CN110365045B - 一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法 - Google Patents

一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法 Download PDF

Info

Publication number
CN110365045B
CN110365045B CN201910615626.6A CN201910615626A CN110365045B CN 110365045 B CN110365045 B CN 110365045B CN 201910615626 A CN201910615626 A CN 201910615626A CN 110365045 B CN110365045 B CN 110365045B
Authority
CN
China
Prior art keywords
formula
matrix
rules
power generation
wind
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910615626.6A
Other languages
English (en)
Other versions
CN110365045A (zh
Inventor
汪星一
钟智雄
黄修丹
傅珊珊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minjiang University
Original Assignee
Minjiang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minjiang University filed Critical Minjiang University
Priority to CN201910615626.6A priority Critical patent/CN110365045B/zh
Publication of CN110365045A publication Critical patent/CN110365045A/zh
Application granted granted Critical
Publication of CN110365045B publication Critical patent/CN110365045B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • H02J3/383
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S10/00PV power plants; Combinations of PV energy systems with other systems for the generation of electric power
    • H02S10/10PV power plants; Combinations of PV energy systems with other systems for the generation of electric power including a supplementary source of electric power, e.g. hybrid diesel-PV energy systems
    • H02S10/12Hybrid wind-PV energy systems
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2203/00Indexing scheme relating to details of circuit arrangements for AC mains or AC distribution networks
    • H02J2203/20Simulating, e g planning, reliability check, modelling or computer assisted design [CAD]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects

Abstract

本发明提出一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法,首先建立风光互补发电系统,并采用物理学原理以及T‑S模型的方法表达风光互补发电系统的非线性动态,接着设计估计器去估计网络延时的信号摄动。在此基础上,采用基于补偿的反馈控制器,使得网络延时的信号摄动被抑制并实现稳定工作。

