CN110368966A - 一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用 - Google Patents

一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN110368966A
CN110368966A CN201910709162.5A CN201910709162A CN110368966A CN 110368966 A CN110368966 A CN 110368966A CN 201910709162 A CN201910709162 A CN 201910709162A CN 110368966 A CN110368966 A CN 110368966A
Authority
CN
China
Prior art keywords
phosphorous acid
water
cobalt
catalyst
splitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910709162.5A
Other languages
English (en)
Other versions
CN110368966B (zh
Inventor
陈洪
倪悦然
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Southern University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern University of Science and Technology filed Critical Southern University of Science and Technology
Priority to CN201910709162.5A priority Critical patent/CN110368966B/zh
Publication of CN110368966A publication Critical patent/CN110368966A/zh
Application granted granted Critical
Publication of CN110368966B publication Critical patent/CN110368966B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/163Phosphorous acid; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种亚磷酸钴水裂解催化剂的制备方法及其应用,该水裂解催化剂制备方法如下:以六水合硝酸钴、亚磷酸、硼酸和1,4‑二氮杂二环[2.2.2]辛烷为反应原料,采用水热法制得纳米棒状亚磷酸钴水裂解催化剂。本制备方法工序简单、操作方便,所制备的水裂解催化剂因其独特的纳米棒状形态和晶体结构,使得其在碱性溶液中,表现出比其他亚磷酸钴样品更高的电催化活性和稳定性,具有大规模工业化应用价值。

Description

一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用
技术领域
本发明涉及电化学催化剂合成技术领域,具体涉及一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用。
背景技术
随着不断增加的能源需求和环境恶化问题的加剧,迫切要求开发出大规模可再生的清洁能源来缓解对日益枯竭的化石能源的依赖。最近引起广泛关注的电催化水氧化技术,被认为是生产可再生能源最有前景的方法之一。然而由于电催化水氧化是一个四电子-质子耦合反应,导致其需要更高的过电势来克服电催化水氧化发生的动力学障碍。在早期研究中,贵金属铱和钌的氧化物及其合金等由于其活跃的电催化性能被主要用于水裂解反应中,但由于其高昂的成本、在地壳中极少的分布和稳定性差限制了它们在工业上的利用。因此寻求成本低廉、地壳储量丰富和具有良好稳定性的非贵金属水裂解催化剂成为解决以上问题的关键。
本发明利用价格低廉的过渡金属离子(Co2+离子)作为原料之一,通过简单的水热反应合成出一种纳米棒状亚磷酸钴水裂解催化剂,由于其独特的形貌和晶体结构而表现出优异的水裂解性能。具体而言,纳米棒状形态有利于电介质的离子扩散到材料的活性位点以进行媳妇和氧化还原反应。另一方面,Co11(HPO3)8(OH)6中钴原子与六个氧原子配位形成[CoO6]八面体,而两个[CoO6]八面体通过面相连。这些面对面的[CoO6]八面体通过面的边缘进一步与另外两个[CoO6]八面体相连。两个共面八面体中的Co-Co原子间距为比Goodenough公式中的临界距离短,表明这两个Co原子能够表现出类金属性质。结构中的[PO3H]四面体可以提供额外的氢原子用作氢键受体,该特定结构可以将溶液环境中的OH-或者水分子通过氢键结合吸收到晶体表面,从而进一步的用作水氧化催化剂。同时,相关的实验结果也证实了,在碱性条件下纳米棒状Co11(HPO3)8(OH)6催化剂,由于其更多的活性暴露位点和更高的比表面积,从而表现出优异的电催化水氧化性能。
发明内容
本发明所要解决的技术问题是针对现有技术中存在的上述不足,提供一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用,该材料有着独特的孔结构和纳米棒状形态表现出高导电性和更大的比表面积,从而为电催化水氧化反应提供了足够的优异活性位点,在碱性环境下表现了良好的电催化活性和稳定性。
为解决上述技术问题,本发明采用的技术方案为:
提供一种纳米棒状亚磷酸钴水裂解催化剂,它形态为由纳米棒聚集成球状,其中球状颗粒平均粒径为35~45μm,纳米棒平均宽度为200~300nm。
本发明还提供了上述纳米棒状亚磷酸钴水裂解催化剂的制备方法,其步骤如下:
1)将六水合硝酸钴与亚磷酸充分搅拌得到混合液:将六水合硝酸钴和亚磷酸溶解于去离子水中,然后放入磁力搅拌子并将其置于磁力搅拌恒温水浴锅上搅拌得到均匀的混合液;
2)继续将硼酸和1,4-二氮杂二环[2.2.2]辛烷加入到步骤1)的混合液中,充分搅拌得到混合液,所述混合液中六水合硝酸钴、亚磷酸、硼酸和1,4-二氮杂二环[2.2.2]辛烷的摩尔比为1:2~3:4:5,所得混合溶液在80℃下水浴搅拌3h;然后放入水热反应釜中,从室温升至160℃~200℃,保温反应9天;以每小时10℃的降温速率降至室温,用80℃蒸馏水洗涤产物,过滤,于室温下干燥得到亚磷酸钴水裂解催化剂。
本发明的有益效果在于:
1、提供了一种利用廉价的过渡金属钴制备的低过电势、高稳定性的电催化水氧化催化剂。
2、提供了一种采用简单水热法制备的亚磷酸钴水裂解催化剂,该制备方法可以得到纳米棒状形态的Co11(HPO3)8(OH)6催化剂,具有比表面积大、具体尺寸小等优点。
3、提供了一种相比于贵金属铱和钌的氧化物,在碱性环境中进行电催化水氧化能够表现出更低的过电势和更高的稳定性的亚磷酸钴催化剂。并且该方法工序简单、原料资源丰富、廉价易得、操作方便、反应条件温和,非常适合于规模化工业生产。
附图说明
图1为本发明实施例1所制备的纳米棒状形态的Co11(HPO3)8(OH)6催化剂的扫描电镜图片;
图2为实施例1所制备的纳米棒状形态的Co11(HPO3)8(OH)6催化剂的粉末X射线衍射图谱;
图3为实施例1所制备的纳米棒状形态的Co11(HPO3)8(OH)6催化剂的氧还原反应循环伏安曲线;
图4为实施例1所制备的纳米棒状形态的Co11(HPO3)8(OH)6催化剂的塔菲尔图;
图5为实施例1所制备的纳米棒状形态的Co11(HPO3)8(OH)6催化剂的时间电压曲线,测试恒定电流密度为10mA/cm2
具体实施方式
为使本领域技术人员更好地理解本发明的技术方案,下面结合附图对本发明作进一步详细描述。
实施例1:纳米棒形态Co11(HPO3)8(OH)6催化剂的制备:
1)将六水合硝酸钴与亚磷酸充分搅拌得到混合液:将六水合硝酸钴和亚磷酸溶解于去离子水中,然后放入磁力搅拌子并将其置于磁力搅拌恒温水浴锅上搅拌得到均匀的混合液;
2)继续将硼酸和1,4-二氮杂二环[2.2.2]辛烷加入到步骤1)的混合液中,充分搅拌得到混合液,所述混合液中六水合硝酸钴、亚磷酸、硼酸和1,4-二氮杂二环[2.2.2]辛烷的摩尔比为1:2~3:4:5,所得混合溶液在80℃下水浴搅拌3h;然后放入水热反应釜中,从室温升至160℃~200℃,保温反应9天;以每小时10℃的降温速率降至室温,用80℃蒸馏水洗涤产物,过滤,于室温下干燥得到亚磷酸钴水裂解催化剂。
实施例2:纳米棒形态Co11(HPO3)8(OH)6催化剂的形貌表征测试:
使用Zeiss Merlin扫描电子显微镜对实施例1所制备的样品进行形貌表征,测试条件为电压3kV,电流100pA。如图1所示测得的样品形貌为纳米棒聚集成的球状,其中球状颗粒平均粒径为35~45μm,纳米棒平均宽度为200~300nm,能够提供大量催化反应的活性位点。
实施例3:纳米棒形态Co11(HPO3)8(OH)6催化剂的结构解析:
采用粉末X射线衍射方法,对实施例1所制备的样品进行结构解析。
使用Rigaku SmartLab 9KW X射线衍射仪对样品进行结构解析,测试条件为固定靶单色光源Cu-Kα,波长为如图2所示测得图谱与标准卡片81-1064一致,表明得到了高纯度的Co11(HPO3)8(OH)6样品。
实施例4:电催化水氧化活性测试:
电催化反应在一个100ml的常规电解池中进行。使用上海辰华CHI760E双恒电位仪对纳米棒形态Co11(HPO3)8(OH)6催化剂的电化学及其在电极表面水裂解催化的跟踪。使用标准三电极系统在1M氢氧化钾溶液中(pH=13.6)中进行电催化水氧化反应。取4mg实施例1所制备的纳米棒形态Co11(HPO3)8(OH)6催化剂与700μL去离子水,270μL乙醇和30μL萘酚溶液超声混合均匀,涂覆于直径为3mm的玻碳电极上,然后于红外灯下干燥作为工作电极,Ag/AgCl电极用作参比电极,Pt电极用作对电极。以5mV/s的扫描速率进行线性扫描伏安法(LSV)测试,直到曲线稳定且没有氧化峰。通过从极化曲线的拐点周围的数据来获得塔菲尔斜率。
如图3线性扫描伏安图和图4塔菲尔图所示,实施例1所制备的样品在电流密度为10mA/cm2下发生析氧反应过电位为340mV,斜率为59.5mV/dec。比相同条件下RuO2具有明显更好的电催化性能。
综上说明,所制备的纳米棒形态Co11(HPO3)8(OH)6催化剂具有很好的电催化水氧化性能。可以很好地应用于水裂解析氧的催化剂。
同时在工作电极上的电流密度为10mA/cm2下用计时电位法测试稳定性。如图5所示,实施例1所制备的样品在持续催化氧析出6个小时以后,过电位仅略微增加了一点,而RuO2不仅需要更高的过电位,并且只保持了3小时的相对稳定性。表明所制备的样品具有良好的稳定性,能够应用于工业催化。
以上所述,仅是本发明的几个较佳实施例而已,并非对本发明做任何形式的限制,任何熟悉本技术领域的技术人员,在未脱离本发明的技术实质对以上实施例做出的些许改动或替换,都应涵盖于本发明技术方案内。

Claims (6)

1.一种亚磷酸钴水裂解催化剂,其特征在于:其化学通式为Co11(HPO3)8(OH)6,空间群为P63mc,晶胞参数为α=90°,β=90°,γ=120°。
2.根据权利要求1所述的亚磷酸钴水裂解催化剂,其特征在于:所述催化剂形态为由纳米棒聚集成球状,其中球状颗粒平均粒径为35~45μm,纳米棒平均宽度为200~300nm。
3.权利要求1所述的亚磷酸钴水裂解催化剂的制备方法,其特征在于步骤如下:
1)将六水合硝酸钴与亚磷酸充分搅拌得到混合液:将六水合硝酸钴和亚磷酸溶解于去离子水中,然后放入磁力搅拌子并将其置于磁力搅拌恒温水浴锅上搅拌得到均匀的混合液;
2)继续将硼酸和1,4-二氮杂二环[2.2.2]辛烷加入到步骤1)的混合液中,充分搅拌得到混合液,所述混合液中六水合硝酸钴、亚磷酸、硼酸和1,4-二氮杂二环[2.2.2]辛烷的摩尔比为1:2~3:4:5,所得混合溶液在80℃下水浴搅拌3h;然后放入水热反应釜中,从室温升至160℃~200℃,保温反应9天;以每小时10℃的降温速率降至室温,用80℃蒸馏水洗涤产物,过滤,于室温下干燥得到亚磷酸钴水裂解催化剂。
4.根据权利要求3所述方法,其特征在于:所选钴源任选六水合硝酸钴、六水合氯化钴、四水合乙酸钴和四水合醋酸钴中的至少一种。
5.根据权利要求3所述方法,其特征在于:所选磷源任选亚磷酸和一水合次亚磷酸钠中的至少一种。
6.一种亚磷酸钴在水裂解析氧纳米材料中的应用,其特征在于:含有权利要求1~2所述的亚磷酸钴水裂解催化剂和权利要求3~5任一项所述方法制备得到的亚磷酸钴水裂解催化剂。
CN201910709162.5A 2019-08-01 2019-08-01 一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用 Active CN110368966B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910709162.5A CN110368966B (zh) 2019-08-01 2019-08-01 一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910709162.5A CN110368966B (zh) 2019-08-01 2019-08-01 一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110368966A true CN110368966A (zh) 2019-10-25
CN110368966B CN110368966B (zh) 2022-05-24

Family

ID=68257690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910709162.5A Active CN110368966B (zh) 2019-08-01 2019-08-01 一种纳米棒状亚磷酸钴水裂解催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110368966B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889119A (zh) * 2020-06-11 2020-11-06 安徽师范大学 一种Sn掺杂羟基亚磷酸镍纳米线组装的三维网状纳米结构材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1132115A (zh) * 1994-12-06 1996-10-02 罗纳·布朗克纤维和树脂中间体公司 基于过渡金属与膦的催化剂的电化学制备方法
CN101497023A (zh) * 2009-01-08 2009-08-05 上海交通大学 亚磷酸提纯用分子筛基复合材料及其制备方法
CN101648705A (zh) * 2008-08-13 2010-02-17 桑达-阿比克有限责任公司 亚磷酸的制备方法
CN102989492A (zh) * 2011-09-15 2013-03-27 中国石油天然气股份有限公司 一种负载型复合硫磷化物加氢处理催化剂及其制备和应用
CN109821561A (zh) * 2019-03-22 2019-05-31 黑龙江大学 一种自支撑磷化钴铁纳米微球电催化剂的制备方法
EP3501640A1 (en) * 2017-12-20 2019-06-26 Industrial Technology Research Institute Catalyst, method for preparing the same, and method for preparing syngas

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1132115A (zh) * 1994-12-06 1996-10-02 罗纳·布朗克纤维和树脂中间体公司 基于过渡金属与膦的催化剂的电化学制备方法
CN101648705A (zh) * 2008-08-13 2010-02-17 桑达-阿比克有限责任公司 亚磷酸的制备方法
CN101497023A (zh) * 2009-01-08 2009-08-05 上海交通大学 亚磷酸提纯用分子筛基复合材料及其制备方法
CN102989492A (zh) * 2011-09-15 2013-03-27 中国石油天然气股份有限公司 一种负载型复合硫磷化物加氢处理催化剂及其制备和应用
EP3501640A1 (en) * 2017-12-20 2019-06-26 Industrial Technology Research Institute Catalyst, method for preparing the same, and method for preparing syngas
CN109821561A (zh) * 2019-03-22 2019-05-31 黑龙江大学 一种自支撑磷化钴铁纳米微球电催化剂的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JIAN WU等: "Novel nickel-cobalt phosphite with face-sharing octahedra derived electrocatalyst for efficient water splitting", 《INORG. CHEM. FRONT》 *
YUERAN NI ET AL.: "Microporous core-shell Co11(HPO3)8(OH)6/Co11(HPO3)8O6 nanowires for highly efficient electrocatalytic oxygen evolution reaction", 《APPLIED CATALYSIS B: ENVIRONMENTAL》 *
ZHANJUN GU ET AL.: "Controlled Hydrothermal Synthesis of Nickel Phosphite", 《CRYSTAL GROWTH & DESIGN》 *
黄清安,高士琼,宋毓秀: "镍磷合金镀液稳定性的探讨", 《电镀与涂饰》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889119A (zh) * 2020-06-11 2020-11-06 安徽师范大学 一种Sn掺杂羟基亚磷酸镍纳米线组装的三维网状纳米结构材料及其制备方法和应用
CN111889119B (zh) * 2020-06-11 2022-04-19 安徽师范大学 一种Sn掺杂羟基亚磷酸镍纳米线组装的三维网状纳米结构材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110368966B (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
Liu et al. Amorphous Ni (OH) 2 encounter with crystalline CuS in hollow spheres: a mesoporous nano-shelled heterostructure for hydrogen evolution electrocatalysis
Zhao et al. Enhancing oxygen evolution electrocatalysis via the intimate hydroxide–oxide interface
Peng et al. Separated growth of Bi-Cu bimetallic electrocatalysts on defective copper foam for highly converting CO2 to formate with alkaline anion-exchange membrane beyond KHCO3 electrolyte
Jiang et al. Auto-programmed synthesis of metallic aerogels: Core-shell Cu@ Fe@ Ni aerogels for efficient oxygen evolution reaction
Wang et al. Ordered macroporous superstructure of bifunctional cobalt phosphide with heteroatomic modification for paired hydrogen production and polyethylene terephthalate plastic recycling
Lv et al. Self-assembled RuO2@ IrOx core-shell nanocomposite as high efficient anode catalyst for PEM water electrolyzer
Wang et al. Promoting alkaline hydrogen evolution catalysis on P-decorated, Ni-segregated Pt–Ni–P nanowires via a synergetic cascade route
Feng et al. Copper-doped ruthenium oxide as highly efficient electrocatalysts for the evolution of oxygen in acidic media
CN108043428A (zh) 一种钴铁硒化物、其制备方法及应用
CN108946692B (zh) 一种磷酸钴纳米材料及其制备方法和应用
Qiu et al. Interface strong-coupled 3D Mo-NiS@ Ni-Fe LDH flower-cluster as exceptionally efficient electrocatalyst for water splitting in wide pH range
Jia et al. Excellent electrocatalytic hydrogen evolution performance of hexagonal NiCoP porous nanosheets in alkaline solution
Sapountzi et al. FeP nanocatalyst with preferential [010] orientation boosts the hydrogen evolution reaction in polymer-electrolyte membrane electrolyzer
Yin et al. Construction of superhydrophilic metal-organic frameworks with hierarchical microstructure for efficient overall water splitting
CN108358181A (zh) 一种磷化物的析氢反应电催化剂与制备方法及应用
Cui et al. Amorphous N x C Coating Promotes Electrochemical CO2 Deep Reduction to Hydrocarbons over Ag Nanocatalysts
Lin et al. Nickel–Cobalt Selenide Electrocatalytic Electrode toward Glucose Oxidation Coupling with Alkaline Hydrogen Production
Qu et al. CeO2 nanorods with high energy surfaces as electrocatalytical supports for methanol electrooxidation
CN108315759B (zh) 一种钒修饰的Cu2S自支撑电极材料及其合成方法
Han et al. Understanding Structure‐activity Relationship on Metal‐Organic‐Framework‐Derived Catalyst for CO2 Electroreduction to C2 Products
Lou et al. CuBi electrocatalysts modulated to grow on derived copper foam for efficient CO2-to-formate conversion
Fang et al. Electronic distribution tuning of vanadium-cobalt bimetallic MOFs for highly efficient hydrazine-assisted energy-saving hydrogen production
Chanda et al. Electroreduction of CO2 to ethanol by electrochemically deposited Cu-lignin complexes on Ni foam electrodes
Qian et al. Nanosheet organized flower-like Co/Zn phosphate on nickel foam for efficient water splitting in both acid and basic solutions
Wang et al. Electrochemical fabrication of FeS x films with high catalytic activity for oxygen evolution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant