CN110357629A - 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法 - Google Patents

一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法 Download PDF

Info

Publication number
CN110357629A
CN110357629A CN201910770398.XA CN201910770398A CN110357629A CN 110357629 A CN110357629 A CN 110357629A CN 201910770398 A CN201910770398 A CN 201910770398A CN 110357629 A CN110357629 A CN 110357629A
Authority
CN
China
Prior art keywords
solid solution
sbn
powder
bnbt
tungsten bronze
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910770398.XA
Other languages
English (en)
Other versions
CN110357629B (zh
Inventor
张善涛
袁芯
李玲
陶纯玮
张骥
王瑞雪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201910770398.XA priority Critical patent/CN110357629B/zh
Publication of CN110357629A publication Critical patent/CN110357629A/zh
Application granted granted Critical
Publication of CN110357629B publication Critical patent/CN110357629B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Chemistry (AREA)

Abstract

本发明公开了一种基于异类材料钨青铜结构Sr0.75Ba0.25Nb2O6(SBN)与钙钛矿结构0.94Bi0.5Na0.5TiO3‑0.06BaTiO3(BNBT)形成的固溶体及其制备方法。将单相的SBN粉末和BNBT粉末混合均匀,在高温下烧结3h,得到(1‑x)SBN‑xBNBT固溶体。BNBT中的Bi3+、Na+、Ba2+和Ti4+在高温下扩散进入SBN钨青铜结构中占据晶格位置形成固溶体,此固溶体陶瓷具有很大的晶粒各向异性、大范围可调的电学性能以及优异的室温储能效率。与传统的基于同类材料的固溶体相比,本发明不仅提供了一种基于异类材料形成的固溶体,还提供了一种开发新型固溶体的新思路。

Description

一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法
技术领域
本发明涉及一种钨青铜结构与钙钛矿结构氧化物形成的固溶体及制备方法。
背景技术
驰豫铁电体氧化物不仅是研究驰豫现象来源的基础,更由于其丰富的介电、铁电、压电等性质在信息、医疗、交通、生物等高新科技领域有着广泛应用。
近年来,随着人们环保意识的增强和社会可持续发展的需要,环境友好型无铅驰豫铁电体越来越成为研究的热点,其中以Sr1-xBaxNb2O6为代表的钨青铜结构氧化物和以Bi0.5Na0.5TiO3为代表的钙钛矿结构氧化物最为人们关注。一般而言,为了优化弛豫铁电体的电学性质,最有效可行的方法之一是形成固溶体,因为固溶体能够在纳米尺度上建立新的晶体结构和铁电畴结构。但目前报道的固溶体都为基于同类材料形成的固溶体,即钙钛矿-钙钛矿或钨青铜-钨青铜结构氧化物固溶体,这主要是因为同类材料具有相同的化学式和类似的晶格结构,更有利于形成固溶体。然而截止目前,基于同类材料形成固溶体的弛豫铁电性质仍然需要进一步优化以实现其实际应用。为此,发展形成固溶体的新方法仍然具有重要意义,而发展基于异类材料的固溶体是可能的方法之一。
一般情况下,异类材料由于化学式不同,很难提供成比例的晶格位置和离子来形成固溶体。因此,基于异类材料的固溶体鲜有报道。然而,以Sr1-xBaxNb2O6为代表的钨青铜结构氧化物中,Sr2+/Ba2+并未被占据全部的A位晶格位置,即Sr1-xBaxNb2O6是一种非完全占据的钨青铜结构氧化物。这意味着基于Sr1-xBaxNb2O6,引入以Bi0.5Na0.5TiO3为代表的钙钛矿氧化物,可能形成一种基于异类材料的新型固溶体。
发明内容
针对现有弛豫铁电固溶体都基于同类材料、而没有基于异类材料固溶体的现状,本发明提供一种基于异类材料钨青铜结构与钙钛矿结构氧化物形成的新型固溶体及其制备方法。
本发明固溶体采用的技术方案如下:
一种钨青铜与钙钛矿结构氧化物形成的固溶体,包括钨青铜结构Sr0.75Ba0.25Nb2O6和钙钛矿结构0.94Bi0.5Na0.5TiO3-0.06BaTiO3,分别用SBN和BNBT表示,所述固溶体的化学式为(1-x)SBN-xBNBT,其中,BNBT中的Ti4+离子取代SBN中的Nb5+离子,BNBT中的部分Bi3+、Na+和Ba2+离子取代SBN中的Sr2+和Ba2+离子,而其余部分Bi3+、Na+和Ba2+离子占据SBN中本来未被占据的晶格位置。
进一步地,x的取值为0.05、0.10、0.15或者0.20。
本发明一种钨青铜与钙钛矿结构氧化物形成的固溶体的制备方法,包括以下步骤:
(1)根据化学式(1-x)SBN-xBNBT称量经过干燥处理的单相SBN粉末和BNBT粉末;
(2)将步骤(1)称量的两种单相粉末通过球磨处理使其混合均匀,混合后的粉末经干燥处理后压制成薄圆片,并置于坩埚中,在1200-1300℃高温下烧结3h,获得致密性良好的(1-x)SBN-xBNBT混合式固溶体。
本发明的有益效果在于:
1、通过把不同摩尔比的钨青铜结构氧化物SBN和钙钛矿结构氧化物BNBT单相粉末混合并高温烧结,形成(1-x)SBN-xBNBT固溶体陶瓷。该固溶体陶瓷样品制备方法简便、效率高,期间无复杂工艺和昂贵的设备,成本较低。
2、与传统的基于同类材料的固溶体相比,本发明利用钨青铜结构SBN存在未被占据的晶格位置的特点,实现基于钨青铜-钙钛矿结构氧化物的新型固溶体陶瓷,可显著改变固溶体陶瓷的微观形貌并在大范围内可调控固溶体陶瓷的电学性质,并具有优异的室温储能性质,为设计新型固溶体提供了一种新思路。
附图说明
图1是实施例制备得到的系列(1-x)SBN-xBNBT陶瓷样品的X射线衍射谱。
图2是实施例制备得到的系列(1-x)SBN-xBNBT陶瓷样品的扫描电子显微镜图,(a)、(b)、(c)、(d)分别是实施例1、2、3、4制备得到的陶瓷样品的结构图。
图3是实施例制备得到的系列(1-x)SBN-xBNBT陶瓷样品的介电常数(上面一排图)和介电损耗谱(下面一排图)。
图4是实施例制备得到的系列(1-x)SBN-xBNBT陶瓷样品的室温电滞回线图。
图5是实施例制备得到的系列(1-x)SBN-xBNBT陶瓷样品的室温储能效率和储能密度图。
具体实施方式
实施例1:
称量5.8287克SBN粉末与0.1713克BNBT(x=0.05)粉末,在两种粉末的混合物中加入适量酒精,然后球磨24小时使两种粉末混合均匀。所得的粉末进行干燥处理后,用15MPa的压力把适量的粉末压成直径约为10毫米,厚度约为2-3毫米的薄片。把适量的相应粉末放入Al2O3坩埚,再把薄片放入,并用相应的粉末覆盖薄片,最后用另一个坩埚倒扣到第一个坩埚上,使薄片处于密封状态。将密封有薄片的坩埚放入马弗炉中并升温,从室温到烧结温度(1200℃)的升温速率控制在3℃/分钟。在1300℃烧结3h后,以3℃/分钟的降温速率降温至600℃,然后自然降温。获得(1-x)SBN-xBNBT陶瓷;对上述样品进行微观结构,形貌和性能测试。
实施例2:
称量5.6496克SBN粉末与0.3504克BNBT(x=0.10)粉末,在两种粉末的混合物中加入适量酒精,然后球磨24小时使两种粉末混合均匀。所得的粉末进行干燥处理后,用15MPa的压力把适量的粉末压成直径约为10毫米,厚度约为2-3毫米的薄片。把适量的相应粉末放入Al2O3坩埚,再把薄片放入,并用相应的粉末覆盖薄片,最后用另一个坩埚倒扣到第一个坩埚上,使薄片处于密封状态。将密封有薄片的坩埚放入马弗炉中并升温,从室温到烧结温度(1250℃)的升温速率控制在3℃/分钟。在1220℃烧结3h后,以3℃/分钟的降温速率降温至600℃,然后自然降温。获得(1-x)SBN-xBNBT陶瓷;对上述样品进行微观结构,形貌和性能测试。
实施例3:
称量5.4620克SBN粉末与0.5380克BNBT(x=0.15)粉末,在两种粉末的混合物中加入适量酒精,然后球磨24小时使两种粉末混合均匀。所得的粉末进行干燥处理后,用15MPa的压力把适量的粉末压成直径约为10毫米,厚度约为2-3毫米的薄片。把适量的相应粉末放入Al2O3坩埚,再把薄片放入,并用相应的粉末覆盖薄片,最后用另一个坩埚倒扣到第一个坩埚上,使薄片处于密封状态。将密封有薄片的坩埚放入马弗炉中并升温,从室温到烧结温度(1200℃)的升温速率控制在3℃/分钟。在1200℃烧结3h后,以3℃/分钟的降温速率降温至600℃,然后自然降温。获得(1-x)SBN-xBNBT陶瓷;对上述样品进行微观结构,形貌和性能测试。
实施例4:
称量5.2652克SBN粉末与0.7348克BNBT(x=0.20)粉末,在两种粉末的混合物中加入适量酒精,然后球磨24小时使两种粉末混合均匀。所得的粉末进行干燥处理后,用15MPa的压力把适量的粉末压成直径约为10毫米,厚度约为2-3毫米的薄片。把适量的相应粉末放入Al2O3坩埚,再把薄片放入,并用相应的粉末覆盖薄片,最后用另一个坩埚倒扣到第一个坩埚上,使薄片处于密封状态。将密封有薄片的坩埚放入马弗炉中并升温,从室温到烧结温度(1200℃)的升温速率控制在3℃/分钟。在1200℃烧结3h后,以3℃/分钟的降温速率降温至600℃,然后自然降温。获得(1-x)SBN-xBNBT陶瓷;对上述样品进行微观结构,形貌和性能测试。
测试结果:
图1是上述实施例制备得到的系列(1-x)SBN-xBNBT陶瓷样品的X射线衍射谱(XRD),可以看出,样品均具有钨青铜结构。这说明钙钛矿BNBT中的Bi3+,Na+,Ba2+和Ti4+阳离子完全扩散进入钨青铜SBN中Sr2+、Ba2+和Ti4+离子占据的晶格位置和原本未被占据的晶格位置,形成固溶体。
图2是制备得到的系列(1-x)SBN-xBNBT陶瓷样品的扫描电子显微镜图(SEM),可以看出,随着BNBT加入量的增加,柱状晶粒逐步增加且长径比逐渐增大,在x=0.20时长径比急剧增大达到10.5。
图3是制备得到的系列(1-x)SBN-xBNBT陶瓷样品的介电常数和介电损耗谱,可以看出,铁电-顺电相变对应一个相对宽而平展的峰;与此同时,随着频率的增加,在介电常数实部峰值显著降低的同时,峰值对应的温度(Tm)明显向高温移动,也就是说存在频率色散现象,这也很好地证实了(1-x)SBN-xBNBT固溶体为驰豫铁电体,而驰豫现象的来源主要与成分起伏所引起的微观结构的无序有关。可以看出,固溶体的Tm显著依赖于其成分且在-61℃-43℃的大范围内可调。
图4是制备得到的系列(1-x)SBN-xBNBT陶瓷样品的电滞回线(P-E)图,可以看出,随着BNBT掺入量的增加,电滞回线首先变得细长然后再恢复,在x=0.10时达到最细,这也与前所述的居里温度变化趋势是一致的。
图5是制备得到的系列(1-x)SBN-xBNBT陶瓷样品的储能性能图,可以看出,由于近乎理想的驰豫性质,本发明(1-x)SBN-xBNBT固溶体表现出良好的室温储能效率,在x=0.10时达到最大93%。

Claims (5)

1.一种钨青铜与钙钛矿结构氧化物形成的固溶体,包括钨青铜结构Sr0.75Ba0.25Nb2O6和钙钛矿结构0.94Bi0.5Na0.5TiO3-0.06BaTiO3,分别用SBN和BNBT表示,其特征在于,所述固溶体的化学式为(1-x)SBN-xBNBT,其中,BNBT中的Ti4+离子取代SBN中的Nb5+离子晶格位置,BNBT中的部分Bi3+、Na+和Ba2+离子取代结构SBN中的Sr2+和Ba2+离子晶格位置,而其余部分Bi3+、Na+和Ba2+离子占据SBN中本来未被占据的晶格位置。
2.根据权利要求1所述的一种钨青铜与钙钛矿结构氧化物形成的固溶体,其特征在于,x的取值为0.05、0.10、0.15或者0.20。
3.根据权利要求1所述一种钨青铜与钙钛矿结构氧化物形成的固溶体的制备方法,其特征在于,包括以下步骤:
(1)根据化学式(1-x)SBN-xBNBT称量经过干燥处理的单相SBN粉末和BNBT粉末;
(2)将步骤(1)称量的两种单相粉末通过球磨处理使其混合均匀,混合后的粉末经干燥处理后压制成薄片,并置于坩埚中,在高温下烧结,获得致密性良好的(1-x)SBN-xBNBT混合式固溶体。
4.根据权利要求3所述的制备方法,其特征在于,所述步骤(2)中,将混合后的粉末压制成薄圆片。
5.根据权利要求3所述的制备方法,其特征在于,所述步骤(2)中,将薄片在1200-1300℃高温烧结3h。
CN201910770398.XA 2019-08-20 2019-08-20 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法 Active CN110357629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910770398.XA CN110357629B (zh) 2019-08-20 2019-08-20 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910770398.XA CN110357629B (zh) 2019-08-20 2019-08-20 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法

Publications (2)

Publication Number Publication Date
CN110357629A true CN110357629A (zh) 2019-10-22
CN110357629B CN110357629B (zh) 2021-05-28

Family

ID=68224848

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910770398.XA Active CN110357629B (zh) 2019-08-20 2019-08-20 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法

Country Status (1)

Country Link
CN (1) CN110357629B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666742A (zh) * 2021-08-30 2021-11-19 南京大学 一种通过掺杂实现弛豫-正常铁电相变的材料及其方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156172A (ja) * 2006-12-25 2008-07-10 National Institute Of Advanced Industrial & Technology 無鉛圧電磁器組成物
CN101786880A (zh) * 2010-02-11 2010-07-28 中国科学院上海硅酸盐研究所 一种铌酸钾钠-铌酸钾锂压电陶瓷及其制备方法
CN102260044A (zh) * 2011-04-30 2011-11-30 桂林电子科技大学 一种储能铌酸盐微晶玻璃介质材料及其制备方法
CN103342466A (zh) * 2013-06-27 2013-10-09 桂林电子科技大学 一种铌酸锶钡基微晶玻璃电介质材料及其制备方法
CN103964844A (zh) * 2014-05-21 2014-08-06 宁波大学 介电储能陶瓷材料及其制备方法
CN104788093A (zh) * 2015-03-09 2015-07-22 南京大学 一种0.94Bi0.5Na0.5TiO3-0.06BaTiO3无铅压电陶瓷的制备方法
CN105399333A (zh) * 2015-11-10 2016-03-16 同济大学 一种铌酸锶钡基玻璃陶瓷储能材料及其制备方法
CN108395106A (zh) * 2018-04-23 2018-08-14 同济大学 高储能密度的铌酸钡铅钠基玻璃陶瓷材料及其制备方法
CN108516827A (zh) * 2018-06-19 2018-09-11 哈尔滨工业大学 一种无铅高介电储能密度和高储能效率的陶瓷材料及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008156172A (ja) * 2006-12-25 2008-07-10 National Institute Of Advanced Industrial & Technology 無鉛圧電磁器組成物
CN101786880A (zh) * 2010-02-11 2010-07-28 中国科学院上海硅酸盐研究所 一种铌酸钾钠-铌酸钾锂压电陶瓷及其制备方法
CN102260044A (zh) * 2011-04-30 2011-11-30 桂林电子科技大学 一种储能铌酸盐微晶玻璃介质材料及其制备方法
CN103342466A (zh) * 2013-06-27 2013-10-09 桂林电子科技大学 一种铌酸锶钡基微晶玻璃电介质材料及其制备方法
CN103964844A (zh) * 2014-05-21 2014-08-06 宁波大学 介电储能陶瓷材料及其制备方法
CN104788093A (zh) * 2015-03-09 2015-07-22 南京大学 一种0.94Bi0.5Na0.5TiO3-0.06BaTiO3无铅压电陶瓷的制备方法
CN105399333A (zh) * 2015-11-10 2016-03-16 同济大学 一种铌酸锶钡基玻璃陶瓷储能材料及其制备方法
CN108395106A (zh) * 2018-04-23 2018-08-14 同济大学 高储能密度的铌酸钡铅钠基玻璃陶瓷材料及其制备方法
CN108516827A (zh) * 2018-06-19 2018-09-11 哈尔滨工业大学 一种无铅高介电储能密度和高储能效率的陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CAO LEI等: "Improvement of dielectric breakdown strength and energy storage performance in Er2O3–modified 0.95Sr0.7Ba0.3Nb2O6-0.05CaTiO3 lead-free ceramics", 《CERAMICS INTERNATIONAL》 *
WAN YUHUI等: "High temperature dielectrics based on Bi1/2Na1/2TiO3-BaTiO3-Sr0.53Ba0.47Nb2O6 ceramics with high dielectric permittivity and wide operational temperature range", 《CERAMICS INTERNATIONAL》 *
周宗辉等: "钙钛矿/钨青铜两相复合BSTN陶瓷的形成与性能研究", 《无机材料学报》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666742A (zh) * 2021-08-30 2021-11-19 南京大学 一种通过掺杂实现弛豫-正常铁电相变的材料及其方法

Also Published As

Publication number Publication date
CN110357629B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
Li et al. Simultaneously enhanced energy storage density and efficiency in novel BiFeO3-based lead-free ceramic capacitors
Mori et al. Sintering and thermal expansion characterization of Al-doped and Co-doped lanthanum strontium chromites synthesized by the Pechini method
Liu et al. Enhanced electrical properties and energy storage performances of NBT-ST Pb-free ceramics through glass modification
Li et al. Review of lead-free Bi-based dielectric ceramics for energy-storage applications
Xu et al. Composition dependent structure, dielectric and energy storage properties of Pb (Tm1/2Nb1/2) O3-Pb (Mg1/3Nb2/3) O3 antiferroelectric ceramics
Sumang et al. Investigation of a new lead-free (1-xy) BNT-xBKT-yBZT piezoelectric ceramics
Liu et al. Microstructure evolution, mechanism of electric breakdown strength, and dielectric energy storage performance of CuO modified Ba0. 65Sr0. 245Bi0. 07TiO3 Pb-free bulk ceramics
CN107056276A (zh) 用于高密度储能的铁酸铋基电介质薄膜及其制备方法和应用
Cui et al. Improvement of energy storage density with trace amounts of ZrO2 additives fabricated by wet-chemical method
CN104129988B (zh) 一种无铅高储能密度高储能效率陶瓷介质材料及其制备方法
Yu et al. High-temperature energy storage performances in (1-x)(Na0. 50Bi0. 50TiO3)-xBaZrO3 lead-free relaxor ceramics
Truong-Tho et al. Effect of sintering temperature on the dielectric, ferroelectric and energy storage properties of SnO2-doped Bi 0. 5 (Na 0. 8 K 0. 2) 0. 5 TiO3 lead-free ceramics
Shi et al. Polarization enhancement in Fe doped BNT based relaxors using Bi compensation
Yang et al. Controllable low-temperature flash sintering and giant dielectric performance of (Zn, Ta) co-doped TiO2 ceramics
Wang et al. Enhanced energy storage performance in (1-x) Bi0. 85Sm0. 15FeO3-xCa0. 5Sr0. 5Ti0. 9Zr0. 1O3 relaxor ceramics
Luo et al. Silver stoichiometry engineering: an alternative way to improve energy storage density of AgNbO 3-based antiferroelectric ceramics
CN108863348A (zh) 一种超宽温度稳定性的介电陶瓷材料及其制备方法
CN115504784A (zh) 一种无铅弛豫铁电高储能密度陶瓷材料及其制备方法
Zhang et al. Large energy density and high efficiency achieved simultaneously in Bi (Mg0. 5Hf0. 5) O3-modified NaNbO3 ceramics
Said et al. Dielectric, pyroelectric, and ferroelectric properties of gadolinium doped Sr0. 53Ba0. 47Nb2O6 ceramic
Zhang et al. Excellent energy storage performance of paraelectric Ba0. 4Sr0. 6TiO3 based ceramics through induction of polar nano-regions
Gao et al. Softening of antiferroelectric order in a novel PbZrO3-based solid solution for energy storage
CN110357629A (zh) 一种钨青铜与钙钛矿结构氧化物形成的固溶体及制备方法
Parkash et al. Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic
Zhang et al. Effect of La (Nb1/3Mg2/3) O3 addition on phase transition behavior and energy storage properties of NaNbO3 ceramics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant