CN110360986B - 一种便携式星表局部地形测绘系统 - Google Patents

一种便携式星表局部地形测绘系统 Download PDF

Info

Publication number
CN110360986B
CN110360986B CN201910595061.XA CN201910595061A CN110360986B CN 110360986 B CN110360986 B CN 110360986B CN 201910595061 A CN201910595061 A CN 201910595061A CN 110360986 B CN110360986 B CN 110360986B
Authority
CN
China
Prior art keywords
surveying
mapping
module
aircraft
laser ranging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910595061.XA
Other languages
English (en)
Other versions
CN110360986A (zh
Inventor
刘玥
包敏凤
付凯林
王毓媛
蔡熙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aerospace Dongfanghong Satellite Co Ltd
Original Assignee
Aerospace Dongfanghong Satellite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aerospace Dongfanghong Satellite Co Ltd filed Critical Aerospace Dongfanghong Satellite Co Ltd
Priority to CN201910595061.XA priority Critical patent/CN110360986B/zh
Publication of CN110360986A publication Critical patent/CN110360986A/zh
Application granted granted Critical
Publication of CN110360986B publication Critical patent/CN110360986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/02Tracing profiles of land surfaces
    • G01C7/04Tracing profiles of land surfaces involving a vehicle which moves along the profile to be traced

Abstract

一种便携式星表局部地形测绘系统,涉及星表立体和高精度测绘领域;包括抛射装置、测绘飞行器和数据解算模块;测绘飞行器包括垂直激光测距模块、斜装激光测距模块、转速测量模块、数据采集模块和数传模块;通过垂直向上抛射一个携带激光测距模块的测绘飞行器,利用其自身的旋转与自由上升下降运动,带动激光测距模块扫描周边区域,反演飞行器周边地形三维信息,用于行星、月球及小行星探测活动中,对星球表面局部地区的三维地形测绘,支持对陌生领域探索等活动;本发明实现了对星球表面局部地区的三维地形测绘,支持对陌生领域探索等活动,体积小,成本低,可重复使用,测绘精度高。

Description

一种便携式星表局部地形测绘系统
技术领域
本发明涉及一种星表立体和高精度测绘领域,特别是一种便携式星表局部地形测绘系统。
背景技术
随着载人航天技术的不断发展,各国相继提出了将人类送上更远的星球进行探测的计划,甚至包括各种小行星。在人类登上外星球之后,需要对周边地形地貌等环境进行考察,这就需要宇航员徒步或乘坐巡视车对基地周边进行巡视探索,在此期间,一个重大的风险就是对地理环境的不熟悉,无人探测活动中广泛采用的几种地形勘测手段,卫星遥感、无人巡视器以及着陆器携带探测设备进行勘测,均存在着分辨率不足、探测范围有限等问题,现有的深空探测器技术,如嫦娥系列绕月飞行器,虽然具备月面遥感探测能力,但仅能够对月球表面生成米级以下分辨率的三维遥感图像,对于表面崎岖不平但坑洞与岩石突起尺度小于1米的地形而言,难以依靠卫星图像判别,而无人巡视器和一般着陆器携带的高分三维相机,由于载具机动能力有限,仅能对基地周边附近的区域进行巡视或扫描,对于较远的地形则无手段可以进行高精度探测。对如此陌生的领域进行探测,没有预先勘察,极易出现受困的危险,因此,当宇航员本身对陌生地形进行探险时,则需要宇航员携带一种能够辅助进行地形探测的工具,这种工具主要用于解决宇航员巡视星表过程中周边局部地形的高精度测绘难题,即“最后一公里”的地形路径勘测,着重强调立体和高精度测绘,而不要求全球覆盖,以帮助宇航员决定行进路径避免危险,同时,需要具备较强的便携性,以便利用手持、车载等方式携带并随时使用;目前该技术领域为空白。
发明内容
本发明的目的在于克服现有技术的上述不足,提供一种便携式星表局部地形测绘系统,实现了对星球表面局部地区的三维地形测绘,支持对陌生领域探索等活动,体积小,成本低,可重复使用,测绘精度高。
本发明的上述目的是通过如下技术方案予以实现的:
一种便携式星表局部地形测绘系统,包括抛射装置、测绘飞行器和数据解算模块;其中,测绘飞行器包括垂直激光测距模块、斜装激光测距模块、转速测量模块、数据采集模块和数传模块;
抛射装置:水平放置在待测绘星球表面;竖直向上旋转抛射出测绘飞行器;
垂直激光测距模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器距待测绘星球表面的竖直距离H,并将H发送至数据采集模块;
斜装激光测距模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器距待测绘星球表面点间的倾斜距离r1;并将r1发送至数据采集模块;
转速测量模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器的转速n;并将n发送至数据采集模块;
数据采集模块:接收垂直激光测距模块传来的H;接收斜装激光测距模块传来的r1;接收转速测量模块传来的n;将H、r1和n通过数传模块传输至数据解算模块;
数据解算模块:接收数据采集模块传来的H、r1和n;根据H、r1和n解算出待测绘星球表面的三维地形,显示。
在上述的一种便携式星表局部地形测绘系统,所述的抛射出的测绘飞行器以竖直方向为轴心旋转;从发射点竖直上升至最高点,并最终竖直下落至待测绘星球表面。
在上述的一种便携式星表局部地形测绘系统,测绘飞行器的自旋角速度为100-600r/s;最高点距待测绘星球表面100-1000m。
在上述的一种便携式星表局部地形测绘系统,所述斜装激光测距模块与垂直激光测距模块的指向夹角
Figure GDA0002966439640000021
为30°-60°;垂直激光测距模块和斜装激光测距模块的测距频率相同,均为f0
在上述的一种便携式星表局部地形测绘系统,数据解算模块解算出三维地形的方法为:
步骤一、设定测绘飞行器的初始自旋角速度为ω0;计算测绘飞行器的自旋周期T;
步骤二、设定测绘飞行器竖直上升至最高点的时刻为t0;设定测绘终止时刻t1;自旋周期为T;提取从t0时刻至第一个自旋周期结束时刻[t0,T]内,测绘飞行器距斜置激光指向待测绘星球表面点间的m个倾斜距离r1的集合h1;h1=[h1,1,h1,2,......,h1,m];m=(T-t0)*f0下取整;采用线性插值法,计算第二个自旋周期[T,2T]内,测绘飞行器距斜置激光指向待测绘星球表面点间的m个倾斜距离r1的集合h2;h2=[h2,1,h2,2,......,h2,m];
步骤三、计算h2与h1对应元素差值的绝对值之和J;
步骤四、计算测绘飞行器的精确自旋角速度ω1
采用牛顿迭代法修正法,重复步骤二至步骤三,直至J值达到最小值,则最小值J对应的角速度ω0即为精确自旋角速度ω1
步骤五、建立发射点坐标系oxyz;计算测绘飞行器的实时水平旋转角度θ,即斜装激光测距模块发出的激光束在水平面xoy中的投影线,与x轴的夹角;
步骤六、计算每个测距点的三维坐标(xi,yi,zi),根据各测距点的三维坐标(xi,yi,zi)反推出待测绘星球表面的三维地形。
在上述的一种便携式星表局部地形测绘系统,所述步骤一中,自旋周期T的计算方法为:
Figure GDA0002966439640000031
在上述的一种便携式星表局部地形测绘系统,所述步骤二中,(t1-t0)>2T。
在上述的一种便携式星表局部地形测绘系统,所述步骤三中,J的计算方法为:
J=∑(|h1,i-h2,i|),i=1,2,......,m。
在上述的一种便携式星表局部地形测绘系统,所述步骤五中,发射点坐标系oxyz的建立方法为:
以抛射装置为原点o;抛射装置正对方向为x轴;z轴竖直向上;y轴由右手定则确定;
实时水平旋转角度θ的计算方法为:
θ=θ01Δt
式中,θ0为测绘飞行器初始安装时与抛射装置正对方向的夹角;
Δt为测绘飞行器飞行时间。
在上述的一种便携式星表局部地形测绘系统,所述步骤六中,每个测距点的三维坐标(xi,yi,zi)的计算方法为:
Figure GDA0002966439640000041
Figure GDA0002966439640000042
Figure GDA0002966439640000043
本发明与现有技术相比具有如下优点:
(1)本发明携带方便:整套系统包含若干台测绘飞行器,同时还包含1个抛射装置和1个手持式数据解算模块,全系统可由单人背负或搭载于巡视车上,随时取用,系统规模与使用方法类似于迫击炮的射击,灵活方便;
(2)本发明测量精度高:测绘飞行器部署后,飞行至宇航员正上方高空数百米至数公里距离,对周边方圆数公里以内区域范围内进行测量,由于测量距离远低于卫星测绘系统百公里以上的距离水平,因此能够获得更高的测量精度;
(3)本发明成本低廉:测绘飞行器体积小、结构简单,造价低,单次探测活动可携带多个飞行器,在引力小的行星表面不易损毁,可重复使用,若下落过程中损毁,则可直接抛弃。
附图说明
图1为本发明测绘系统示意图;
图2为本发明测绘飞行器飞行测量示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细的描述:
本发明提供了一种可由宇航员随身或随车携带,随时取用并对周边数公里范围内的地形地貌进行高精度三维测量的便携式测绘系统,解决了载人外星球探测过程中对陌生地形预先勘察精度不够导致的危险性问题。
如图1所示为测绘系统示意图,由图可知,一种便携式星表局部地形测绘系统,包括抛射装置、测绘飞行器和数据解算模块;其中,测绘飞行器包括垂直激光测距模块、斜装激光测距模块、转速测量模块、数据采集模块和数传模块;
如图2所示为测绘飞行器飞行测量示意图,由图可知,抛射装置:水平放置在待测绘星球表面;竖直向上旋转抛射出测绘飞行器;抛射出的测绘飞行器以竖直方向为轴心旋转;从发射点竖直上升至最高点,并最终竖直下落至待测绘星球表面。测绘飞行器的自旋角速度为100-600r/s;最高点距待测绘星球表面100-1000m。测绘飞行器抛射装置用于将星表局部地形测绘飞行器垂直于星球表面向上抛出,同时使星表局部地形测绘飞行器产生一定的自旋角速度,以便对周边地形进行螺旋形扫描测绘。星表局部地形测绘飞行器用于测量周边星球表面地形信息,利用自身安装的激光测距仪,分别获取飞行器到地面的高度和飞行器到周边地形的斜距,连通自身角速度测量信息,通过无线的方式发送给便携式终端,每个便携式星表局部地形测绘系统中,可携带多颗飞行器,便于根据宇航员的行动范围,随时测量周边地貌;便携式终端的作用,是接收来自星表局部地形测绘飞行器的测量信息,利用三维地形反演算法,绘制周边地貌三维图像,供宇航员参考。
垂直激光测距模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器距待测绘星球表面的竖直距离H,并将H发送至数据采集模块;
斜装激光测距模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器距待测绘星球表面点间的倾斜距离r1;并将r1发送至数据采集模块;斜装激光测距模块与垂直激光测距模块的指向夹角
Figure GDA0002966439640000061
为30°-60°;垂直激光测距模块和斜装激光测距模块的测距频率相同,均为f0
转速测量模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器的转速n;并将n发送至数据采集模块;
数据采集模块:接收垂直激光测距模块传来的H;接收斜装激光测距模块传来的r1;接收转速测量模块传来的n;将H、r1和n通过数传模块传输至数据解算模块;
数据解算模块:接收数据采集模块传来的H、r1和n;根据H、r1和n解算出待测绘星球表面的三维地形,显示。
测绘飞行器包括垂直激光测距模块、斜装激光测距模块、转速测量模块、数据采集模块和数传模块其中,斜装激光测距模块与垂直激光测距模块是星表局部地形测绘飞行器的主要特征之一,用于测量飞行器飞行过程中周边地形测量点到飞行器的斜距以及飞行器距离发射点的高度。数据采集模块用于为斜装激光测距模块、垂直激光测距模块、转速测量模块、数传模块提供电能,并收集斜装激光测距模块与垂直激光测距模块测量到的距离信息以及转速测量模块提供的飞行器转速信息,将数据通过数传模块发送给地面数据解算模块,转速测量模块用于在飞行器飞行过程中测量自身的旋转角速度,将角速度信息提供给电源与处理模块,数传模块用于接收电源与处理模块汇总到的测量数据,并通过无线的方式发送到地面接收端,由地面接收端进行三维地形反演。
数据解算模块解算出三维地形的方法为:
步骤一、设定测绘飞行器的初始自旋角速度为ω0;计算测绘飞行器的自旋周期T;自旋周期T的计算方法为:
Figure GDA0002966439640000062
步骤二、设定测绘飞行器竖直上升至最高点的时刻为t0;设定测绘终止时刻t1;自旋周期为T;提取从t0时刻至第一个自旋周期结束时刻[t0,T]内,测绘飞行器距斜置激光指向待测绘星球表面点间的m个倾斜距离r1的集合h1;h1=[h1,1,h1,2,......,h1,m];m=(T-t0)*f0下取整;采用线性插值法,计算第二个自旋周期[T,2T]内,测绘飞行器距斜置激光指向待测绘星球表面点间的m个倾斜距离r1的集合h2;h2=[h2,1,h2,2,......,h2,m];(t1-t0)>2T。
步骤三、计算h2与h1对应元素差值的绝对值之和J。J的计算方法为:
J=∑(|h1,i-h2,i|),i=1,2,......,m。
步骤四、计算测绘飞行器的精确自旋角速度ω1
采用牛顿迭代法修正法,重复步骤二至步骤三,直至J值达到最小值,则最小值J对应的角速度ω0即为精确自旋角速度ω1
步骤五、建立发射点坐标系oxyz;发射点坐标系oxyz的建立方法为:以抛射装置为原点o;抛射装置正对方向为x轴;z轴竖直向上;y轴由右手定则确定;计算测绘飞行器的实时水平旋转角度θ,即斜装激光测距模块发出的激光束在水平面xoy中的投影线,与x轴的夹角。
实时水平旋转角度θ的计算方法为:
θ=θ01Δt
式中,θ0为测绘飞行器初始安装时与抛射装置正对方向的夹角;
Δt为测绘飞行器飞行时间。
步骤六、计算每个测距点的三维坐标(xi,yi,zi),根据各测距点的三维坐标(xi,yi,zi)反推出待测绘星球表面的三维地形。
每个测距点的三维坐标(xi,yi,zi)的计算方法为:
Figure GDA0002966439640000071
Figure GDA0002966439640000072
Figure GDA0002966439640000073
步骤七、飞行器落回星球表面后,宇航员可自行选择丢弃或回收。
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。

Claims (10)

1.一种便携式星表局部地形测绘系统,其特征在于:包括抛射装置、测绘飞行器和数据解算模块;其中,测绘飞行器包括垂直激光测距模块、斜装激光测距模块、转速测量模块、数据采集模块和数传模块;
抛射装置:水平放置在待测绘星球表面;竖直向上旋转抛射出测绘飞行器;
垂直激光测距模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器距待测绘星球表面的竖直距离H,并将H发送至数据采集模块;
斜装激光测距模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器距待测绘星球表面点间的倾斜距离r1;并将r1发送至数据采集模块;
转速测量模块:在测绘飞行器被抛射出时刻,实时测量测绘飞行器的转速n;并将n发送至数据采集模块;
数据采集模块:接收垂直激光测距模块传来的H;接收斜装激光测距模块传来的r1;接收转速测量模块传来的n;将H、r1和n通过数传模块传输至数据解算模块;
数据解算模块:接收数据采集模块传来的H、r1和n;根据H、r1和n解算出待测绘星球表面的三维地形,显示。
2.根据权利要求1所述的一种便携式星表局部地形测绘系统,其特征在于:所述的抛射出的测绘飞行器以竖直方向为轴心旋转;从发射点竖直上升至最高点,并最终竖直下落至待测绘星球表面。
3.根据权利要求2所述的一种便携式星表局部地形测绘系统,其特征在于:测绘飞行器的自旋角速度为100-600r/s;最高点距待测绘星球表面100-1000m。
4.根据权利要求3所述的一种便携式星表局部地形测绘系统,其特征在于:所述斜装激光测距模块与垂直激光测距模块的指向夹角
Figure FDA0002885832970000011
为30°-60°;垂直激光测距模块和斜装激光测距模块的测距频率相同,均为f0
5.根据权利要求4所述的一种便携式星表局部地形测绘系统,其特征在于:数据解算模块解算出三维地形的方法为:
步骤一、设定测绘飞行器的初始自旋角速度为ω0;计算测绘飞行器的自旋周期T;
步骤二、设定测绘飞行器竖直上升至最高点的时刻为t0;设定测绘终止时刻t1;自旋周期为T;提取从t0时刻至第一个自旋周期结束时刻[t0,T]内,测绘飞行器距斜置激光指向待测绘星球表面点间的m个倾斜距离r1的集合h1
Figure FDA0002885832970000022
m=(T-t0)*f0下取整;采用线性插值法,计算第二个自旋周期[T,2T]内,测绘飞行器距斜置激光指向待测绘星球表面点间的m个倾斜距离r1的集合h2
Figure FDA0002885832970000023
步骤三、计算h2与h1对应元素差值的绝对值之和J;
步骤四、计算测绘飞行器的精确自旋角速度ω1
采用牛顿迭代法修正法,重复步骤二至步骤三,直至J值达到最小值,则最小值J对应的角速度ω0即为精确自旋角速度ω1
步骤五、建立发射点坐标系oxyz;计算测绘飞行器的实时水平旋转角度θ,即斜装激光测距模块发出的激光束在水平面xoy中的投影线,与x轴的夹角;
步骤六、计算每个测距点的三维坐标(xi,yi,zi),根据各测距点的三维坐标(xi,yi,zi)反推出待测绘星球表面的三维地形。
6.根据权利要求5所述的一种便携式星表局部地形测绘系统,其特征在于:所述步骤一中,自旋周期T的计算方法为:
Figure FDA0002885832970000021
7.根据权利要求6所述的一种便携式星表局部地形测绘系统,其特征在于:所述步骤二中,(t1-t0)>2T。
8.根据权利要求7所述的一种便携式星表局部地形测绘系统,其特征在于:所述步骤三中,J的计算方法为:
J=∑(|h1,i-h2,i|),i=1,2,……,m。
9.根据权利要求8所述的一种便携式星表局部地形测绘系统,其特征在于:所述步骤五中,发射点坐标系oxyz的建立方法为:
以抛射装置为原点o;抛射装置正对方向为x轴;z轴竖直向上;y轴由右手定则确定;
实时水平旋转角度θ的计算方法为:
θ=θ01Δt
式中,θ0为测绘飞行器初始安装时与抛射装置正对方向的夹角;
Δt为测绘飞行器飞行时间。
10.根据权利要求8所述的一种便携式星表局部地形测绘系统,其特征在于:所述步骤六中,每个测距点的三维坐标(xi,yi,zi)的计算方法为:
Figure FDA0002885832970000031
Figure FDA0002885832970000032
Figure FDA0002885832970000033
CN201910595061.XA 2019-07-03 2019-07-03 一种便携式星表局部地形测绘系统 Active CN110360986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910595061.XA CN110360986B (zh) 2019-07-03 2019-07-03 一种便携式星表局部地形测绘系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910595061.XA CN110360986B (zh) 2019-07-03 2019-07-03 一种便携式星表局部地形测绘系统

Publications (2)

Publication Number Publication Date
CN110360986A CN110360986A (zh) 2019-10-22
CN110360986B true CN110360986B (zh) 2021-06-11

Family

ID=68217765

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910595061.XA Active CN110360986B (zh) 2019-07-03 2019-07-03 一种便携式星表局部地形测绘系统

Country Status (1)

Country Link
CN (1) CN110360986B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112946683A (zh) * 2021-01-13 2021-06-11 北京理工大学 一种单线激光雷达的地图构建方法
CN114659556B (zh) * 2022-03-03 2024-03-12 中国科学院计算技术研究所 一种面向巡视器的可分离式星表材质识别方法及系统
CN117346735A (zh) * 2023-12-04 2024-01-05 北京空间飞行器总体设计部 一种行星表面勘测方法及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2008322565B9 (en) * 2007-11-14 2014-04-10 Intergraph Software Technologies Company Method and apparatus of taking aerial surveys
CN201876259U (zh) * 2010-11-18 2011-06-22 西安信唯信息科技有限公司 一种基于激光测距仪的大地测绘装置
CN206590121U (zh) * 2017-03-31 2017-10-27 童育发 一种具有投放器的多功能无人机
CN206797721U (zh) * 2017-05-03 2017-12-26 北京中科遥数信息技术有限公司 一种带有测绘及拍摄装置无人机
CN108761468A (zh) * 2018-06-13 2018-11-06 董昊旻 测绘方法及装置
CN109239725A (zh) * 2018-08-20 2019-01-18 广州极飞科技有限公司 基于激光测距装置的地图测绘方法及终端

Also Published As

Publication number Publication date
CN110360986A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
CN110360986B (zh) 一种便携式星表局部地形测绘系统
CN110108984B (zh) 电力巡线激光雷达系统多传感器的空间关系同步方法
Nagai et al. UAV-borne 3-D mapping system by multisensor integration
JP6290735B2 (ja) 測量方法
KR100860767B1 (ko) 항공 레이저 측량 데이터를 이용한 수치도화 제작 장치 및방법
CN106871932A (zh) 基于金字塔搜索地形匹配的星载激光在轨指向检校方法
CN108759834B (zh) 一种基于全局视觉的定位方法
CN104820434A (zh) 一种无人机对地面运动目标的测速方法
CN104180793A (zh) 一种用于数字城市建设的移动空间信息获取装置和方法
CN108759815B (zh) 一种用于全局视觉定位方法中的信息融合组合导航方法
KR20110082904A (ko) 모형항공기와 gps를 이용한 항공사진 촬영 및 이를 통한 3차원 지형정보 제작방법
CN110095659B (zh) 深空探测巡视器通讯天线指向精度动态测试方法
CN207649604U (zh) 一种基于无人机的智能地形勘测系统
CN103900611A (zh) 一种惯导天文高精度复合两位置对准及误差标定方法
CN104729482B (zh) 一种基于飞艇的地面微小目标侦测系统及方法
Yastikli et al. The processing of image data collected by light UAV systems for GIS data capture and updating
CN103630120A (zh) 基于严密几何模型的火星表面线阵影像核线重采样方法
CN107709926A (zh) 自动化的移动岩土测绘
Matthies et al. Lunar rover localization using craters as landmarks
Lo et al. The direct georeferencing application and performance analysis of UAV helicopter in GCP-free area
Li et al. Opportunity rover localization and topographic mapping at the landing site of Meridiani Planum, Mars
Matthies et al. Visual localization methods for Mars rovers using lander, rover, and descent imagery
CN103644907A (zh) 一种基于双卫星平台的脉冲星角位置测量系统及方法
KR20030005749A (ko) 3차원 위치 측정 장치 및 그 방법
CN111323789A (zh) 一种基于无人机和固态雷达的地面形貌扫描装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant