液中(0.25M),于20℃水浴超声处理2.5h;先将混合液在1000rpm下离心5min以去除尺寸较大的颗粒,再在12000rpm下离心5min,收集纳米颗粒,无水乙醇多次清洗,室温下干燥,制得纳米镓基室温液态金属润滑添加剂;
将纳米镓基室温液态金属润滑添加剂与液态石蜡油按质量百分数0.2%、99.8%混合,于15℃水浴超声处理20min,即得高性能液态石蜡油。该液态石蜡油的摩擦系数较纯液态石蜡油降低21%,磨损率降低85%。
实施例5
取0.4g的Ga-In-Sn液态金属,加入到5ml正十八烷基硫醇/无水乙醇溶液中(0.2M),于10℃杆式超声处理1h;先将混合液在1500rpm下离心5min以去除尺寸较大的颗粒,再在12000rpm下离心5min,收集纳米颗粒,无水乙醇多次清洗,室温下干燥,制得纳米镓基室温液态金属润滑添加剂;
将纳米镓基室温液态金属润滑添加剂与液态石蜡油按质量百分数0.3%、99.7%混合,于10℃杆式超声处理10min,即得高性能液态石蜡油。该液态石蜡油的摩擦系数较纯液态石蜡油降低24%,磨损率降低88%。

Claims (10)

1.一种纳米镓基液态金属润滑添加剂的制备方法,是将镓基室温液态金属加入修饰剂的无水乙醇溶液中,于5~25℃超声处理1~3h;先将混合液通过低速离心去除尺寸较大的颗粒,再高速离心收集纳米颗粒,无水乙醇清洗,室温干燥,制得纳米镓基室温液态金属润滑油添加剂。
2.如权利要求1所述一种纳米镓基液态金属润滑添加剂的制备方法,其特征在于:所述镓基室温液态金属的结构通式为Ga-X,其中,X为In、In-Sn或In-Sn-Zn。
3.如权利要求1所述一种纳米镓基液态金属润滑添加剂的制备方法,其特征在于:所述修饰剂为尾端含有巯基或羧基的长链脂肪族有机物,且该长链脂肪族有机物所含的碳原子数介于12和20之间。
4.如权利要求1所述一种纳米镓基液态金属润滑添加剂的制备方法,其特征在于:所述修饰剂的无水乙醇溶液中修饰剂的浓度为0.01~1M。
5.如权利要求1所述一种纳米镓基液态金属润滑添加剂的制备方法,其特征在于:镓基室温液态金属与修饰剂的质量比为100:1~0.2:1。
6.如权利要求1所述一种纳米镓基液态金属润滑添加剂的制备方法,其特征在于:所述低速离心的转速在1000~2000rpm之间,离心时间2~10min。
7.如权利要求1所述一种纳米镓基液态金属润滑添加剂的制备方法,其特征在于:所述高速离心的转速在10000~12000rpm之间,离心时间为2~10min。
8.如权利要求1所述一种纳米镓基液态金属润滑添加剂的制备方法,其特征在于:纳米镓基室温液态金属润滑添加剂颗粒的的粒径为5nm~500nm。
9.如权利要求1所述方法制备的纳米镓基液态金属润滑添加剂在制备润滑剂中的应用,其特征在于:将纳米镓基室温液态金属润滑添加剂与润滑剂按0.01%~2%、99.99%~98%的质量百分数混合,于-30~100℃超声处理5min~1h,即得含纳米镓基液态金属添加剂的润滑剂。
10.如权利要求1所述纳米镓基液态金属润滑添加剂在制备润滑剂中的应用,其特征在于:所述润滑剂的极性弱于苯,介电常数小于或等于2.5。
CN201910769940.XA 2019-08-20 2019-08-20 一种纳米镓基液态金属润滑添加剂的制备及应用 Pending CN110373248A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910769940.XA CN110373248A (zh) 2019-08-20 2019-08-20 一种纳米镓基液态金属润滑添加剂的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910769940.XA CN110373248A (zh) 2019-08-20 2019-08-20 一种纳米镓基液态金属润滑添加剂的制备及应用

Publications (1)

Publication Number Publication Date
CN110373248A true CN110373248A (zh) 2019-10-25

Family

ID=68260041

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910769940.XA Pending CN110373248A (zh) 2019-08-20 2019-08-20 一种纳米镓基液态金属润滑添加剂的制备及应用

Country Status (1)

Country Link
CN (1) CN110373248A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559579A (zh) * 2018-05-14 2018-09-21 西北工业大学 一种纳米化液态金属润滑油添加剂的制备方法
CN111112632A (zh) * 2019-12-30 2020-05-08 浙江大学 一种低熔点高导电高导热金属纳米颗粒的制备方法
CN111810270A (zh) * 2020-07-01 2020-10-23 东风汽车集团有限公司 涡轮增压发动机辅助润滑系统及其控制方法
CN116079062A (zh) * 2023-02-20 2023-05-09 福州大学 一种三元Bi-In-Sn纳米合金材料及其液相超声制备方法
CN117586823A (zh) * 2023-12-14 2024-02-23 东莞太平洋博高润滑油有限公司 一种无灰抗磨液压油及其制备方法
CN117625274A (zh) * 2023-12-14 2024-03-01 东莞太平洋博高润滑油有限公司 抗磨损助剂、制备方法及其在发动机润滑油的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105062613A (zh) * 2015-08-03 2015-11-18 清华大学 一种润滑剂及其制备方法和应用
CN106590044A (zh) * 2016-10-20 2017-04-26 青阳县永诚钙业有限责任公司 一种易于二次修饰高反应活性的聚多巴胺包覆改性碳酸钙粉体及其制备方法
CN106590817A (zh) * 2016-11-04 2017-04-26 金陵科技学院 一种含有油酸修饰的超顺磁性纳米空心微珠的润滑油及其制备方法
CN108559579A (zh) * 2018-05-14 2018-09-21 西北工业大学 一种纳米化液态金属润滑油添加剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105062613A (zh) * 2015-08-03 2015-11-18 清华大学 一种润滑剂及其制备方法和应用
CN106590044A (zh) * 2016-10-20 2017-04-26 青阳县永诚钙业有限责任公司 一种易于二次修饰高反应活性的聚多巴胺包覆改性碳酸钙粉体及其制备方法
CN106590817A (zh) * 2016-11-04 2017-04-26 金陵科技学院 一种含有油酸修饰的超顺磁性纳米空心微珠的润滑油及其制备方法
CN108559579A (zh) * 2018-05-14 2018-09-21 西北工业大学 一种纳米化液态金属润滑油添加剂的制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108559579A (zh) * 2018-05-14 2018-09-21 西北工业大学 一种纳米化液态金属润滑油添加剂的制备方法
CN108559579B (zh) * 2018-05-14 2022-01-04 西北工业大学 一种纳米化液态金属润滑油添加剂的制备方法
CN111112632A (zh) * 2019-12-30 2020-05-08 浙江大学 一种低熔点高导电高导热金属纳米颗粒的制备方法
CN111810270A (zh) * 2020-07-01 2020-10-23 东风汽车集团有限公司 涡轮增压发动机辅助润滑系统及其控制方法
CN116079062A (zh) * 2023-02-20 2023-05-09 福州大学 一种三元Bi-In-Sn纳米合金材料及其液相超声制备方法
CN117586823A (zh) * 2023-12-14 2024-02-23 东莞太平洋博高润滑油有限公司 一种无灰抗磨液压油及其制备方法
CN117625274A (zh) * 2023-12-14 2024-03-01 东莞太平洋博高润滑油有限公司 抗磨损助剂、制备方法及其在发动机润滑油的应用
CN117625274B (zh) * 2023-12-14 2024-05-03 东莞太平洋博高润滑油有限公司 抗磨损助剂、制备方法及其在发动机润滑油的应用
CN117586823B (zh) * 2023-12-14 2024-05-24 东莞太平洋博高润滑油有限公司 一种无灰抗磨液压油及其制备方法

Similar Documents

Publication Publication Date Title
CN110373248A (zh) 一种纳米镓基液态金属润滑添加剂的制备及应用
Singh et al. A review on tribological performance of lubricants with nanoparticles additives
Singh et al. Effect of ZnO nanoparticles concentration as additives to the epoxidized Euphorbia Lathyris oil and their tribological characterization
Masjuki et al. Investigation of the anti-wear characteristics of palm oil methyl ester using a four-ball tribometer test
Zhang et al. Vacuum tribological performance of phosphonium-based ionic liquids as lubricants and lubricant additives of multialkylated cyclopentanes
Sunqing et al. A review of ultrafine particles as antiwear additives and friction modifiers in lubricating oils
Beheshti et al. Improving tribological properties of oil-based lubricants using hybrid colloidal additives
Azman et al. Investigation of tribological properties of CuO/palm oil nanolubricant using pin-on-disc tribotester
CN103160369A (zh) 一种自修复复合钛基润滑脂及其制备方法
Devan et al. Improving the characteristics of engine oil using nanofluid as coolant in combat vehicles
Pisal et al. Experimental investigation of tribological properties of engine oil with CuO nanoparticles
CN112779073B (zh) 一种含有纳米氧化锌的预制稠化剂及其所得润滑脂组合物
Cao et al. Study on the preparation and tribological properties of fly ash as lubricant additive for steel/steel pair
Bagi et al. Role of MoS2 morphology on wear and friction under spectrum loading conditions
Cusano et al. Dynamics of solid dispersions in oil during the lubrication of point contacts, Part II—molybdenum disulfide
Singh et al. Chemical modification of juliflora oil with trimethylolpropane (TMP) and effect of TiO2 nanoparticles concentration during tribological investigation
Maurya et al. Three-way compatibility study among Nanoparticles, Ionic Liquid, and Dispersant for potential in lubricant formulation
Maliar et al. Tribological behaviour of mineral and rapeseed oils containing iron particles
Abd Elhaseeb et al. A review of the tribological properties of nanoparticles dispersed in bio-lubricants
Najan et al. Experimental Investigation of tribological properties using nanoparticles as modifiers in lubricating oil
Tang et al. Ultra− fast and stable dispersion of graphene oxide in lubricant oil toward excellent tribological property
Yilmaz Tribological enhancement features of various nanoparticles as engine lubricant additives: An experimental study
Patil et al. Tribological properties of SiO2 nanoparticles added in SN-500 base oil
Lin et al. Well-dispersed graphene enhanced lithium complex grease toward high-efficient lubrication
Yao et al. Surface regulation of silicon dioxide nanoparticle and its tribological properties as additive in base oils with different polarity

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191025