CN112946683A - 一种单线激光雷达的地图构建方法 - Google Patents

一种单线激光雷达的地图构建方法 Download PDF

Info

Publication number
CN112946683A
CN112946683A CN202110041091.3A CN202110041091A CN112946683A CN 112946683 A CN112946683 A CN 112946683A CN 202110041091 A CN202110041091 A CN 202110041091A CN 112946683 A CN112946683 A CN 112946683A
Authority
CN
China
Prior art keywords
aircraft
distance measuring
measuring device
microgravity environment
flying device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110041091.3A
Other languages
English (en)
Inventor
黄强
王翔
李龙
李辉
蒋志宏
高乙超
于万瑞
王振勇
刘运淇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Beijing Institute of Spacecraft System Engineering
Original Assignee
Beijing Institute of Technology BIT
Beijing Institute of Spacecraft System Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT, Beijing Institute of Spacecraft System Engineering filed Critical Beijing Institute of Technology BIT
Priority to CN202110041091.3A priority Critical patent/CN112946683A/zh
Publication of CN112946683A publication Critical patent/CN112946683A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明提供了一种单线激光雷达的地图构建方法,首先控制飞行器按照指定的自转速度和前进速度进行螺旋前进运动;然后根据实时定位方法确定飞行器在空间中的位置,并实时解算飞行器的姿态以确定激光雷达的扫描方向;根据激光雷达反馈的距离信息实时更新三维点云数据;更新三维地图数据。本发明通过组合空间飞行器的自转和平移构成螺旋前进的运动方式,实现单线激光的扫描操作。不需要为单线激光雷达提供额外的扫描装置,简化了结构,节省了飞行器的内部空间。

Description

一种单线激光雷达的地图构建方法
技术领域
本发明涉及一种实时地图构建方法,特别是适用于太空环境下对未知环境的探测,以及空间站中室内飞行定位的地图构建方法。
背景技术
在太空环境下,为实现对未知环境的探测,以及空间站中室内飞行的定位,需要一种实时地图构建方法。而由于火箭的运载能力、飞行空间等诸多方面的限制,对飞行器的尺寸和质量上都有较为严苛的要求。激光雷达作为一种距离测量手段,具有精度高、实时性强的特点而被广泛用于移动机器人的地图构建和自主导航中。但是目前这类设备的结构都过于复杂,需要额外的载体架。
申请号为201610168659.7的中国发明专利申请公开了一种单线激光雷达装置。该装置通过布置多个单线激光雷达,调整安装位置和俯仰角获得载体四周全覆盖的扫描范围,实现无人驾驶周围环境的实时检测。但是,现有使用单线激光雷达的三维地图构建设备,通常需要为激光雷达提供一个水平旋转的扫描装置,来获得三维点云数据,结构复杂。
发明内容
本发明的目的在于提供一种可以方便快捷且准确的放置电极固定装置的工具,提高手术效率,改善手术效果。
本发明的技术方案是如下。
本发明的一个方面提供了一种微重力环境下的飞行装置,包括:
飞行器,其能够进行螺旋前进运动;所述螺旋前进运动包括按照指定速度、指定转轴的自转,以及沿所述转轴方向的平移运动;
至少一个距离测量装置,其设置于所述飞行器上;所述至少一个距离测量装置能够随所述飞行器自转扫描得到所述平面内的一个圆周上的二维点云数据,并且能够随所述飞行器平移运动获得所述飞行器周围的三维点云数据。
优选地,所述飞行装置包括一个距离测量装置,所述一个距离测量装置放置在以所述飞行器的所述转轴为法线的平面内的x或y正半轴上。
优选地,所述飞行装置包括两个距离测量装置,所述两个距离测量装置分别放置在以所述飞行器的所述转轴为法线的平面内的x和y正半轴上。
优选地,所述两个距离测量装置同时工作,并且能够通过数据融合提高测量精度。
优选地,所述飞行装置还包括实时定位装置,其能够实时确定所述飞行器在空间中的位置,并实时解算所述飞行器的姿态以确定距离测量装置的扫描方向。
优选地,所述距离测量装置为单线激光雷达。
优选地,所述距离测量装置为机器视觉传感器。
优选地,所述机器视觉传感器包括深度摄像头。
本发明的另一方面提供了一种使用根据以上技术方案中的微重力环境下的飞行装置的地图构建方法,包括如下步骤:
步骤S1,控制飞行器进行螺旋前进运动;
步骤S2,确定所述飞行器在空间中的位置;
步骤S3,确定所述飞行器在空间中的姿态;
步骤S4,计算距离测量装置的扫描方向;
步骤S5,收集距离测量装置反馈的距离信息;
步骤S6,建立点云数据,更新三维地图。
优选地,所述地图构建方法还包括如下步骤:
步骤S7,判断是否结束扫描地图,若判断为是则结束,若判断为否则转到步骤S1。
本发明通过组合空间飞行器的自转和平移构成螺旋前进的运动方式,实现单线激光的扫描操作。不需要为单线激光雷达提供额外的扫描装置,简化了结构。节省了飞行器的内部空间,可以用于携带更多的传感器和电池。
附图说明
图1是本发明的飞行装置的单线激光雷达分布示意图;
图2是图1中的单线激光雷达三维数据扫描原理图;
图3是根据本发明的飞行器运动控制总流程图。
具体实施方式
在微重力环境下,即使是很小的扭矩作用在飞行器上,只要作用时间足够长就可以让其按照指定速度、指定转轴自转。合理地在飞行器上布置一个或者多个单线激光雷达,控制飞行器稳定自转就可以扫描得到一个圆周上的二维点云数据。控制飞行器按照指定速度沿自转轴方向做平移运动,就可以获得飞行器周围的三维点云数据。再结合实时定位方法就可以达到构建三维地图的目的。
实施例1
本实施例提供了一种微重力环境下的飞行装置,如图1所示,该飞行装置包括:
飞行器,其能够进行螺旋前进运动;所述螺旋前进运动包括按照指定速度、指定转轴的自转,以及沿所述转轴方向的平移运动;
至少一个距离测量装置,其设置于所述飞行器上;所述至少一个距离测量装置能够随所述飞行器自转扫描得到所述平面内的一个圆周上的二维点云数据,并且能够随所述飞行器平移运动获得所述飞行器周围的三维点云数据。
在一优选的实施方式中,所述飞行装置包括一个距离测量装置,所述一个距离测量装置放置在以所述飞行器的所述转轴为法线的平面内的x或y正半轴上。在一更为优选的实施方式中,所述转轴与平面内的坐标系的z轴重合。
在一优选的实施方式中,所述飞行装置包括两个距离测量装置,所述两个距离测量装置分别放置在以所述飞行器的所述转轴为法线的平面内的x和y正半轴上。
在一优选的实施方式中,所述两个距离测量装置同时工作,并且能够通过数据融合提高测量精度。
在一优选的实施方式中,所述飞行装置还包括实时定位装置,其能够实时确定所述飞行器在空间中的位置,并实时解算所述飞行器的姿态以确定距离测量装置的扫描方向。
本领域技术人员能够理解,以上实施方式中的所述距离测量装置可以为现有技术中任何适用于微重力环境下使用的距离测量装置。并且,在一特别优选的实施方式中,所述距离测量装置为单线激光雷达。
在可选的实施方式中,所述距离测量装置还可以为机器视觉传感器,诸如基于深度摄像头的机器视觉传感器。
图1中示出了本发明中单线激光雷达的一种分布位置,其中在飞行器的x和y正半轴放置了两个激光雷达。实际上,一个激光雷达也是可以满足工作需求的。这里放置两个激光雷达的目的是为了提高系统的鲁棒性和数据的可靠性。两个激光雷达都可以工作时,通过数据融合可以一定程度上提高测量的精度。在其中一个激光雷达失效的情况下,仍然有一个激光雷达可以使用,保证系统的基本功能可以实现。为了进一步提高系统性能,只要能够满足系统对于安装尺寸和质量的要求,还可以安置更多的激光雷达。
图2中示出了在本实施例中采用单线激光雷达扫描三维数据的基本原理,飞行器以螺旋前进的运动方式足以采集其周围的地图信息。通过控制飞行器绕垂直于激光雷达确定的平面的法线方向进行自转,可以得到一个圆周上的二维点云数据。控制飞行器沿转轴方向前进,就可以进一步得到飞行器周围环境的三维点云数据。
实施例2
本发明的另一实施例提供了一种使用根据以上实施例中的微重力环境下的飞行装置的地图构建方法,图3为本发明中提及的单线激光雷达的地图构建方法的总流程图。根据本发明的地图构建方法首先控制飞行器按照指定的自转速度和前进速度进行螺旋前进运动;然后根据实时定位方法确定飞行器在空间中的位置,并实时解算飞行器的姿态以确定激光雷达的扫描方向;根据激光雷达反馈的距离信息实时更新三维点云数据;更新三维地图数据。
具体地,本实施例的地图构建方法包括如下步骤:
步骤S1,控制飞行器进行螺旋前进运动;
步骤S2,确定所述飞行器在空间中的位置;
步骤S3,确定所述飞行器在空间中的姿态;
步骤S4,计算距离测量装置的扫描方向;
步骤S5,收集距离测量装置反馈的距离信息;
步骤S6,建立点云数据,更新三维地图。
优选地,所述地图构建方法还包括如下步骤:
步骤S7,判断是否结束扫描地图,若判断为是则结束,若判断为否则转到步骤S1。
本领域技术人员能够理解,所述步骤S1中所述螺旋前进运动的方向可以根据飞行环境的具体情况确定,诸如按照机器人在空间站的活动路线。
本领域技术人员能够理解,所述步骤S2和S3中确定所述飞行器在空间中的位置和姿态可以采用现有技术中任何适用于微重力环境下的定位方法,相关现有技术在此一并引用,不做具体描述。
本发明充分利用了微重力环境的特点,设计了空间飞行器的单线激光雷达地图构建方法。这种方法不需要为激光雷达的扫描动作专门设计和安装支架,简化了结构的复杂度,节省了飞行器内部空间,使得飞行器可以携带更多的传感器和电池。更能够满足由于火箭的运载能力、飞行空间等诸多方面对飞行器尺寸和质量的限制。
本发明创造并不局限于上述实施方式,熟悉本领域的技术人员在不违背本发明精神的前提下还可作出等同变形或替换,这些等同的变型或替换均包含在本申请权利要求所限定的范围内。

Claims (10)

1.一种微重力环境下的飞行装置,包括:
飞行器,其能够进行螺旋前进运动;所述螺旋前进运动包括按照指定速度、指定转轴的自转,以及沿所述转轴方向的平移运动;
至少一个距离测量装置,其设置于所述飞行器上;所述至少一个距离测量装置能够随所述飞行器自转扫描得到所述平面内的一个圆周上的二维点云数据,并且能够随所述飞行器平移运动获得所述飞行器周围的三维点云数据。
2.根据权利要求1所述的一种微重力环境下的飞行装置,其特征在于,所述飞行装置包括一个距离测量装置,所述一个距离测量装置放置在以所述飞行器的所述转轴为法线的平面内的x或y正半轴上。
3.根据权利要求1所述的一种微重力环境下的飞行装置,其特征在于,所述飞行装置包括两个距离测量装置,所述两个距离测量装置分别放置在以所述飞行器的所述转轴为法线的平面内的x和y正半轴上。
4.根据权利要求3所述的一种微重力环境下的飞行装置,其特征在于,所述两个距离测量装置同时工作,并且能够通过数据融合提高测量精度。
5.根据权利要求1-4中任一项所述的微重力环境下的飞行装置,其特征在于,所述飞行装置还包括实时定位装置,其能够实时确定所述飞行器在空间中的位置,并实时解算所述飞行器的姿态以确定距离测量装置的扫描方向。
6.根据权利要求5所述的微重力环境下的飞行装置,其特征在于,所述距离测量装置为单线激光雷达。
7.根据权利要求5所述的微重力环境下的飞行装置,其特征在于,所述距离测量装置为机器视觉传感器。
8.根据权利要求7所述的微重力环境下的飞行装置,其特征在于,所述机器视觉传感器包括深度摄像头。
9.一种使用根据权利要求5-8中任一项所述的微重力环境下的飞行装置的地图构建方法,包括如下步骤:
步骤S1,控制飞行器进行螺旋前进运动;
步骤S2,确定所述飞行器在空间中的位置;
步骤S3,确定所述飞行器在空间中的姿态;
步骤S4,计算距离测量装置的扫描方向;
步骤S5,收集距离测量装置反馈的距离信息;
步骤S6,建立点云数据,更新三维地图。
10.根据权利要求9所述的地图构建方法,其特征在于,还包括如下步骤:
步骤S7,判断是否结束扫描地图,若判断为是则结束,若判断为否则转到步骤S1。
CN202110041091.3A 2021-01-13 2021-01-13 一种单线激光雷达的地图构建方法 Pending CN112946683A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110041091.3A CN112946683A (zh) 2021-01-13 2021-01-13 一种单线激光雷达的地图构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110041091.3A CN112946683A (zh) 2021-01-13 2021-01-13 一种单线激光雷达的地图构建方法

Publications (1)

Publication Number Publication Date
CN112946683A true CN112946683A (zh) 2021-06-11

Family

ID=76235196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110041091.3A Pending CN112946683A (zh) 2021-01-13 2021-01-13 一种单线激光雷达的地图构建方法

Country Status (1)

Country Link
CN (1) CN112946683A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015165266A1 (zh) * 2014-04-29 2015-11-05 百度在线网络技术(北京)有限公司 自主导航方法及系统和地图建模方法及系统
CN206804018U (zh) * 2017-04-13 2017-12-26 高域(北京)智能科技研究院有限公司 环境数据服务器、无人飞行器及定位系统
CN107990876A (zh) * 2017-11-20 2018-05-04 北京科技大学 基于无人飞行器的地下矿山采空区快速扫描装置及方法
US20190103032A1 (en) * 2017-10-03 2019-04-04 Topcon Corporation Unmanned aerial vehicle, data processing device, path selection device, processing method and processing program
CN110360986A (zh) * 2019-07-03 2019-10-22 航天东方红卫星有限公司 一种便携式星表局部地形测绘系统
CN111443359A (zh) * 2020-03-26 2020-07-24 达闼科技成都有限公司 定位方法、装置及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015165266A1 (zh) * 2014-04-29 2015-11-05 百度在线网络技术(北京)有限公司 自主导航方法及系统和地图建模方法及系统
CN206804018U (zh) * 2017-04-13 2017-12-26 高域(北京)智能科技研究院有限公司 环境数据服务器、无人飞行器及定位系统
US20190103032A1 (en) * 2017-10-03 2019-04-04 Topcon Corporation Unmanned aerial vehicle, data processing device, path selection device, processing method and processing program
CN107990876A (zh) * 2017-11-20 2018-05-04 北京科技大学 基于无人飞行器的地下矿山采空区快速扫描装置及方法
CN110360986A (zh) * 2019-07-03 2019-10-22 航天东方红卫星有限公司 一种便携式星表局部地形测绘系统
CN111443359A (zh) * 2020-03-26 2020-07-24 达闼科技成都有限公司 定位方法、装置及设备

Similar Documents

Publication Publication Date Title
CN113029117B (zh) 飞行传感器
CN110192122B (zh) 用于无人可移动平台上的雷达控制的系统和方法
CN105184776A (zh) 目标跟踪方法
CN112789672B (zh) 控制和导航系统、姿态优化、映射和定位技术
CN103477185A (zh) 用于确定对象表面的3d坐标的测量系统
JP2018013337A (ja) 飛行物体の誘導位置決め装置および方法
CN104180793A (zh) 一种用于数字城市建设的移动空间信息获取装置和方法
US10386857B2 (en) Sensor-centric path planning and control for robotic vehicles
CN110987021B (zh) 一种基于转台基准的惯性视觉相对姿态标定方法
US11069080B1 (en) Collaborative airborne object tracking systems and methods
CN106226780A (zh) 基于激光扫描雷达的多旋翼室内定位系统及实现方法
CN106005383A (zh) 一种井下巷道高精度三维模型扫描设备与方法
CN109031312A (zh) 适用于烟囱内部作业的飞行平台定位装置和定位方法
CN110770597A (zh) 旋转微波雷达的地形预测方法、装置、系统和无人机
CN107102653B (zh) 一种控制无人机的挂载设备对地角度的装置和方法
JP2021117502A (ja) 着陸制御装置、着陸制御方法およびプログラム。
CN104865846A (zh) 组合自主导航系统的地面半物理仿真平台
CN113138397A (zh) 一种无人机避障装置及无人机
CN112363176A (zh) 电梯井道巡检及建模方法、装置和巡检建模系统
CN110023716A (zh) 用于控制无人飞行器的方法和设备
CN110865636A (zh) 基于Docker容器的云机器人导航系统及其工作方法
CN105372671A (zh) 一种基于无人机的电力线三维重建系统
CN112946683A (zh) 一种单线激光雷达的地图构建方法
CN116182743A (zh) 基于激光雷达的煤矿井下掘进巷道轮廓标示系统
CN112986958A (zh) 基于高密度回波分析的大范围激光扫描装置及其控制系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210611

WD01 Invention patent application deemed withdrawn after publication