Description

一种基于估计与补偿控制的风光互补发电系统的网络延时抑 制方法
技术领域
本发明涉及发电系统延时抑制领域,特别是一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法。
背景技术
太阳能和风能有着很好的互补特性,是国家提倡能源互联网战略中一种较为经济合理的供电方式,也是当前解决偏远地区未实现大面积电力互联的能源供应的方式。然而,这种互补特性使得太阳能与风能发电联合供电的本质是内在耦合的互联系统,并且在测量信号网络传输上普遍存在延时,影响到互联发电系统的稳定性。
发明内容
有鉴于此,本发明的目的是提出一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法,能够使网络延时的信号摄动被抑制并实现稳定工作。
本发明提供一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法,具体包括以下步骤:
步骤S1:搭建风光互补发电系统;所述风光互补发电系统包括太阳能光伏、永磁同步发电机的风力发电系统、AC/DC整流器、第一DC/DC变换器、第二DC/DC变换器和负载;所述太阳能光伏与所述第一DC/DC变换器连接;所述风力发电与所述AC/DC整流器连接;所述AC/DC整流器还与所述第二DC/DC变换器连接;所述第一DC/DC变换器和所述第二DC/DC变换器均与所述负载连接;
步骤S2:根据物理学原理以及T-S模型的表达方法,建立风光互补发电系统模型;
步骤S3:设计估计器去估计网络延时的信号摄动,用以使风光互补发电系统网络延时的信号变动被限定在界限内;
步骤S4:设计基于补偿的反馈控制器,用以使网络延时的信号摄动被抑制并实现稳定工作。
进一步地,所述步骤S2具体步骤如下:
步骤S21:建立采用DC/DC转换器的太阳能光伏即PV发电系统动态模型,如公式(1)所示:
Figure BDA0002123834360000011
式中,Vpv,iL,V0分别为PV的阵列电压、电感L上的电流、电容C0的电压;R0,RL,RM分别为电容C0、电感L、功率MOSFET上的内阻;VD是功率二极管的正向电压;i1是可测量的负载电流;
步骤S22:建立具有永磁同步发电机的风力发电系统的动态模型,由下式给出:
Figure BDA0002123834360000021
式中,Lq和Ld是d-q轴上的定子电感;iq和id是d-q轴上的定子电感;i2是可测负载电流;ψm是定子绕组磁链;Rs是定子电阻;P是极数;ρ是空气密度;v是风速的立方;Cp是功率系数;A是扫掠面积;ωe是电机角速度;J是旋转系统的惯性;
步骤S23:建立有PV和具有永磁同步发电机的风力发电系统的直流微电网模型;
通过戴维南定理得:
Figure BDA0002123834360000022
假设ipv=1.1iL,0.8iL=i1,0.8iq=i2,v=ωe,并由式(1)—(3)得直流微电网模型如下:
Figure BDA0002123834360000023
式中,ui(t)是控制信号输入,
Figure BDA0002123834360000024
并且,
Figure BDA0002123834360000025
通过如下的取值范围iL=(1.1A,1.5A),Vpv=(10.3V,9.2V),iq=(1.3A,1.0A),id=0.4A,0.1A),
Figure BDA0002123834360000031
Vdc=(13.9V,9.8V)来线性化非线性互连系统(4),获得T-S模糊模型如下:
规则
Figure BDA0002123834360000032
如果(iL,Vpv)是(1.1A,10.3V),那么
Figure BDA0002123834360000033
规则
Figure BDA0002123834360000034
如果(iL,Vpv)是(1.1A,9.2V),那么
Figure BDA0002123834360000035
规则
Figure BDA0002123834360000036
如果(iL,Vpv)是(1.5A,10.3V),那么
Figure BDA0002123834360000037
规则
Figure BDA0002123834360000038
如果(iL,Vpv)是(1.5A,9.2V),那么
Figure BDA0002123834360000039
规则
Figure BDA00021238343600000310
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000311
那么
Figure BDA00021238343600000312
规则
Figure BDA00021238343600000313
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000314
那么
Figure BDA00021238343600000315
规则
Figure BDA00021238343600000316
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000317
那么
Figure BDA00021238343600000318
规则
Figure BDA00021238343600000319
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000320
那么
Figure BDA00021238343600000321
规则
Figure BDA00021238343600000322
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000323
那么
Figure BDA00021238343600000324
规则
Figure BDA00021238343600000325
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000326
那么
Figure BDA0002123834360000041
规则
Figure BDA0002123834360000042
如果(iq,id,ωe,Vdc)是
Figure BDA0002123834360000043
那么
Figure BDA0002123834360000044
规则
Figure BDA0002123834360000045
如果(iq,id,ωe,Vdc)是
Figure BDA0002123834360000046
那么
Figure BDA0002123834360000047
规则
Figure BDA0002123834360000048
如果(iq,id,ωe,Vdc)是
Figure BDA0002123834360000049
那么
Figure BDA00021238343600000410
规则
Figure BDA00021238343600000411
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000412
那么
Figure BDA00021238343600000413
规则
Figure BDA00021238343600000414
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000415
那么
Figure BDA00021238343600000416
规则
Figure BDA00021238343600000417
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000418
那么
Figure BDA00021238343600000419
规则
Figure BDA00021238343600000420
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000421
那么
Figure BDA00021238343600000422
规则
Figure BDA00021238343600000431
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000423
那么
Figure BDA00021238343600000424
规则
Figure BDA00021238343600000425
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000426
那么
Figure BDA00021238343600000427
规则
Figure BDA00021238343600000428
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600000429
那么
Figure BDA00021238343600000430
进一步地,所述步骤S3具体步骤如下:
步骤S31:建立T—S模糊动态模型,得到:
Figure BDA0002123834360000051
式中,
Figure BDA0002123834360000052
Figure BDA0002123834360000053
Figure BDA0002123834360000054
定义
Figure BDA0002123834360000055
并假设未知的网络延时摄动是有界的,满足:
Figure BDA0002123834360000056
其中
Figure BDA0002123834360000057
是正定的标量。
步骤S32:构建一个增广的观测器,用以估计直流微电网系统未知的网络延时摄动,使得误差估计在椭面内是有界的;令
Figure BDA0002123834360000058
并引入一个辅助矩阵变量
Figure BDA0002123834360000059
由式(7)得出:
Figure BDA00021238343600000510
式中,
Figure BDA00021238343600000511
增广的状态向量
Figure BDA00021238343600000512
在式(9)中由系统状态xi(k)和未知的网络延时摄动ωi(k)组成;为了同步估计系统状态和延时摄动,引入一个增广的模糊观测器,如下所示:
Figure BDA00021238343600000513
式中,
Figure BDA0002123834360000061
Li是一个非奇异矩阵;
Figure BDA0002123834360000062
是一个辅助状态向量;
Figure BDA0002123834360000063
Figure BDA0002123834360000064
式中
Figure BDA0002123834360000065
是要设计的观测器。
步骤S33:进一步令:
Figure BDA0002123834360000066
Figure BDA0002123834360000067
是一个非奇异矩阵,得:
Figure BDA0002123834360000068
由式(9)—(13)得出:
Figure BDA0002123834360000069
由于
Figure BDA00021238343600000610
是非奇异的,式(10)中的系统模型表示为:
Figure BDA00021238343600000611
式中,
Figure BDA00021238343600000612
步骤S34:对观测器增益
Figure BDA00021238343600000613
进行求解:
首先考虑以下Lyapunov函数:
Figure BDA00021238343600000614
式中,
Figure BDA00021238343600000615
是正定矩阵;通过取V(k)的前向差,得:
Figure BDA00021238343600000616
Figure BDA00021238343600000617
式中,
Figure BDA00021238343600000618
标量κ>0。
定义正定对称矩阵
Figure BDA0002123834360000071
矩阵乘积
Figure BDA0002123834360000072
从式(1范)得:
Figure BDA0002123834360000073
式中,
Figure BDA0002123834360000074
定义以下索引:
Figure BDA0002123834360000075
式中,α∈[0,1]。
结合式(16)—(20),如果以下不等式成立,则满足J(k)<0;
Figure BDA0002123834360000076
式中,Θi和γiji)在式(30)中定义;将式(21)通过锥补定理得式(29)中的不等式;
由于J(k)<0,则有
Figure BDA0002123834360000077
则V(k+1)-1<α(V(k)-1). (23)
从式(23)得到:
V(k)<αk(V(0)-1)+1, (24)
令矩阵乘数
Figure BDA0002123834360000078
如下,用以将非线性矩阵不等式(21)转换为线性矩阵不等式的凸优化问题,
Figure BDA0002123834360000079
式中,
Figure BDA0002123834360000081
是一个非奇异矩阵;
通过把式(2范)代入到式(21),定义
Figure BDA0002123834360000082
并提取模糊前件变量得:
Figure BDA0002123834360000083
其中
Figure BDA0002123834360000084
并且
Figure BDA0002123834360000085
Figure BDA0002123834360000086
Figure BDA0002123834360000087
Figure BDA0002123834360000088
Figure BDA0002123834360000089
Figure BDA00021238343600000810
Figure BDA00021238343600000811
当控制系统的初始条件为零时,得:
Figure BDA00021238343600000812
式中,
Figure BDA00021238343600000813
Figure BDA00021238343600000814
最后根据正定对称矩阵
Figure BDA0002123834360000091
矩阵乘积
Figure BDA0002123834360000092
Figure BDA0002123834360000093
矩阵
Figure BDA0002123834360000094
和正定标量α∈[0,1]。求解矩阵不等式,则闭环系统(1范)中系统状态的可达集是有界的:
Figure BDA0002123834360000095
式中,
Figure BDA0002123834360000096
Figure BDA0002123834360000097
Figure BDA0002123834360000098
Figure BDA0002123834360000099
Figure BDA00021238343600000910
Figure BDA00021238343600000911
Figure BDA00021238343600000912
并且,估计误差满足以下范围,
Figure BDA00021238343600000913
进一步地,所述步骤S4具体步骤如下:
步骤S41:构建一个分布式模糊补偿控制器如下,用以使未知的网络延时摄动ωi(k)能够被抑制;
Figure BDA00021238343600000914
式中,
Figure BDA00021238343600000915
Figure BDA00021238343600000916
Figure BDA00021238343600000917
是要设计的模糊控制器增益;
将式(32)代入到(7)中产生以下闭环模糊控制系统:
Figure BDA0002123834360000101
式中,
Figure BDA0002123834360000102
Figure BDA0002123834360000103
步骤S42:根据以下Lyapunov函数:
Figure BDA0002123834360000104
式中,
Figure BDA0002123834360000105
是正定矩阵;通过采取前向差分V(k),得:
Figure BDA0002123834360000106
定义正定对称矩阵
Figure BDA0002123834360000107
和矩阵乘数
Figure BDA0002123834360000108
由式(33)得出:
Figure BDA0002123834360000109
式中,
Figure BDA00021238343600001010
Figure BDA00021238343600001011
定义以下索引:
Figure BDA00021238343600001012
其中,β∈[0,1]。
结合式(35)—(37),如果以下不等式成立,则满足J(t)<0;
Figure BDA0002123834360000111
其中
Figure BDA0002123834360000112
在式(41)中已定义;
定义
Figure BDA0002123834360000113
Figure BDA0002123834360000114
通过对式(38)使用锥补定理,并提取前件变量,得如下闭环控制系统的可达集求解:
给出正定对称矩阵
Figure BDA0002123834360000115
矩阵乘数
Figure BDA0002123834360000116
矩阵
Figure BDA0002123834360000117
Figure BDA0002123834360000118
和正定标量β∈[0,1]。如果以下矩阵不等式成立,则系统在公式(33)中状态的可达集是有界的:
Figure BDA0002123834360000119
Figure BDA00021238343600001110
式中,
Figure BDA00021238343600001111
Figure BDA00021238343600001112
Figure BDA00021238343600001113
Figure BDA00021238343600001114
Figure BDA00021238343600001115
Figure BDA00021238343600001116
Figure BDA00021238343600001117
并且,系统状态满足以下范围,
Figure BDA00021238343600001118
式中,
Figure BDA00021238343600001119
与现有技术相比,本发明有以下有益效果:
本发明采用可达集估计的方法,可以使得估计风光互补系统通讯网络的延时摄动误差被限定在一个有界限的范围内;在此基础上设计反馈补偿模糊控制器,使得网络延时摄动对发电系统的影响可以被消除或减小,保证了风光互补发电系统的稳定运行。
附图说明
图1为本发明实施例的光伏电力系统图。
图2为本发明实施例的具有永磁同步发电机的风力发电系统图。
图3为本发明实施例的带有PV和具有永磁同步发电机的风力发电系统的直流微电网系统图。
图4为本发明实施例的风光互补发电物理系统图.
图5为本发明实施例的流程图。
具体实施方式
下面结合附图及实施例对本发明做进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
如图5所示,本实施例提供了一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法,具体包括以下步骤:
步骤S1:请参照图4搭建风光互补发电系统;所述风光互补发电系统包括太阳能光伏、永磁同步发电机的风力发电系统、AC/DC整流器、第一DC/DC变换器、第二DC/DC变换器和负载;所述太阳能光伏与所述第一DC/DC变换器连接;所述风力发电与所述AC/DC整流器连接;所述AC/DC整流器还与所述第二DC/DC变换器连接;所述第一DC/DC变换器和所述第二DC/DC变换器均与所述负载连接;
步骤S2:根据物理学原理以及T-S模型的表达方法,建立风光互补发电系统模型;
步骤S3:针对在测量信号网络传输上普遍存在延时问题设计估计器去估计网络延时的信号摄动,使得风光互补发电系统网络延时的信号变动被限定在一定的界限内;
步骤S4:考虑到抑制信号网络传输的延时,对互联发电系统的稳定工作非常重要,针对风光互补发电系统的网络信号传输延时问题设计基于补偿的反馈控制器,使得网络延时的信号摄动被抑制并实现稳定工作。
在本实施例中,根据物理学原理以及T-S模型的表达方法,建立风光互补发电系统模型,具体步骤如下:
步骤S21:首先如图1所示建立采用DC/DC转换器的太阳能光伏(PV)电力系统动态模型,如公式(1)所示:
Figure BDA0002123834360000121
式中,Vpv,iL,V0分别为PV的阵列电压、电感L上的电流、电容C0的电压;R0,RL,RM分别为电容C0、电感L、功率MOSFET上的内阻;VD是功率二极管的正向电压;i1是可测量的负载电流;
步骤S22:接着如图2所示建立具有永磁同步发电机的风力发电系统的动态模型可由下式给出:
Figure BDA0002123834360000131
式中,Lq和Ld是d-q轴上的定子电感;iq和id是d-q轴上的定子电感;i2是可测负载电流;ψm是定子绕组磁链;Rs是定子电阻;P是极数;ρ是空气密度;v是风速的立方;Cp是功率系数;A是扫掠面积;ωe是电机角速度;J是旋转系统的惯性;
步骤S23:然后建立有PV和具有永磁同步发电机的风力发电系统的直流微电网,其中V0和VDC分别为PV和PMSG的输出电压;R1和R2分别是PV和PMSG的线路电阻,如图3所示:通过Thèvenin定理可得:
Figure BDA0002123834360000132
假设ipv=1.1iL,0.8iL=i1,0.8iq=i2,v=ωe,并由式(1)—(3)可得直流微电网模型如下:
Figure BDA0002123834360000133
式中,
Figure BDA0002123834360000134
Figure BDA0002123834360000141
表1微电网模型参数值
Figure BDA0002123834360000142
在本次仿真中,参数值如表1所示。通过取值范围iL=(1.1A,1.5A),Vpv=10.3V,9.2V),iq=(1.3A,1.0A),id=(0.4A,0.1A),
Figure BDA0002123834360000143
Vdc=(13.9V,9.8V)来线性化非线性互连系统,T-S模糊模型如下:
规则
Figure BDA0002123834360000144
如果(iL,Vpv)是(1.1A,10.3V),那么
Figure BDA0002123834360000145
规则
Figure BDA0002123834360000146
如果(iL,Vpv)是(1.1A,9.2V),那么
Figure BDA0002123834360000147
规则
Figure BDA0002123834360000151
如果(iL,Vpv)是(1.5A,10.3V),那么
Figure BDA0002123834360000152
规则
Figure BDA0002123834360000153
如果(iL,Vpv)是(1.5A,9.2V),那么
Figure BDA0002123834360000154
规则
Figure BDA00021238343600001531
如果(iq,id,ωe,Vdc)是
Figure BDA0002123834360000155
那么
Figure BDA0002123834360000156
规则
Figure BDA0002123834360000157
如果(iq,id,ωe,Vdc)是
Figure BDA0002123834360000158
那么
Figure BDA0002123834360000159
规则
Figure BDA00021238343600001510
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001511
那么
Figure BDA00021238343600001512
规则
Figure BDA00021238343600001513
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001514
那么
Figure BDA00021238343600001515
规则
Figure BDA00021238343600001516
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001517
那么
Figure BDA00021238343600001518
规则
Figure BDA00021238343600001519
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001520
那么
Figure BDA00021238343600001521
规则
Figure BDA00021238343600001522
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001523
那么
Figure BDA00021238343600001524
规则
Figure BDA00021238343600001525
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001526
那么
Figure BDA00021238343600001527
规则
Figure BDA00021238343600001528
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001529
那么
Figure BDA00021238343600001530
规则
Figure BDA0002123834360000161
如果(iq,id,ωe,Vdc)是
Figure BDA0002123834360000162
那么
Figure BDA0002123834360000163
规则
Figure BDA0002123834360000164
如果(iq,id,ωe,Vdc)是
Figure BDA0002123834360000165
那么
Figure BDA0002123834360000166
规则
Figure BDA0002123834360000167
如果(iq,id,ωe,Vdc)是
Figure BDA0002123834360000168
那么
Figure BDA0002123834360000169
规则
Figure BDA00021238343600001610
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001611
那么
Figure BDA00021238343600001612
规则
Figure BDA00021238343600001613
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001614
那么
Figure BDA00021238343600001615
规则
Figure BDA00021238343600001616
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001617
那么
Figure BDA00021238343600001618
规则
Figure BDA00021238343600001619
如果(iq,id,ωe,Vdc)是
Figure BDA00021238343600001620
那么
Figure BDA00021238343600001621
在本实施例中,在步骤S3中,针对在测量信号网络传输上普遍存在延时问题设计估计器去估计网络延时的信号摄动。使得风光互补发电系统网络延时的信号变动被限定在一定的界限内。具体步骤如下:
步骤S31:首先考虑建立T—S模糊动态模型,可得到:
Figure BDA00021238343600001622
式中,
Figure BDA00021238343600001623
Figure BDA00021238343600001624
Figure BDA00021238343600001625
定义
Figure BDA0002123834360000171
并假设未知的测量噪声是有界的,满足:
Figure BDA0002123834360000172
其中
Figure BDA0002123834360000173
是正定的标量。
步骤S32:接着构建一个增广的观测器,用于估计系统未知的网络延时摄动,使得误差估计在椭面内是有界的。定义
Figure BDA0002123834360000174
并引入一个辅助矩阵变量
Figure BDA0002123834360000175
Figure BDA0002123834360000176
由式(7)可得出:
Figure BDA0002123834360000177
式中,
Figure BDA0002123834360000178
增广的状态向量
Figure BDA0002123834360000179
在式(9)中由系统状态xi(k)和未知的网络延时摄动ωi(k)组成。为了同步估计系统状态和延时摄动,引入了一个增广的模糊观测器,如下所示:
Figure BDA00021238343600001710
式中,
Figure BDA00021238343600001711
Li是一个非奇异矩阵;
Figure BDA00021238343600001712
是一个辅助状态向量;
Figure BDA00021238343600001713
Figure BDA00021238343600001714
式中
Figure BDA00021238343600001715
是要设计的观测器。
步骤S33:进一步定义:
Figure BDA00021238343600001716
Figure BDA00021238343600001717
是一个非奇异矩阵,可得:
Figure BDA0002123834360000181
由式(9)—(13)得出:
Figure BDA0002123834360000182
由于
Figure BDA0002123834360000183
是非奇异的,式(10)中的系统模型可表示为:
Figure BDA0002123834360000184
式中,
Figure BDA0002123834360000185
步骤S34:对观测器增益
Figure BDA0002123834360000186
进行求解:
进一步考虑以下Lyapunov函数:
Figure BDA0002123834360000187
式中,
Figure BDA0002123834360000188
是正定矩阵。通过取V(k)的前向差,可得:
Figure BDA0002123834360000189
注意
Figure BDA00021238343600001810
式中,
Figure BDA00021238343600001811
标量κ>0。
定义正定对称矩阵
Figure BDA00021238343600001812
矩阵乘积
Figure BDA00021238343600001813
从式(1范)可得:
Figure BDA0002123834360000191
式中,
Figure BDA0002123834360000192
现在,定义以下索引:
Figure BDA0002123834360000193
式中,α∈[0,1]。
结合式(16)—(20),如果以下不等式成立,则可以满足J(k)<0。
Figure BDA0002123834360000194
式中,Θi和γiji)在式(30)中定义。将式(21)通过锥补定理可得式(29)中的不等式。
由于J(k)<0,则有
Figure BDA0002123834360000195
则,
V(k+1)-1<α(V(k)-1). (23)
从式(23)容易得到:
V(k)<αk(V(0)-1)+1, (24)
为了将非线性矩阵不等式(21)转换为线性矩阵不等式的凸优化问题,我们指定矩阵乘数
Figure BDA0002123834360000196
如下:
Figure BDA0002123834360000197
式中,
Figure BDA0002123834360000198
是一个非奇异矩阵。
通过把式(2范)代入到式(21),定义
Figure BDA0002123834360000201
并提取模糊前件变量可得:
Figure BDA0002123834360000202
其中
Figure BDA0002123834360000203
并且
Figure BDA0002123834360000204
Figure BDA0002123834360000205
Figure BDA0002123834360000206
Figure BDA0002123834360000207
Figure BDA0002123834360000208
Figure BDA0002123834360000209
Figure BDA00021238343600002010
可知,当控制系统的初始条件为零时,可得:
Figure BDA00021238343600002011
式中,
Figure BDA00021238343600002012
Figure BDA00021238343600002013
最后根据正定对称矩阵
Figure BDA0002123834360000211
矩阵乘积
Figure BDA0002123834360000212
Figure BDA0002123834360000213
矩阵
Figure BDA0002123834360000214
和正定标量α∈[0,1]。求解矩阵不等式,则闭环系统(1范)中系统状态的可达集是有界的:
Figure BDA0002123834360000215
式中,
Figure BDA0002123834360000216
Figure BDA0002123834360000217
Figure BDA0002123834360000218
Figure BDA0002123834360000219
Figure BDA00021238343600002110
Figure BDA00021238343600002111
Figure BDA00021238343600002112
并且,估计误差满足以下范围,
Figure BDA00021238343600002113
在本实施例中,在步骤S4中,考虑到抑制信号网络传输的延时,对互联发电系统的稳定工作非常重要,针对风光互补发电系统的网络信号传输延时问题设计基于补偿的反馈控制器,使得网络延时的信号摄动被抑制并实现稳定工作。具体步骤如下:
步骤S41:首先构建一个分布式模糊补偿控制器如下,使未知的网络延时摄动ωi(k)可以被抑制。
Figure BDA00021238343600002114
式中,
Figure BDA00021238343600002115
Figure BDA00021238343600002116
Figure BDA00021238343600002117
是要设计的模糊控制器增益。
将式(32)代入到(7)中产生以下闭环模糊控制系统:
Figure BDA0002123834360000221
式中,
Figure BDA0002123834360000222
Figure BDA0002123834360000223
步骤S42:考虑以下Lyapunov函数:
Figure BDA0002123834360000224
式中,
Figure BDA0002123834360000225
是正定矩阵。通过采取前向差分V(k),可得:
Figure BDA0002123834360000226
定义正定对称矩阵
Figure BDA0002123834360000227
和矩阵乘数
Figure BDA0002123834360000228
由式(33)得出:
Figure BDA0002123834360000229
式中,
Figure BDA00021238343600002210
Figure BDA00021238343600002211
定义以下索引:
Figure BDA00021238343600002212
其中,β∈[0,1]。
结合式(35)—(37),如果以下不等式成立,则满足J(t)<0。
Figure BDA0002123834360000231
其中
Figure BDA0002123834360000232
在式(41)中已定义。
定义
Figure BDA0002123834360000233
Figure BDA0002123834360000234
通过对式(38)使用锥补定理,并提取前件变量,可得如下闭环控制系统的可达集求解:
给出正定对称矩阵
Figure BDA0002123834360000235
矩阵乘数
Figure BDA0002123834360000236
矩阵
Figure BDA0002123834360000237
Figure BDA0002123834360000238
和正定标量β∈[0,1]。如果以下矩阵不等式成立,则系统在公式(33)中状态的可达集是有界的:
Figure BDA0002123834360000239
Figure BDA00021238343600002310
式中,
Figure BDA00021238343600002311
Figure BDA00021238343600002312
Figure BDA00021238343600002313
Figure BDA00021238343600002314
Figure BDA00021238343600002315
Figure BDA00021238343600002316
Figure BDA00021238343600002317
并且,系统状态满足以下范围,
Figure BDA00021238343600002318
式中,
Figure BDA00021238343600002319
较佳的,本实施例提出一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法。首先建立风光互补发电系统,并采用物理学原理以及T-S模型的方法表达风光互补发电系统的非线性动态,接着设计估计器去估计网络延时的信号摄动。在此基础上,采用基于补偿的反馈控制器,使得网络延时的信号摄动被抑制并实现稳定工作。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法,其特征在于,具体包括以下步骤:
步骤S1:搭建风光互补发电系统;所述风光互补发电系统包括太阳能光伏、永磁同步发电机的风力发电系统、AC/DC整流器、第一DC/DC变换器、第二DC/DC变换器和负载;所述太阳能光伏与所述第一DC/DC变换器连接;所述风力发电系统与所述AC/DC整流器连接;所述AC/DC整流器还与所述第二DC/DC变换器连接;所述第一DC/DC变换器和所述第二DC/DC变换器均与所述负载连接;
步骤S2:根据物理学原理以及T-S模型的表达方法,建立风光互补发电系统模型;
步骤S3:设计估计器去估计网络延时的信号摄动,用以使风光互补发电系统网络延时的信号变动被限定在界限内;
步骤S4:设计基于补偿的反馈控制器,用以使网络延时的信号摄动被抑制并实现稳定工作;
其中,所述步骤S3具体步骤如下:
步骤S31:建立T—S模糊动态模型,得到:
Figure FDA0002563676120000011
式中,
Figure FDA0002563676120000012
Figure FDA0002563676120000021
Figure FDA0002563676120000022
Figure FDA0002563676120000023
定义
Figure FDA0002563676120000024
Figure FDA0002563676120000025
Figure FDA0002563676120000026
并假设未知的网络延时摄动是有界的,满足:
Figure FDA0002563676120000027
其中
Figure FDA0002563676120000028
是正定的标量;参数ui(k)表示系统控制输入;参数
Figure FDA0002563676120000029
Figure FDA00025636761200000210
均表示系统的参数矩阵;参数
Figure FDA00025636761200000211
表示II型模糊系统是隶属度函数。参数N表示风光互补发电子系统的个数;参数j表示除子系统i之外所有风光互补发电子系统;参数i表示风光互补发电第i个子系统; 参数w(k)表示系统的扰动;参数k表示第K个时间采样;参数l表示第l个模糊规则;符号“:=”表示的含义是首次定义的方程;
步骤S32:构建一个增广的观测器,用以估计直流微电网系统未知的网络延时摄动,使得误差估计在椭面内是有界的;令
Figure FDA00025636761200000212
并引入一个辅助矩阵变量
Figure FDA00025636761200000213
由式(7)得出:
Figure FDA00025636761200000214
式中,
Figure FDA00025636761200000215
增广的状态向量
Figure FDA0002563676120000031
在式(9)中由系统状态xi(k)和未知的网络延时摄动ωi(k)组成;为了同步估计系统状态和延时摄动,引入一个增广的模糊观测器,如下所示:
Figure FDA0002563676120000032
式中,
Figure FDA0002563676120000033
Li是一个非奇异矩阵;
Figure FDA0002563676120000034
是一个辅助状态向量;
Figure FDA0002563676120000035
式中
Figure FDA0002563676120000036
是要设计的观测器;参数nxi表示所要设计观测器矩阵的行向量个数;nyi表示所要设计观测器矩阵的列向量个数;ri表示模糊规则的个数;
步骤S33:进一步令:
Figure FDA0002563676120000037
Figure FDA0002563676120000038
是一个非奇异矩阵,得:
Figure FDA0002563676120000039
由式(9)—(13)得出:
Figure FDA00025636761200000310
由于
Figure FDA00025636761200000311
是非奇异的,式(10)中的系统模型表示为:
Figure FDA00025636761200000312
式中,
Figure FDA0002563676120000041
步骤S34:对观测器增益
Figure FDA0002563676120000042
进行求解:
首先考虑以下Lyapunov函数:
Figure FDA0002563676120000043
式中,
Figure FDA0002563676120000044
是正定矩阵;通过取V(k)的前向差,得:
Figure FDA0002563676120000045
Figure FDA0002563676120000046
式中,
Figure FDA0002563676120000047
标量κ>0;
定义正定对称矩阵
Figure FDA0002563676120000048
矩阵乘积
Figure FDA0002563676120000049
从式(15)得:
Figure FDA00025636761200000410
式中,
Figure FDA00025636761200000411
定义以下索引:
Figure FDA0002563676120000051
式中,α∈[0,1];
结合式(16)-(20),如果以下不等式成立,则满足J(k)<0;
Figure FDA0002563676120000052
式中,Θi和Υiji)在式(30)中定义;将式(21)通过锥补定理得式(29)中的不等式;
由于J(k)<0,则有
Figure FDA0002563676120000053
则V(k+1)-1<α(V(k)-1) (23)
从式(23)得到:
V(k)<αk(V(0)-1)+1, (24)
令矩阵乘数
Figure FDA0002563676120000054
如下,用以将非线性矩阵不等式(21)转换为线性矩阵不等式的凸优化问题,
式中,
Figure FDA0002563676120000056
是一个非奇异矩阵;
通过把式(25)代入到式(21),定义
Figure FDA0002563676120000057
并提取模糊前件变量得:
Figure FDA0002563676120000061
其中
Figure FDA0002563676120000062
参数Pi表示李雅普诺夫函数的矩阵;
并且
Figure FDA0002563676120000063
Figure FDA0002563676120000064
Figure FDA0002563676120000065
Figure FDA0002563676120000066
Figure FDA0002563676120000067
Figure FDA0002563676120000068
Figure FDA0002563676120000069
当控制系统的初始条件为零时,得:
Figure FDA00025636761200000610
式中,
Figure FDA00025636761200000611
Figure FDA0002563676120000071
最后根据正定对称矩阵
Figure FDA0002563676120000072
矩阵乘积
Figure FDA0002563676120000073
矩阵
Figure FDA0002563676120000074
和正定标量α∈[0,1]。求解矩阵不等式,则闭环系统(15)中系统状态的可达集是有界的:
Figure FDA0002563676120000075
式中,
Figure FDA0002563676120000076
Figure FDA0002563676120000077
Figure FDA0002563676120000078
Figure FDA0002563676120000079
Figure FDA00025636761200000710
Figure FDA00025636761200000711
Figure FDA00025636761200000712
并且,估计误差满足以下范围,
Figure FDA00025636761200000713
2.根据权利要求1所述的一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法,其特征在于:所述步骤S2具体步骤如下:
步骤S21:建立采用DC/DC转换器的太阳能光伏即PV发电系统动态模型,如公式(1)所示:
Figure FDA0002563676120000081
式中,Vpv,iL,V0分别为PV的阵列电压、电感L上的电流、电容C0的电压;R0,RL,RM分别为电容C0、电感L、功率MOSFET上的内阻;VD是功率二极管的正向电压;i1表示太阳能发电系统的可测量的负载电流;
步骤S22:建立具有永磁同步发电机的风力发电系统的动态模型,由下式给出:
Figure FDA0002563676120000082
式中,Lq和Ld是d-q轴上的定子电感;iq和id是d-q轴上的定子电感;i2表示风力发电系统的可测量的负载电流;ψm是定子绕组磁链;Rs是定子电阻;P是极数;ρ是空气密度;v是风速的立方;Cp是功率系数;A是扫掠面积;ωe是电机角速度;J是旋转系统的惯性;
步骤S23:建立有PV和具有永磁同步发电机的风力发电系统的直流微电网模型;
通过戴维南定理得:
Figure FDA0002563676120000091
假设ipv=1.1iL,0.8iL=i1,0.8iq=i2,v=ωe,并由式(1)-(3)得直流微电网模型如下:
Figure FDA0002563676120000092
式中,ui(t)是控制信号输入,
Figure FDA0002563676120000093
Figure FDA0002563676120000094
通过如下的取值范围iL=(1.1A,1.5A),Vpv=(10.3V,9.2V),iq=(1.3A,1.0A),id=(0.4A,0.1A),
Figure FDA0002563676120000095
Vdc=(13.9V,9.8V)来线性化非线性互连系统(4),获得T-S模糊模型如下:
规则
Figure FDA0002563676120000101
如果(iL,Vpv)是(1.1A,10.3V),那么
Figure FDA0002563676120000102
规则
Figure FDA0002563676120000103
如果(iL,Vpv)是(1.1A,9.2V),那么
Figure FDA0002563676120000104
规则
Figure FDA0002563676120000105
如果(iL,Vpv)是(1.5A,10.3V),那么
Figure FDA0002563676120000106
规则
Figure FDA0002563676120000107
如果(iL,Vpv)是(1.5A,9.2V),那么
Figure FDA0002563676120000108
规则
Figure FDA0002563676120000109
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001010
那么
Figure FDA00025636761200001011
规则
Figure FDA00025636761200001012
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001013
那么
Figure FDA00025636761200001014
规则
Figure FDA00025636761200001015
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001016
那么
Figure FDA00025636761200001017
规则
Figure FDA00025636761200001018
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001019
那么
Figure FDA00025636761200001020
规则
Figure FDA00025636761200001021
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001022
那么
Figure FDA00025636761200001023
规则
Figure FDA00025636761200001024
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001025
那么
Figure FDA00025636761200001026
规则
Figure FDA00025636761200001027
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001028
那么
Figure FDA00025636761200001029
规则
Figure FDA0002563676120000111
如果(iq,id,ωe,Vdc)是
Figure FDA0002563676120000112
那么
Figure FDA0002563676120000113
规则
Figure FDA0002563676120000114
如果(iq,id,ωe,Vdc)是
Figure FDA0002563676120000115
那么
Figure FDA0002563676120000116
规则
Figure FDA0002563676120000117
如果(iq,id,ωe,Vdc)是
Figure FDA0002563676120000118
那么
Figure FDA0002563676120000119
规则
Figure FDA00025636761200001110
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001111
那么
Figure FDA00025636761200001112
规则
Figure FDA00025636761200001113
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001114
那么
Figure FDA00025636761200001115
规则
Figure FDA00025636761200001116
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001117
那么
Figure FDA00025636761200001118
规则
Figure FDA00025636761200001119
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001120
那么
Figure FDA00025636761200001121
规则
Figure FDA00025636761200001122
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001123
那么
Figure FDA00025636761200001124
规则
Figure FDA00025636761200001125
如果(iq,id,ωe,Vdc)是
Figure FDA00025636761200001126
那么
Figure FDA00025636761200001127
3.根据权利要求1所述的一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法,其特征在于:所述步骤S4具体步骤如下:
步骤S41:构建一个分布式模糊补偿控制器如下,用以使未知的网络延时摄动ωi(k)能够被抑制;
Figure FDA0002563676120000121
式中,
Figure FDA0002563676120000122
Figure FDA0002563676120000123
Figure FDA0002563676120000124
是要设计的模糊控制器增益;
将式(32)代入到(7)中产生以下闭环模糊控制系统:
Figure FDA0002563676120000125
式中,
Figure FDA0002563676120000126
Figure FDA0002563676120000127
步骤S42:根据以下Lyapunov函数:
Figure FDA0002563676120000128
式中,
Figure FDA0002563676120000129
是正定矩阵;通过采取前向差分V(k),得:
Figure FDA00025636761200001210
定义正定对称矩阵
Figure FDA00025636761200001211
和矩阵乘数
Figure FDA00025636761200001212
由式(33)得出:
Figure FDA0002563676120000131
式中,
Figure FDA0002563676120000132
Figure FDA0002563676120000133
定义以下索引:
Figure FDA0002563676120000134
其中,β∈[0,1]
结合式(35)-(37),如果以下不等式成立,则满足J(t)<0;
Figure FDA0002563676120000135
其中
Figure FDA0002563676120000136
在式(41)中已定义;
定义
Figure FDA0002563676120000137
Figure FDA0002563676120000138
通过对式(38)使用锥补定理,并提取前件变量,得如下闭环控制系统的可达集求解:
给出正定对称矩阵
Figure FDA0002563676120000141
矩阵乘数
Figure FDA0002563676120000142
矩阵
Figure FDA0002563676120000143
和正定标量β∈[0,1];如果以下矩阵不等式成立,则系统在公式(33)中状态的可达集是有界的:
Figure FDA0002563676120000144
Figure FDA0002563676120000145
式中,
Figure FDA0002563676120000146
Figure FDA0002563676120000147
Figure FDA0002563676120000148
Figure FDA0002563676120000149
Figure FDA00025636761200001410
Figure FDA00025636761200001411
Figure FDA00025636761200001412
并且,系统状态满足以下范围,
Figure FDA00025636761200001413
式中,
Figure FDA00025636761200001414
CN201910615626.6A 2019-07-09 2019-07-09 一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法 Active CN110365045B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910615626.6A CN110365045B (zh) 2019-07-09 2019-07-09 一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910615626.6A CN110365045B (zh) 2019-07-09 2019-07-09 一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法

Publications (2)

Publication Number Publication Date
CN110365045A CN110365045A (zh) 2019-10-22
CN110365045B true CN110365045B (zh) 2020-09-04

Family

ID=68218771

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910615626.6A Active CN110365045B (zh) 2019-07-09 2019-07-09 一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法

Country Status (1)

Country Link
CN (1) CN110365045B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111244942B (zh) * 2020-01-20 2021-07-27 闽江学院 基于差分算子离散的光伏发电系统动态输出反馈控制方法
CN112486019B (zh) * 2020-11-17 2022-06-07 九江学院 不确定风力发电机系统的最大功率跟踪模糊控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119322A (zh) * 2015-09-30 2015-12-02 西安交通大学 一种改善并网电压源型逆变器系统稳定性的控制方法
CN107769244A (zh) * 2017-08-31 2018-03-06 南京邮电大学 计及多种柔性负荷模型的多储能风电调度方法
CN108054784A (zh) * 2018-01-09 2018-05-18 河海大学常州校区 一种海岛微电网多源协调优化控制方法
CN109240088A (zh) * 2018-10-24 2019-01-18 闽江学院 一种电力网络通信延时的估计与补偿有限时间控制方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119322A (zh) * 2015-09-30 2015-12-02 西安交通大学 一种改善并网电压源型逆变器系统稳定性的控制方法
CN107769244A (zh) * 2017-08-31 2018-03-06 南京邮电大学 计及多种柔性负荷模型的多储能风电调度方法
CN108054784A (zh) * 2018-01-09 2018-05-18 河海大学常州校区 一种海岛微电网多源协调优化控制方法
CN109240088A (zh) * 2018-10-24 2019-01-18 闽江学院 一种电力网络通信延时的估计与补偿有限时间控制方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Decentralized Event-Triggered Control for Large-Scale Networked Fuzzy Systems;Zhixiong zhong等;《IEEE TRANSACTION ON FUZZY SYSTEMS》;20180228;第26卷(第1期);第29-45页 *
含恒功率负载的直流微网大信号稳定性分析;腾昌鹏等;《电工技术学报》;20190331;第34卷(第5期);第973-982页 *

Also Published As

Publication number Publication date
CN110365045A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
CN110112769B (zh) 虚拟同步机输出反馈自适应控制方法
CN102411396B (zh) 用于跟踪光伏模块的最大功率点的方法和设备
Tripathi et al. Design and control of LCL filter interfaced grid connected solar photovoltaic (SPV) system using power balance theory
CN108418256B (zh) 一种基于输出微分反馈的虚拟同步机自适应控制方法
CN110365045B (zh) 一种基于估计与补偿控制的风光互补发电系统的网络延时抑制方法
CN110380403B (zh) 一种基于网络延时补偿的直流微电网多模态切换控制方法
WO2021110171A1 (zh) 一种基于p-u下垂特性的虚拟直流电机控制方法
CN109347141B (zh) 一种双馈风力发电系统网侧终端滑模控制器设计方法
Huang et al. Impact of the voltage feed-forward and current decoupling on VSC current control stability in weak grid based on complex variables
CN104578143A (zh) 一种适用于新能源发电机的不确定大时滞的补偿方法
de Dieu Nguimfack-Ndongmo et al. Nonlinear neuro-adaptive MPPT controller and voltage stabilization of PV Systems under real environmental conditions
Nguimfack-Ndongmo et al. Adaptive neuro-synergetic control technique for SEPIC converter in PV systems
Dai et al. Prescribed-performance based finite-time adaptive fuzzy control for PV inverter in islanded systems
CN107123991B (zh) 基于模糊粒子群算法的动态电压恢复器控制方法及装置
CN110380443B (zh) 一种基于准z源逆变器的光伏供电自抗扰控制系统及方法
Zhao et al. Model-Free Predictive Current Control of Three-Level Grid-Connected Inverters With LCL Filters Based on Kalman Filter
CN112003318A (zh) 一种风电并网逆变器直流母线电压控制方法
Bechouat et al. Particle Swarm Optimization Backstepping Controller for a Grid-Connected PV/Wind Hybrid System.
Rai et al. Sensorless field oriented ISMCC for solar PV based induction motor drive for water pumping
CN115566717A (zh) 一种基于改进型粒子群算法扰动观测器复合滑模的逆变器控制策略
Benadli Improving grid connected hybrid generation system using an adaptive super-twisting sliding mode and predictive current control strategy
CN110445177B (zh) 基于切换观测器控制的光伏逆变系统控制方法
CN112467716B (zh) 一种用于直流微电网的自适应下垂控制方法
Gupta et al. Single-phase grid interfaced hybrid solar PV and wind system using STF-FLL for power quality improvement
Chovatia et al. Power quality improvement in a PV panel connected grid system using shunt active filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant