CN110358961B - 一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法 - Google Patents

一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法 Download PDF

Info

Publication number
CN110358961B
CN110358961B CN201910639852.8A CN201910639852A CN110358961B CN 110358961 B CN110358961 B CN 110358961B CN 201910639852 A CN201910639852 A CN 201910639852A CN 110358961 B CN110358961 B CN 110358961B
Authority
CN
China
Prior art keywords
powder
temperature
hard alloy
heating
keeping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910639852.8A
Other languages
English (en)
Other versions
CN110358961A (zh
Inventor
刘雪梅
冯浩
宋晓艳
侯超
吕皓
王海滨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201910639852.8A priority Critical patent/CN110358961B/zh
Publication of CN110358961A publication Critical patent/CN110358961A/zh
Application granted granted Critical
Publication of CN110358961B publication Critical patent/CN110358961B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/102Metallic powder coated with organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • B22F1/103Metallic powder containing lubricating or binding agents; Metallic powder containing organic material containing an organic binding agent comprising a mixture of, or obtained by reaction of, two or more components other than a solvent or a lubricating agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/067Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds comprising a particular metallic binder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种平均晶粒尺寸大于15μm WC‑Co硬质合金的制备方法,属于块体材料制备领域。以粗颗粒WC粉末为原料,经过过筛分级后与一定比例的PEG和扩散搅拌混合,经干燥、压制制备WC冷压坯体;将冷压坯体直接进行不同质量Co粉涂覆和压实,置于低压烧结炉内进行烧结和冷却,获得WC晶粒尺寸大于15μm的WC‑Co硬质合金材料;或将冷压坯体进行与烧结,制备出多孔碳化物;进而将多孔碳化物进行不同质量Co粉涂覆压实后,进行低压烧结,制备出WC晶粒尺寸大于15μm、不同Co含量的硬质合金材料。

Description

一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法
技术领域
本发明属于块体材料制备领域,具体涉及一种平均晶粒尺寸大于15μm的硬质合金制备方法。
技术背景
WC-Co硬质合金是由脆性的WC相和Co粘结相组成的复合材料,因具有高硬度、高耐磨性以及良好的断裂强度和冲击韧性等优良属性而广泛应用于切削加工、矿产开采、隧道挖掘等过程中耐磨部件的使用。随着矿产、石油等开采深度的增加,对制备耐磨工模具的硬质合金材料的韧性提出了更高的要求,而增大WC晶粒尺寸是提高合金韧性的重要方法之一。目前,研究者通过改进硬质合金制备工艺制备大晶粒尺寸的硬质合金,如采用轻度球磨法、化学包覆法以及纳米溶解法等以降低粗颗粒原料中WC晶粒的破碎;采用增加烧结温度的方法促进WC晶粒长大等,已制备出WC晶粒尺寸大于10μm的硬质合金。然而,采用上述制备方法存在如下问题:(1)仅依靠调整硬质合金制备工艺,WC晶粒尺寸长大有限;(2)球磨时间过短、烧结温度过高或保温时间过长,易于造成Co相分布不均匀或过热过烧出现孔洞或缺碳相,严重影响了合金的力学性能。
本申请的发明人在大量实验探索研究的基础上,开发出一种针对大晶粒尺寸硬质合金制备的方法。应用本技术制备晶粒尺寸大于15μm的WC-Co硬质合金,具有基于现有硬质合金制备的原料和设备、不增加成本、制备过程易于控制等特点。
发明内容:
本发明针对大晶粒尺寸WC-Co硬质合金制备难题,提供一种制备过程易于控制的、WC晶粒尺寸大于15μm的WC-Co硬质合金的制备方法。
为实现上述目的,本方案的特征在于,包含以下步骤:
(1)将平均颗粒尺寸为21.8~23.5μm的WC粉末为原料,利用目数为500~800目的不锈钢筛子对粉末进行筛选,去除原料粉中颗粒度极小和极大粉末,得到粒径分布均匀的WC粉末;
(2)将筛选出来的WC粉末和一定量的PEG和扩散油形成的混合液进行混合搅拌至均匀状态,每100g WC粉末对应10ml混合液,混合液中PEG和扩散油的体积比为9~10:1;
(3)将与PEG和扩散油混合后的WC粉末进行干燥,如置入干燥箱中干燥20~30min,干燥温度为80~100℃;
(4)将干燥好的粉末进行压制成型,压力为300~350MPa,保持不低于3s的时间,获得具有一定强度的WC粉末冷压坯体;
(5)根据设计WC-Co硬质合金的Co含量要求,在碳化钨粉末冷压坯体的上下表面进行Co粉铺覆并压实,置入耐高温的器皿中,直接进行低压烧结,具体烧结工艺为:以4℃/min的速度从室温升温200℃~300℃,保温30min~60min,排出粉末中吸附的气体;继续升温至450℃~500℃,通入氢气,保温30~90min,保证PEG和扩散油完全排出;继续依次升高至800℃~850℃和1230℃~1250℃,并分别在800℃~850℃和1230℃~1250℃下保温30min~60min,保证合金温度分布均匀;再以2℃/min的升温速率加热至1450~1500℃,保温30min后通入压力为6MPa(即保证反应容器内的压力为6MPa)的纯氩气继续保温60~90min,保证Co相分布均匀和合金的致密化;以2℃/min的降温速率降温至1000℃,然后随炉冷却至室温并停止氩气通入,制备出平均晶粒尺寸大于15μm、不同钴含量的WC-Co硬质合金;
或:将步骤(4)碳化钨粉末冷压坯体进行预烧结;预烧结的具体工艺为:以4℃/min的速度从室温升至200℃~300℃,保温30min~60min,排出粉末中吸附的气体;继续升温至450℃~500℃,通入氢气,保温60~90min,保证PEG和扩散油完全排出;以相同的升温速率升至1450~1500℃保温30min,随炉冷却至室温,制备出多孔碳化钨;根据设计WC-Co硬质合金的Co含量要求,将多孔碳化钨进行Co粉涂覆并压实,并置入耐高温的器皿中,进行低压烧结,具体烧结工艺为:以4℃/min的速度从室温升温至1230℃~1250℃,通入氢气,保温30min~60min;再以2℃/min的升温速率加热至1450~1500℃,保温30min后通入6MPa的纯氩气继续保温30~60min,保证Co相分布均匀和合金的致密化;以2℃/min的降温速率降温至1000℃,然后随炉冷却至室温后停止通入氩气,制备出平均晶粒尺寸大于15μm、不同钴含量的WC-Co硬质合金。
本发明的技术优势在于:
1.本实验先对超粗颗粒WC粉末进行筛分,保证原料粉末颗粒度均匀,有助于获得均匀性好、孔隙分布均匀且连通性好的压坯;搅拌混合保证了压坯中WC颗粒内WC晶粒不发生破碎,原始WC晶粒尺寸增大有助于制备出大晶粒尺寸的硬质合金材料;
2.实验采用PEG和扩散油作为粘结和润滑剂,两者的配比及其与WC粉末比例的严格控制能够保证粉末颗粒的流动性、压坯成形的均匀性和多孔WC的强度;与预烧结/烧结工艺配合,保证PEG和扩散油能够充分分解挥发,不引入杂相,从源头上控制了合金的纯净度;
3.Co粉末涂覆和压实保证了Co粉与WC有很好的接触,在较高温度下易于形成共晶合金,促进Co相流动性的增加,获得均匀分布的WC-Co硬质合金材料;
4.本实验预处理和烧结工艺经过严格设计。分阶段加热一方面保证PEG和扩散油去除完全,另一方面确保升温和降温过程中合金内温度分布均匀;最终保温温度接近Co相合金的熔点附近,保证Co相与WC进行充分接触,进而形成WC-Co共晶组织,形成液体,依靠毛细管力进入多孔WC内;在保温过程中通入氩气,保证合金材料的致密性和防止Co相的挥发消耗,保证Co含量与设计合金一致;温度、保温时间和充气压力的配合,保证了Co相充满WC骨架、WC晶粒的充分长大且不发生过热过烧和形成缺陷;
5.本发明制备的超粗晶硬质合金具有致密性好,晶粒尺寸大,且使用硬质合金通用设备、成本低廉、操作可控性高、适用于产业化生产等特点,为一种含大晶粒硬质合金的全新制备方法。
附图说明
图1为实施例1、实施例2和实施例3中使用的经过筛选的WC粉末的SEM图谱;
图2为施例1得到的块体材料显微组织形貌;
图3为施例1得到的块体材料晶粒统计图;
图4为施例2得到的块体材料显微组织形貌;
图5为施例2得到的块体材料晶粒统计图;
图6为施例3得到的块体材料显微组织形貌;
图7为施例3得到的块体材料晶粒统计图。
具体实施方式
以下实施例进一步解释了本发明,但本发明并不限于以下实施例。
所有实施例中均以平均颗粒尺寸为22.5~25μm的WC粉末为原料,过500目筛,过筛后粉末的SEM图如图1所示;Co粉的平均粒径为0.6~0.65μm。
实施例1:目标是制备WC-15wt.%Co硬质合金块体材料。将过500目筛后的碳化钨粉,与配制PEG和扩散油体积比例为9:1的混合液进行混合,每100g WC粉末对应10ml混合液,干燥30分钟后,在300MPa的压力下(保持10s)进行冷压,在冷压压坯的上下表面进行Co粉铺覆并压实后,置于坩锅中,放入低压烧结炉内进行烧结。以4℃/min的速度从室温升温200℃,保温30min,排出粉末中吸附的气体;继续升温至450℃,通入氢气,保温30min,保证PEG和扩散油完全排出;依次继续升高至800℃和1230℃分别保温30min,保证合金温度分布均匀;以2℃/min的升温速率从1230℃升至1450℃,保温30min后通入6MPa的纯氩气继续保温60min;再以2℃/min的降温速率降温至1000℃,然后随炉冷却至室温制备出硬质合金。制备合金的微观组织及晶粒尺寸分布分别见图2和图3所示。
实施例2:目标是制备WC-10wt.%Co硬质合金块体材料。将过500目筛后的碳化钨粉,与配制PEG和扩散油比例为9:1的混合液进行混合,干燥30分钟后,在300MPa的压力下(保持10s)进行冷压,将冷压压坯置于低压烧结系统中进行预烧结,具体工艺是:以4℃/min的速度从室温升至270℃,保温40min;继续升温至450℃,通入氢气,保温60min;以相同的升温速率升至1450℃保温30min,随炉冷却至室温,制备出多孔碳化钨;在多孔碳化钨上下表面进行Co粉铺覆并压实后,置于坩埚中在低压烧结炉内进行烧结,其具体工艺为:以4℃/min的速度从室温升温至1230℃,通入氢气并保温60min;以2℃/min的升温速率加热至1480℃,保温30min后通入6MPa的纯氩气继续保温40min;以2℃/min的降温速率降温至1000℃,然后随炉冷却至室温后停止通入氩气,制备出晶粒粗大的硬质合金,其微观组织和晶粒尺寸分布如图4和5所示。
实施例3:目标是制备WC-8wt.%Co硬质合金块体材料。将过800目筛后的碳化钨粉,与配制PEG和扩散油比例为10:1的混合液进行混合,干燥30分钟后,在350MPa的压力下(保持10s)进行冷压,将冷压压坯置于低压烧结系统中进行预烧结,具体工艺是:以4℃/min的速度从室温升至250℃,保温30min;继续升温至500℃,通入氢气,保温60min;以相同的升温速率升至1500℃保温30min,随炉冷却至室温,制备出多孔碳化钨;在多孔碳化钨上下表面进行Co粉铺覆并压实后,置于坩锅中在低压烧结炉内进行烧结,其具体工艺为:以4℃/min的速度从室温升温至1250℃,通入氢气,并保温40min;以2℃/min的升温速率加热至1500℃,保温30min后通入6MPa的纯氩气继续保温60min;以2℃/min的降温速率降温至1000℃,然后随炉冷却至室温后停止通入氩气,制备出晶粒粗大的硬质合金,其微观组织和晶粒尺寸分布如图6和7所示。

Claims (1)

1.一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法,其特征在于,包括以下步骤:
(1)将平均颗粒尺寸为21.8~23.5μm的WC粉末为原料,利用目数为500~800目的不锈钢筛子对粉末进行筛选,去除原料粉中颗粒度极小和极大粉末,得到粒径分布均匀的WC粉末;
(2)将筛选出来的WC粉末和一定量的PEG和扩散油形成的混合液进行混合搅拌至均匀状态,每100g WC粉末对应10ml混合液,混合液中PEG和扩散油的体积比为9~10:1;
(3)将与PEG和扩散油混合后的WC粉末进行干燥;
(4)将干燥好的粉末进行压制成型,压力为300~350MPa,保持不低于3s时间,获得具有一定强度的WC粉末冷压坯体;
(5)根据设计WC-Co硬质合金的Co含量要求,在碳化钨粉末冷压坯体的上下表面进行Co粉铺覆并压实,置入耐高温的器皿中,直接进行低压烧结,具体烧结工艺为:以4℃/min的速度从室温升温200℃~300℃,保温30min~60min,排出粉末中吸附的气体;继续升温至450℃~500℃,通入氢气,保温30~90min,保证PEG和扩散油完全排出;继续依次升高至800℃~850℃和1230℃~1250℃,并分别在800℃~850℃和1230℃~1250℃下保温30min~60min,保证合金温度分布均匀;再以2℃/min的升温速率加热至1450~1500℃,保温30min后通入压力为6MPa的纯氩气继续保温60~90min,保证Co相分布均匀和合金的致密化;以2℃/min的降温速率降温至1000℃,然后随炉冷却至室温后停止氩气通入,制备出平均晶粒尺寸大于15μm、不同钴含量的WC-Co硬质合金;
或:将步骤(4)碳化钨粉末冷压坯体进行预烧结;预烧结的具体工艺为:以4℃/min的速度从室温升至200℃~300℃,保温30min~60min,排出粉末中吸附的气体;继续升温至450℃~500℃,通入氢气,保温60~90min,保证PEG和扩散油完全排出;以相同的升温速率升至1450~1500℃保温30min,随炉冷却至室温,制备出多孔碳化钨;根据设计WC-Co硬质合金的Co含量要求,将多孔碳化钨进行Co粉涂覆并压实,并置入耐高温的器皿中,进行低压烧结,具体烧结工艺为:以4℃/min的速度从室温升温至1230℃~1250℃,通入氢气,保温30min~60min;再以2℃/min的升温速率加热至1450~1500℃,保温30min后通入压力为6MPa的纯氩气继续保温30~60min,保证Co相分布均匀和合金的致密化;以2℃/min的降温速率降温至1000℃,然后随炉冷却至室温后停止通入氩气,制备出平均晶粒尺寸大于15μm、不同钴含量的WC-Co硬质合金。
CN201910639852.8A 2019-07-16 2019-07-16 一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法 Active CN110358961B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910639852.8A CN110358961B (zh) 2019-07-16 2019-07-16 一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910639852.8A CN110358961B (zh) 2019-07-16 2019-07-16 一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法

Publications (2)

Publication Number Publication Date
CN110358961A CN110358961A (zh) 2019-10-22
CN110358961B true CN110358961B (zh) 2020-10-16

Family

ID=68219247

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910639852.8A Active CN110358961B (zh) 2019-07-16 2019-07-16 一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法

Country Status (1)

Country Link
CN (1) CN110358961B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113953517B (zh) * 2021-09-23 2024-03-22 北京工业大学 一种高致密硬质合金块材的3d打印制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104911384B (zh) * 2015-06-24 2017-03-22 哈尔滨工业大学 一种钨基难熔碳化物复合材料的低温制备方法
AT15415U1 (de) * 2016-07-18 2017-08-15 Ceratizit Austria Gmbh Verfahren zum Herstellen eines Hartmetallprodukts und Hartmetallprodukt

Also Published As

Publication number Publication date
CN110358961A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
CN109252081B (zh) 一种高熵合金粘结相超细碳化钨硬质合金及其制备方法
CN105441815B (zh) 一种金刚石工具用改性超细低氧水雾化合金粉末制备方法
CN102534340B (zh) 基于多元复合碳氮化钛固溶体的含氮硬质合金及制备方法
US10946445B2 (en) Method of manufacturing a cemented carbide material
CN110655407A (zh) 一种电阻可控碳化硅陶瓷的制备方法
CN109943739B (zh) 一种等离子体球磨制备超细晶WC-Co硬质合金的方法
CN102534277A (zh) 一种粗颗粒及超粗颗粒硬质合金的制备新方法
CN104232995A (zh) 一种高强韧超细晶复合结构钛合金及其制备方法与应用
CN104451324B (zh) 一种WCoB基金属陶瓷的制备工艺
CN110358961B (zh) 一种平均晶粒尺寸大于15μm WC-Co硬质合金的制备方法
CN112853188A (zh) 一种硬质合金及其制备方法和应用
CN105296834A (zh) 一种高硬度、高韧性硬质合金及其制备方法
CN106735244A (zh) 一种油田用WC‑Co硬质合金系列齿的制备方法
CN108276001A (zh) 一种超耐磨碳化钨硬质合金放电等离子体烧结方法
CN109047775A (zh) 一种镀碳化钛金刚石及其生产工艺
CN110004313B (zh) 一种基于放电等离子两步烧结制备硬质合金的方法
KR100700197B1 (ko) 탈황용 코발트 성분을 함유하는 촉매 스크랩을 재활용하여코발트 함유된 소결 합금 제조 방법
CN111041261B (zh) 颗粒增强钼/钨基复合材料的压制、烧结方法
CN113149657A (zh) 一种碳化钛/二硼化钛复合陶瓷颗粒预制体的制备方法
CN111876644A (zh) 一种高强韧WC-Co硬质合金的制备方法
CN112091228B (zh) 一种大颗粒球形钨粉的制备方法
CN118026687B (zh) 一种ck32复式碳化物及其制备方法
CN116790953B (zh) 高性能纳米硬质合金制品及其制备方法
AU2021100164A4 (en) Preparation of (V,Ti)C-based cermets
CN107142408A (zh) 一种具有表面渗碳层的硬质合金制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant