CN107102653B - 一种控制无人机的挂载设备对地角度的装置和方法 - Google Patents

一种控制无人机的挂载设备对地角度的装置和方法 Download PDF

Info

Publication number
CN107102653B
CN107102653B CN201710422974.2A CN201710422974A CN107102653B CN 107102653 B CN107102653 B CN 107102653B CN 201710422974 A CN201710422974 A CN 201710422974A CN 107102653 B CN107102653 B CN 107102653B
Authority
CN
China
Prior art keywords
aerial vehicle
unmanned aerial
motion information
angle
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710422974.2A
Other languages
English (en)
Other versions
CN107102653A (zh
Inventor
不公告发明人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goertek Inc
Original Assignee
Goertek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goertek Inc filed Critical Goertek Inc
Priority to CN201710422974.2A priority Critical patent/CN107102653B/zh
Publication of CN107102653A publication Critical patent/CN107102653A/zh
Application granted granted Critical
Publication of CN107102653B publication Critical patent/CN107102653B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback

Abstract

本发明公开了一种控制无人机的挂载设备对地角度的装置和方法。该装置包括用于安装挂载设备的搭载平台、控制器、惯性测量模组和旋转驱动模组;惯性测量模组安装在挂载设备上,实时获取挂载设备的运动信息,并发送给控制器;控制器安装在搭载平台上,实时获取无人机的运动信息和惯性测量模组发送的挂载设备的运动信息,并根据两种运动信息生成驱动控制信息;搭载平台安装在旋转驱动模组上,旋转驱动模组根据所述驱动控制信息驱动搭载平台三维转动。本发明的技术方案能够根据无人机的运动状态和搭载设备的运动状态对搭载平台进行旋转控制,使安装在搭载平台上的挂载设备能够在无人机的各种运动状态下相对地面保持稳定的对地角度,辅助完成自稳控制。

Description

一种控制无人机的挂载设备对地角度的装置和方法
技术领域
本发明涉及自动控制技术领域,特别涉及一种控制无人机的挂载设备对地角度的装置和方法。
背景技术
对无人机的定位而言,在空旷室外环境下,一般可以使用高精度GPS(GlobalPositioning System,全球定位系统)和惯性导航方式获取稳定、高精度的位置和速度信号;而对于室内或者室外有高物遮挡情况下,GPS信号较弱,不能利用GPS进行定位,通常利用如对地的红外、超声波、雷达或者光流作为辅助传感器被组合引入到无人机系统,无人机系统通过采样获得对地高度、速度信息与无人机本身的惯性传感器进行数据融合,获取较为精确的室内三维空间定位。
目前,室内定位方案无论是采用哪种组合定位方案,所集成的诸如红外、光流、超声波等辅助传感器都是采用固定方式连接在无人机底部,无人机在产生高度或者水平速度变化时,通过辅助传感器获取高度、速度信息。但是在无人机并没有产生速度或者位移变化的情况下,只要无人机的姿态变化,辅助传感器的朝向会跟随变化,进而辅助传感器的输出也会跟随变化,导致辅助传感器检测量会把随姿态变化而产生的变化耦合至实际采样的速度、位移数据中去。比如光流会因为无人机横滚和俯仰的速度不同而产生不同速度信息,红外和超声波测距模块会因为无人机横滚和俯仰角度不同产生不同的高度信息。
现有方案大多是根据无人机内部通过姿态信息,对辅助传感器数据进行相应算法处理,补偿或纠正因姿态变化而导致的辅助传感器误差,但是在大倾角情况下,辅助传感器会因为无人机倾角的存在而使得视野角度向外延伸而无法工作在额定的检测距离,导致在有较大倾角或者来回机动运动状态下,无人机无法获取精确定位数据。
发明内容
基于本发明的一个目的,本发明提供了一种控制无人机的挂载设备对地角度的装置和方法,以解决在有较大倾角或者来回机动运动状态下,无人机无法获取精确定位数据的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一方面,本发明提供了一种控制无人机的挂载设备对地角度的装置,包括:用于安装挂载设备的搭载平台、控制器、惯性测量模组和旋转驱动模组;
惯性测量模组安装在挂载设备上,实时获取挂载设备的运动信息,并发送给控制器;
控制器安装在搭载平台上,实时获取无人机的运动信息和惯性测量模组发送的挂载设备的运动信息,并根据两种运动信息生成驱动控制信息;搭载平台安装在旋转驱动模组上,旋转驱动模组根据驱动控制信息驱动搭载平台三维转动。
另一方面,本发明提供了一种控制无人机的挂载设备对地角度的方法,包括:
实时获取无人机的运动信息,并利用安装在挂载设备上的惯性测量模组实时获取挂载设备的运动信息;
根据无人机的运动信息和挂载设备的运动信息生成驱动控制信息,使旋转驱动模组根据驱动控制信息驱动安装在其上的搭载平台三维转动。
本发明的有益效果是:本发明在搭载平台上安装设置有惯性测量模组的挂载设备和控制器,分别利用惯性测量模组获取挂载设备的运动信息,利用控制器获取无人机的运动信息,控制器根据两种运动信息生成驱动控制信息,使旋转驱动模组根据驱动控制信息驱动搭载平台旋转,带动搭载平台上的挂载设备旋转,避免搭载平台随无人机的姿态变化而发生对地角度的变化,使安装在搭载平台上的挂载设备能够在无人机的各种运动状态下相对地面保持稳定的对地角度,辅助完成自稳控制,以对无人机精确定位。
附图说明
图1为本发明实施例一提供的控制无人机的辅助传感器模组对地角度的装置立体结构示意图;
图2为图1的俯视图;
图3为本发明实施例一提供的控制无人机的辅助传感器模组对地角度的装置的控制流程图;
图4为本发明实施例二提供的控制无人机的挂载设备对地角度的方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
针对现有方案中,辅助传感器模组因为无人机倾角的存在而使得视野角度向外延伸而无法工作在额定的检测距离,导致在有较大倾角或者来回机动运动状态下,无人机无法获取精确定位数据的情况,本发明立足于实际应用场景和辅助传感器的特性,着重解决无人机在运动状态,特别是剧烈运动状态、大倾角运动下,无人机辅助传感器相对地球坐标的朝向问题。
本发明的整体设计构思是:将各类对地感应方向有一定角度限制的辅助传感器模组安装在一个搭载平台上,通过机械电子结构控制搭载平台旋转,使得辅助传感器模组在无人机的各种运动状态下相对地面保持稳定的对地角度。
实施例一
本实施例提供了一种控制无人机的挂载设备对地角度的装置,该装置为具有增稳作用的械电子机构,包括用于安装挂载设备的搭载平台、控制器、惯性测量模组和旋转驱动模组;
惯性测量模组安装在挂载设备上,实时获取挂载设备的运动信息,并发送给控制器;
控制器安装在搭载平台上,实时获取无人机的运动信息和惯性测量模组发送的挂载设备的运动信息,并根据两种运动信息生成驱动控制信息;
搭载平台安装在旋转驱动模组上,旋转驱动模组根据驱动控制信息驱动搭载平台三维转动。
其中,无人机的运动信息包括但不局限于对地角度,如右手坐标系或东北天坐标系中的角度,角速度;挂载设备的运动信息包括但不局限于对地角度,如右手坐标系或东北天坐标系中的角度,角速度;驱动控制信息包括但不局限于转动方向、转动力矩。
本实施例在搭载平台上安装设置有惯性测量模组的挂载设备和控制器,分别利用惯性测量模组获取挂载设备的运动信息,控制器获取无人机的运动信息,控制器根据两种运动信息生成驱动控制信息,使旋转驱动模组根据驱动控制信息驱动搭载平台旋转,带动搭载平台上的挂载设备旋转,避免搭载平台随无人机的姿态变化而发生对地角度的变化,使挂载设备能够在无人机的各种运动状态下相对地面保持稳定的对地角度,以对无人机精确定位。
示例性的,控制器根据无人机的运动信息和挂载设备的运动信息计算搭载平台的当前对地坐标角度和当前运行角速度,比较当前对地坐标角度和参考角度,得到补偿角度,根据补偿角度和当前运行角速度得到驱动控制信息;其中,参考角度是指挂载设备需要维持的角度;一般地,驱动控制信息包括旋转驱动模组当前所需的角速度和旋转方向。
本实施例的旋转驱动模组包括第一旋转驱动组件,第一旋转驱动组件包括第一电机和第一驱动轴;搭载平台固定在第一驱动轴上,第一电机驱动第一驱动轴带动搭载平台沿着第一方向旋转,控制挂载设备旋转,以使其维持所需的对地角度。
为进一步保证挂载设备对地角度的准确性和稳定性,该旋转驱动模组还包括第二旋转驱动组件,第二旋转驱动组件包括第二电机、第二驱动轴和机械臂;机械臂分别固定在第二驱动轴和第一驱动轴上,第二电机驱动第二驱动轴带动机械臂、第一电机和搭载平台沿着第二方向同步旋转;其中,第一方向和第二方向成预设角度,优选地,第一电机和第二电机的轴线垂直分布,第一方向与第二方向相互垂直。
为详细说明本实施例的装置各个部件的连接关系,以及装置对搭载平台的控制过程,下面通过一个具体实现方案进行说明。
在本具体实现方案中,挂载设备为辅助传感器模组,示例性地为对地感应方向有一定角度限制的各类传感器,例如为集成光学传感器(如红外线传感器、光流传感器)和/或声学传感器(超声波传感器)的传感器模组;惯性测量模组包括但不局限于陀螺仪、加速度传感器等。
图1为本实施例提供的控制无人机的传感器模组对地角度的装置立体结构示意图,图2为图1的俯视图;如图1和图2所示,旋转驱动模组包括第一旋转驱动组件和第二旋转驱动组件;
第一旋转驱动组件包括第一电机11和第一驱动轴12;搭载平台2固定在第一驱动轴12上,第一电机11驱动第一驱动轴12带动搭载平台2沿着X轴方向旋转,控制辅助传感器模组3旋转;
第二旋转驱动组件包括第二电机41、第二驱动轴42和机械臂43,第一电机11和第二电机41的轴线垂直分布,机械臂43为U型机械臂,U型机械臂43中轴线的外侧壁位置固定在第二驱动轴42上,U型机械臂43两端口处通过轴承固定在第一驱动轴12上,第二电机41驱动第二驱动轴42带动U型机械臂43、第一电机11和搭载平台2沿着Y轴方向同步旋转,控制辅助传感器模组3旋转。
本具体实现方案通过使第一电机11和第二电机41的轴线垂直分布,即以第一电机11的轴线为X轴,第二电机41的轴线为Y轴建立直角坐标系,使第二电机41控制整个装置同步地沿着Y轴旋转,第一电机11控制搭载平台2沿着X轴旋转,利用两个电机控制搭载平台进行不同的运动,保证安装在搭载平台上的辅助传感器模组维特定的方向角,辅助传感器模组的自稳控制,以对无人机精确定位。
其中,图1所示的装置可以通过第二电机41的底部连接到无人机的底部,以将辅助传感器模组3挂载到无人机上。
需要说明的是,图1或图2仅示例性示出构成旋转驱动模组的部件,及其连接关系,只要部件能够完成旋转驱动模组的功能即可,不限定其部件数量、尺寸和形状;例如搭载平台2不限于图1或图2中示出的平板状,可以为具有凹槽结构的底座;机械臂不限于U型机械臂,可以为方框形等其他形状。
图3为本实施例提供的控制无人机的传感器模组对地角度的装置的控制流程图,参考图1-3,在本具体实现方案中,对搭载平台的旋转控制过程如下:
步骤31:对装置进行上电初始化。
在本步骤过程中,能够完成控制所需的各项参数的初始化,如初始化参考角度,本实施例中的参考角度可以为一固定数值,也可以根据需求实时进行调整。
步骤32:获取无人机的运动信息。
利用装置的控制器5获取无人机的运动信息,具体的获取方式不限定,示例性地,控制器5可以与无人机的CPU处理器无线连接,通过与无人机的CPU通讯,获得所需的无人机的运动信息。
其中,本实施例中的运动信息一般包括高度信息、方向角信息等。
步骤33:获取辅助传感器模组的运动信息。
利用装置的惯性测量模组6获取辅助传感器模组3的运动信息,该运动信息一般包括高度信息、方向角信息等。其中,惯性测量模组3和控制器5同步地、实时地获取辅助传感器模组的运动信息和无人机的运动信息。
步骤34:生成驱动控制信息,控制第一电机11和第二电机41的旋转。
在本步骤中,控制器5根据无人机的运动信息和辅助传感器模组的运动信息估算搭载平台2的当前对地坐标角度和当前运行角速度,将当前对地坐标角度和参考角度进行比较,得到补偿角度;根据补偿角度和当前运行角速度计算得到第一电机11和第二电机41当前所需的角速度和旋转方向,驱动第一电机11和第二电机41按照计算所得的角速度和旋转方向工作,使搭载平台进行相应方向和角度旋转,避免搭载平台上的辅助传感器模组不随无人机的姿态变化而发生对地角度的变化。
基于上述步骤31-34实现了对搭载平台的控制,保证安装在搭载平台上的辅助传感器模组维特定的方向角,进而辅助传感器模组的自稳控制。
实施例二
本实施例提供了一种控制无人机的挂载设备对地角度的方法。
图4为本实施例提供的控制无人机的挂载设备对地角度的方法流程图,如图4所示,该方法包括:
S400:实时获取无人机的运动信息,并利用安装在挂载设备上的惯性测量模组实时获取挂载设备的运动信息。
由于本实施例中的惯性测量模组可能包括多种传感器,如陀螺仪、加速度传感器等,因此在利用安装在挂载设备上的惯性测量模组实时获取挂载设备的运动信息时,需要根据传感器融合算法计算挂载设备的运动信息;其中,挂载设备的运动信息包括但不局限于对地角度,如右手坐标系或东北天坐标系中的角度,角速度。
S410:根据无人机的运动信息和挂载设备的运动信息生成驱动控制信息,使旋转驱动模组根据所述驱动控制信息驱动安装在其上的搭载平台旋转。
本步骤根据无人机的运动信息和挂载设备的运动信息预估挂载平台由于无人机运动在下一时刻可能产生的运动状态,通过负反馈方式生成驱动控制信息进,使旋转驱动模组根据该驱动控制信息驱动安装在其上的搭载平台进行三维转动。
其中,无人机的运动信息包括但不局限于相对地角度,如右手坐标系或东北天坐标系中的角度,角速度;驱动控制信息包括但不局限于转动方向、转动力矩。
本实施例实时获取无人机的运动信息和挂载设备的运动信息,根据两种运动信息生成驱动控制信息,使旋转驱动模组根据所述驱动控制信息驱动安装在其上的搭载平台旋转,使挂载设备能够在无人机的各种运动状态下相对地面保持稳定的对地角度。
示例性地,通过下述方式生成驱动控制信息:
根据无人机的运动信息和挂载设备的运动信息计算搭载平台当前对地坐标角度和当前运行角速度;
比较当前对地坐标角度和参考角度,得到补偿角度;
根据补偿角度和当前运行角速度得到所述驱动控制信息,驱动控制信息包括旋转驱动模组当前所需的角速度和旋转方向。
为了便于清楚描述本发明实施例的技术方案,在发明的实施例中,采用了“第一”、“第二”等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人员可以理解“第一”、“第二”等字样并不对数量和执行次序进行限定。
以上所述,仅为本发明的具体实施方式,在本发明的上述教导下,本领域技术人员可以在上述实施例的基础上进行其他的改进或变形。本领域技术人员应该明白,上述的具体描述只是更好的解释本发明的目的,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

1.一种控制无人机的挂载设备对地角度的装置,其特征在于,包括:用于安装挂载设备的搭载平台、控制器、惯性测量模组和旋转驱动模组;
所述惯性测量模组安装在挂载设备上,实时获取挂载设备的运动信息,并发送给控制器;
所述控制器安装在搭载平台上,实时获取无人机的运动信息和惯性测量模组发送的挂载设备的运动信息,并根据两种运动信息生成驱动控制信息;
所述搭载平台安装在旋转驱动模组上,旋转驱动模组根据所述驱动控制信息驱动搭载平台三维转动,使所述挂载设备在所述无人机的各种运动状态下相对地面保持稳定的对地角度;
其中所述控制器根据无人机的运动信息和挂载设备的运动信息计算所述搭载平台当前对地坐标角度和当前运行角速度,比较当前对地坐标角度和参考角度,得到补偿角度,根据补偿角度和当前运行角速度得到所述驱动控制信息。
2.根据权利要求1所述的装置,其特征在于,所述旋转驱动模组包括第一旋转驱动组件,所述第一旋转驱动组件包括第一电机和第一驱动轴;
所述搭载平台固定在第一驱动轴上,所述第一电机驱动第一驱动轴带动所述搭载平台沿着第一方向旋转。
3.根据权利要求2所述的装置,其特征在于,所述旋转驱动模组还包括第二旋转驱动组件,所述第二旋转驱动组件包括第二电机、第二驱动轴和机械臂;
所述机械臂分别固定在第二驱动轴和第一驱动轴上,所述第二电机驱动第二驱动轴带动所述机械臂、第一电机和搭载平台沿着第二方向同步旋转。
4.根据权利要求3所述的装置,其特征在于,所述机械臂为U型机械臂,U型机械臂中轴线的外侧壁位置固定在第二驱动轴上,所述U型机械臂两端口处通过轴承固定在第一驱动轴上,所述第二电机驱动第二驱动轴带动U型机械臂、第一电机和搭载平台沿着第二方向同步旋转。
5.根据权利要求4所述的装置,其特征在于,所述第一电机和所述第二电机的轴线垂直分布,所述第一方向与所述第二方向相互垂直。
6.根据权利要求4所述的装置,其特征在于,该装置通过第二电机连接到无人机的底部。
7.根据权利要求1所述的装置,其特征在于所述驱动控制信息包括旋转驱动模组当前所需的角速度和旋转方向。
8.根据权利要求1所述的装置,其特征在于,所述挂载设备包括辅助传感器模组。
9.一种控制无人机的挂载设备对地角度的方法,其特征在于,包括:
实时获取无人机的运动信息,并利用安装在挂载设备上的惯性测量模组实时获取挂载设备的运动信息;
根据无人机的运动信息和挂载设备的运动信息生成驱动控制信息,使旋转驱动模组根据所述驱动控制信息驱动安装在其上的搭载平台三维转动,使所述挂载设备在所述无人机的各种运动状态下相对地面保持稳定的对地角度;
其中,根据无人机的运动信息和挂载设备的运动信息生成驱动控制信息包括:
根据无人机的运动信息和挂载设备的运动信息计算所述搭载平台当前对地坐标角度和当前运行角速度;
比较当前对地坐标角度和参考角度,得到补偿角度;
根据补偿角度和当前运行角速度得到所述驱动控制信息。
10.根据权利要求9所述的方法,其特征在于,
所述驱动控制信息包括旋转驱动模组当前所需的角速度和旋转方向。
CN201710422974.2A 2017-06-07 2017-06-07 一种控制无人机的挂载设备对地角度的装置和方法 Active CN107102653B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710422974.2A CN107102653B (zh) 2017-06-07 2017-06-07 一种控制无人机的挂载设备对地角度的装置和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710422974.2A CN107102653B (zh) 2017-06-07 2017-06-07 一种控制无人机的挂载设备对地角度的装置和方法

Publications (2)

Publication Number Publication Date
CN107102653A CN107102653A (zh) 2017-08-29
CN107102653B true CN107102653B (zh) 2020-11-27

Family

ID=59660809

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710422974.2A Active CN107102653B (zh) 2017-06-07 2017-06-07 一种控制无人机的挂载设备对地角度的装置和方法

Country Status (1)

Country Link
CN (1) CN107102653B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110262540A (zh) * 2018-03-12 2019-09-20 杭州海康机器人技术有限公司 对飞行器进行飞行控制的方法和装置
CN110337622A (zh) * 2018-08-31 2019-10-15 深圳市大疆创新科技有限公司 竖向增稳装置控制方法、竖向增稳装置及图像获取设备
CN109981947A (zh) * 2019-03-14 2019-07-05 广州市红鹏直升机遥感科技有限公司 航拍设备的镜头组的角度补偿方法及装置
CN114842056A (zh) * 2022-04-19 2022-08-02 深圳鳍源科技有限公司 多机位第一机器视角追随方法、系统、装置及设备
CN116389695B (zh) * 2023-06-06 2023-09-01 深圳市城市公共安全技术研究院有限公司 建筑工地监控方法、装置、建筑工地巡查设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923821A1 (de) * 1999-05-19 2000-11-23 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur Lageerfassung einer mit einem Laser-Scanner abzutastenden Fläche
WO2004025947A2 (en) * 2002-09-13 2004-03-25 Irobot Corporation A navigational control system for a robotic device
WO2017078809A1 (en) * 2015-11-04 2017-05-11 Innovative Solutions & Support, Inc. Precision operator for an aircraft autothrottle or autopilot system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013033954A1 (zh) * 2011-09-09 2013-03-14 深圳市大疆创新科技有限公司 陀螺式动态自平衡云台
CN105042299B (zh) * 2015-04-22 2017-05-31 零度智控(北京)智能科技有限公司 无人飞行器机载云台
CN205560201U (zh) * 2016-01-26 2016-09-07 深圳市大疆创新科技有限公司 云台及使用该云台的拍摄设备和无人飞行器
CN206202708U (zh) * 2016-08-30 2017-05-31 哈瓦国际航空技术(深圳)有限公司 一种无人机用云台
CN206136078U (zh) * 2016-08-31 2017-04-26 北京臻迪科技股份有限公司 一种云台相机系统及无人机
CN106681369B (zh) * 2016-12-01 2019-10-08 广州亿航智能技术有限公司 一种云台姿态控制方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19923821A1 (de) * 1999-05-19 2000-11-23 Zeiss Carl Jena Gmbh Verfahren und Anordnung zur Lageerfassung einer mit einem Laser-Scanner abzutastenden Fläche
WO2004025947A2 (en) * 2002-09-13 2004-03-25 Irobot Corporation A navigational control system for a robotic device
WO2017078809A1 (en) * 2015-11-04 2017-05-11 Innovative Solutions & Support, Inc. Precision operator for an aircraft autothrottle or autopilot system

Also Published As

Publication number Publication date
CN107102653A (zh) 2017-08-29

Similar Documents

Publication Publication Date Title
CN107102653B (zh) 一种控制无人机的挂载设备对地角度的装置和方法
CN107167141B (zh) 基于双一线激光雷达的机器人自主导航系统
CN111045438B (zh) 一种船载自稳平台及其控制系统和方法
KR20200031165A (ko) 내비게이션 차트 구성 방법, 장애물 회피 방법 및 장치, 단말기, 무인 항공기
CN202452059U (zh) 陀螺稳定云台
WO2020103049A1 (zh) 旋转微波雷达的地形预测方法、装置、系统和无人机
Wenzel et al. Low-cost visual tracking of a landing place and hovering flight control with a microcontroller
CN103792957B (zh) 一种轻型二自由度相机稳定平台装置
US20130215433A1 (en) Hover cmm
CN106292741A (zh) 一种基于无刷电机的移动机器人云台系统
CN203825466U (zh) 一种基于机载传感器的小型四旋翼飞行器控制系统
CN105841698B (zh) 一种无需调零的auv舵角精确实时测量系统
US20190185304A1 (en) Collision avoidance assistance system for movable work platforms
KR20140144921A (ko) 가상현실을 이용한 무인 자동차의 자율 주행 시뮬레이션 시스템
CN108759822B (zh) 一种移动机器人3d定位系统
WO2021037047A1 (zh) 一种飞行器的偏航角修正方法、装置及飞行器
CN106602263A (zh) 基于组合导航构建的捷联式高精度稳定平台系统
Karam et al. Integrating a low-cost mems imu into a laser-based slam for indoor mobile mapping
WO2020062356A1 (zh) 控制方法、控制装置、无人飞行器的控制终端
CN108051821B (zh) 一种用于洞穴三维建模的飞行器及建模方法
CN111251271B (zh) 一种旋转激光雷达及室内地图构建和定位的slam机器人
CN109521785A (zh) 一种随身拍智能旋翼飞行器系统
CN111258324A (zh) 多旋翼无人机控制方法、装置、多旋翼无人机及存储介质
Høglund Autonomous inspection of wind turbines and buildings using an UAV
CN112882498B (zh) 具有抑制图像旋转功能的三轴光电搜索跟踪装置及方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant