CN110355486B - 一种基于倍频的双波长激光诱导向前转移加工方法 - Google Patents

一种基于倍频的双波长激光诱导向前转移加工方法 Download PDF

Info

Publication number
CN110355486B
CN110355486B CN201910648413.3A CN201910648413A CN110355486B CN 110355486 B CN110355486 B CN 110355486B CN 201910648413 A CN201910648413 A CN 201910648413A CN 110355486 B CN110355486 B CN 110355486B
Authority
CN
China
Prior art keywords
laser
frequency
processing
forward transfer
sacrificial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910648413.3A
Other languages
English (en)
Other versions
CN110355486A (zh
Inventor
陈玲玲
刘建军
洪治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201910648413.3A priority Critical patent/CN110355486B/zh
Publication of CN110355486A publication Critical patent/CN110355486A/zh
Application granted granted Critical
Publication of CN110355486B publication Critical patent/CN110355486B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Nonlinear Science (AREA)
  • Laser Beam Processing (AREA)
  • Lasers (AREA)

Abstract

本发明公开了一种基于倍频的双波长激光诱导向前转移加工方法,使用倍频晶体将基频激光倍频后,同时使用处于可见光/红外光波段的基频激光和处于紫外光波段的倍频激光作为加工光源,并使用平场消色差显微物镜或者反射式显微物镜将所述加工光源聚焦到牺牲层的加工材料薄膜上以完成加工。本发明所公开的加工方法,可以综合可见光/红外光和紫外光的加工优势,获取更高的加工质量,又无需担心两种波长的激光束的重叠问题,非常适应精细结构的双波长激光诱导向前转移加工。

Description

一种基于倍频的双波长激光诱导向前转移加工方法
技术领域
本发明属于激光精细加工领域,具体涉及一种使用双波长激光光束进行激光诱导向前转移加工的方法。
背景技术
激光诱导向前转移加工技术是在被称为牺牲层的透明平板表面附上一层加工材料薄膜,然后在离这个加工材料薄膜很近的地方(100微米左右)放置接收层。将脉冲激光透过牺牲层平板聚焦到加工材料薄膜附近,通过焦点处的强光场作用,使得一小片薄膜飞离牺牲层平板,附在接收层表面。由于激光焦点可以非常小,该技术可用于很小尺度的材料加工,而且可以根据要求,在接收体表面按照一定的设计生成三维的图形分布。激光诱导向前转移加工技术具有适应性强,加工精度高,成本低,绿色环保等优点。最初激光诱导向前转移加工技术用于金属薄膜的转移,后来又被用于金属氧化物、有机物、半导体等其他材料的加工。
激光诱导向前转移加工技术并未限定具体使用的加工激光的波长。论文Transparent and conductive silver nanowires networks printed by laser inducedforward transfer,Applied Surface Science,2019(476):828-833中以及专利申请201710193958.0中各自公布了一种使用1064nm激光的激光诱导向前转移加工银纳米线的加工系统。论文Laser forward transfer based on a spatial light modulator,Applied Physics A,2011(102):21-26中公布了一种使用355nm激光的激光诱导向前转移加工图形化银膜的加工系统。其他公开的加工系统中,还有使用1027nm、532nm、266nm等不同波长的激光的激光诱导向前转移加工系统。一般认为,激光诱导向前转移技术是依靠激光作用下产生的加工材料气体将加工材料推离牺牲层的。可见光和红外光,尤其是红外光,的热效应明显,会加热加工材料引起加工材料局域气化产生气泡,因而剥离力较大。紫外激光的电离效应明显,实际加工中所能获得的图形边缘质量更好。但是目前尚未出现同时使用两种波长激光的激光诱导向前转移加工系统的报道。
论文The Conductive Silver Nanowires Fabricated by Two-beam LaserDirect Writing on the Flexible Sheet,Scientific Reports,2017(7):41757中提出了一种双波长加工系统。它使用780nm的飞秒激光和442nm的连续激光作为加工光源。两个光束使用双色镜重叠在一起。双色镜反射442nm的激光,透射780nm的激光。但是光路元件,特别是双色镜的微小变化都会破坏两束激光的重叠。因此,论文中为了保证光束重叠质量,令442nm的激光光束比780nm的激光光束大4mm,以激光能量的浪费为代价来换取双光束的重叠。因此如何设计一种用于激光诱导向前转移加工的双光束加工系统是本领域目前研究者需要解决的一个问题。
发明内容
为了解决上述问题,本发明公布了一种基于倍频的双波长激光诱导向前转移加工方法,本发明的具体内容为:
一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,使用倍频晶体将基频激光倍频后,同时使用基频激光和倍频激光作为加工光源,并将所述加工光源聚焦到牺牲层的加工材料薄膜上以完成加工;所述基频激光的频率处于可见光或者红外光波段,所述倍频激光的频率处于紫外光波段;所述牺牲层为一面附有加工材料薄膜的,对所述加工光源两个频率都透明的平板;所述加工光源从牺牲层未附有加工材料薄膜的一面入射;所述牺牲层附有加工材料薄膜的一面附近放置接收层;所述接收层用于接收牺牲层上剥离出的加工材料。
进一步地,所述基频激光为短脉冲激光或超短脉冲激光,以超短脉冲激光为优先选择。
进一步地,所述倍频为激光腔外倍频或者激光腔内倍频。
进一步地,采用所述激光腔内倍频的激光器,其输出镜需要同时输出基频激光和倍频激光。
进一步地,所述倍频为二倍频或者三倍频。
进一步地,所述聚焦使用平场消色差显微物镜或者反射式显微物镜。
进一步地,所述牺牲层和所述接收层之间使用厚度小于100微米的垫片作为间隔层以保证牺牲层和接收层的间距小于100微米。
进一步地,所述附在牺牲层上的加工材料薄膜的厚度需要小于20微米。
进一步地,所述牺牲层和接收层放置在三维加工平台上,调节加工平台的横向位置可更换加工区域,调节纵向位置可调节激光光斑大小。
本发明的有益效果为:
本发明所公开的加工方法,可以综合可见光/红外光和紫外光的加工优势,获取更高的加工质量。可见光/红外光具有更强的热效应,可使更多的加工材料气化从而产生更大的剥离力量。紫外光具有更强的电离效应,实际加工所能获得的边缘效果更佳。因而将二者相结合,可以获得更高的加工质量。
本发明所公开的加工方法,从根本上解决了双波长激光加工中光束不重合的问题。由于使用了倍频技术来从可见光/红外光激光(基频激光)中生成倍频激光,两束激光具有相同的几何光学参数。同时配合平场消色差显微物镜或者反射式显微物镜,即使在激光光束的聚焦点上,也能保证加工光束的完全重叠,非常适应精细结构的双波长激光诱导向前转移加工。
附图说明
图1是实施例光波长激光诱导向前转移加工系统结构示意图。
图2是实施例中牺牲层和接收层相对位置示意图。
具体实施方式
下面结合附图说明本发明的具体实施方式。
本实施例介绍一种基于倍频的双波长激光诱导向前转移加工系统。如图1所示,本加工系统包括激光器1、聚焦透镜21、倍频晶体3、准直透镜22、反射镜4、显微物镜5、牺牲层61、接收层62、三维加工平台7和计算机8。
激光器1为输出波长为780nm,脉冲宽度为120fs的激光器。780nm处于可见光波段和红外光波段的分界区,具有明显的热效应。激光脉冲的宽度为120fs,属于超短脉冲激光。虽然使用纳秒、皮秒等短脉冲激光也可以完成本实施例的目标,但是超短脉冲能够提供更高的激光瞬时功率和倍频效率,是完成本实施例目标的优先选择。
780nm的激光从激光器输出后,立即被聚焦透镜21聚焦到倍频晶体3上。聚焦透镜的焦距为75mm。倍频晶体为一块采用角度匹配切割的二倍频BBO晶体,可将大约23%的780nm基频激光倍频为390nm的倍频激光。390nm是波长较长的紫外光,临近可见光的极限区域。采用三倍频晶体可以获得260nm的深紫外光,从而获得更高的电离效果。但是三倍频效应的效率较低,因此本实施例选择二倍频。使用焦距更短的聚焦透镜可以在一定程度上提高倍频效率。使用激光器腔内倍频可以大幅提高倍频效率。但是商用飞秒激光器不宜私自改动其谐振腔,所以本实施例采用腔外倍频方案。有些商用短脉冲激光器提供腔内倍频,但是需要注意,激光器输出镜应同时具有基频光和倍频光输出功能。
倍频后的基频激光和倍频激光都是发散的,需要经过准直透镜22进行准直。准直透镜的焦距为75mm,两面都镀有780nm和390nm的增透膜。准直后的双色激光束经过反射镜4向下弯折90°后,进入到20倍平场消色差显微物镜中。本实施例中对加工激光的聚焦采用平场消色差显微物镜,以消除普通显微物镜由于对不同波长的光折射率不同造成的双波长激光焦点的纵向分离。使用反射式显微物镜也可以完成双波长激光的聚焦。
聚焦后的激光光束透过牺牲层61照射在纳米银浆薄膜62上。牺牲层61为200μm厚的石英玻璃。纳米银浆薄膜62是高粘度纳米银浆通过刮墨刀刮涂在牺牲层61上形成的约8μm的薄膜。牺牲层61的纳米银浆薄膜62朝下倒扣在接收层64上。牺牲层61和接收层64间预先放置厚度为100μm的塑料垫片63,以在两层之间产生100μm的空气间隙。牺牲层61、纳米银浆薄膜62、塑料垫片63和接收层64的位置关系具体如图2所示。接收层64放置在三维加工平台7上。通过调整三维加工平台7的高度,可以调节聚焦在纳米银浆薄膜62上的光斑大小,从而获得不同大小的加工效果。通过调整三维加工平台7的横向位置,可以是现在不同位置处的加工,以最终获得二维图形化加工效果。
二维图形化加工效果需要在计算机8的控制下实现。计算机8通过通信电缆同三维加工平台7和激光器1相连。每次调整好三维加工平台7的位置后,发送命令令激光器1发出一个激光脉冲,完成一次加工过程。通过不断地调整三维加工平台7的位置,就可以最终实现整个接收层64表面上的二维加工。
本发明所公开的一种基于倍频的双波长激光诱导向前转移加工方法,可以综合可见光/红外光和紫外光的加工优势,获取更高的加工质量,又无需担心两种波长的激光束的重叠问题,非常适应精细结构的双波长激光诱导向前转移加工。

Claims (9)

1.一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,使用倍频晶体将基频激光倍频后,同时使用基频激光和倍频激光作为加工光源,并将所述加工光源聚焦到牺牲层的加工材料薄膜上以完成加工;所述基频激光的频率处于可见光或者红外光波段,所述倍频激光的频率处于紫外光波段;所述牺牲层为一面附有加工材料薄膜的,对所述加工光源两个频率都透明的平板;所述加工光源从牺牲层未附有加工材料薄膜的一面入射;所述牺牲层附有加工材料薄膜的一面附近放置接收层;所述接收层用于接收牺牲层上剥离出的加工材料。
2.如权利要求1所述的一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,所述基频激光为短脉冲激光或超短脉冲激光。
3.如权利要求1所述的一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,所述倍频为激光腔外倍频或者激光腔内倍频。
4.如权利要求3所述的一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,采用所述激光腔内倍频的激光器,其输出镜需要同时输出基频激光和倍频激光。
5.如权利要求1或3所述的一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,所述倍频为二倍频或者三倍频。
6.如权利要求1所述的一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,所述聚焦使用平场消色差显微物镜或者反射式显微物镜。
7.如权利要求1所述的一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,所述牺牲层和所述接收层之间使用厚度小于100微米的垫片作为间隔层以保证牺牲层和接收层的间距小于100微米。
8.如权利要求1所述的一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,附在牺牲层上的所述加工材料薄膜的厚度需要小于20微米。
9.如权利要求1所述的一种基于倍频的双波长激光诱导向前转移加工方法,其特征在于,所述牺牲层和接收层放置在三维加工平台上,调节加工平台的横向位置可更换加工区域,调节纵向位置可调节激光光斑大小。
CN201910648413.3A 2019-07-18 2019-07-18 一种基于倍频的双波长激光诱导向前转移加工方法 Active CN110355486B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910648413.3A CN110355486B (zh) 2019-07-18 2019-07-18 一种基于倍频的双波长激光诱导向前转移加工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910648413.3A CN110355486B (zh) 2019-07-18 2019-07-18 一种基于倍频的双波长激光诱导向前转移加工方法

Publications (2)

Publication Number Publication Date
CN110355486A CN110355486A (zh) 2019-10-22
CN110355486B true CN110355486B (zh) 2021-04-20

Family

ID=68220273

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910648413.3A Active CN110355486B (zh) 2019-07-18 2019-07-18 一种基于倍频的双波长激光诱导向前转移加工方法

Country Status (1)

Country Link
CN (1) CN110355486B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768963A (zh) * 2005-10-14 2006-05-10 江苏大学 激光干涉耦合制备纳米材料方法及其装置
KR20120138472A (ko) * 2011-06-15 2012-12-26 삼성디스플레이 주식회사 레이저 열전사 장치, 레이저 열전사 방법, 및 그를 이용한 유기 발광 표시장치의 제조 방법
CN103769609A (zh) * 2014-02-24 2014-05-07 中山大学 一种贵金属-半导体复合结构微纳颗粒、制备方法、应用
CN103862171A (zh) * 2014-03-28 2014-06-18 南开大学 双波长飞秒激光制备二维周期金属颗粒阵列结构的方法
CN106414791A (zh) * 2014-05-27 2017-02-15 奥博泰克有限公司 藉由激光诱发正向转印以印刷三维结构
CN106825915A (zh) * 2017-03-28 2017-06-13 北京印刷学院 脉冲激光诱导向前转移制备图案化金属薄层的系统和方法
CN107636805A (zh) * 2015-06-23 2018-01-26 三菱电机株式会社 半导体元件的制造方法及制造装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1768963A (zh) * 2005-10-14 2006-05-10 江苏大学 激光干涉耦合制备纳米材料方法及其装置
KR20120138472A (ko) * 2011-06-15 2012-12-26 삼성디스플레이 주식회사 레이저 열전사 장치, 레이저 열전사 방법, 및 그를 이용한 유기 발광 표시장치의 제조 방법
CN103769609A (zh) * 2014-02-24 2014-05-07 中山大学 一种贵金属-半导体复合结构微纳颗粒、制备方法、应用
CN103862171A (zh) * 2014-03-28 2014-06-18 南开大学 双波长飞秒激光制备二维周期金属颗粒阵列结构的方法
CN106414791A (zh) * 2014-05-27 2017-02-15 奥博泰克有限公司 藉由激光诱发正向转印以印刷三维结构
CN107636805A (zh) * 2015-06-23 2018-01-26 三菱电机株式会社 半导体元件的制造方法及制造装置
CN106825915A (zh) * 2017-03-28 2017-06-13 北京印刷学院 脉冲激光诱导向前转移制备图案化金属薄层的系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Investigate the electrical and thermal properties of the low temperature resistant silver nanowire fabricated by two-beam laser technique》;Gui-Cang He;《Applied Surface Science》;20180106;第97页 *

Also Published As

Publication number Publication date
CN110355486A (zh) 2019-10-22

Similar Documents

Publication Publication Date Title
CN106312314B (zh) 双激光束焊接系统及方法
TWI570775B (zh) 藉由叢發超快雷射脈衝能量轉移在基材上正向沈積之方法及裝置
JP5967405B2 (ja) レーザによる割断方法、及びレーザ割断装置
US11899229B2 (en) Method and apparatus for preparing femtosecond optical filament interference direct writing volume grating/chirped volume grating
US11554435B2 (en) Solder paste laser induced forward transfer device and method
US20110095107A1 (en) Method and apparatus for the selective separation of two layers of material using an ultrashort pulse source of electromagnetic radiation
JP2022518898A (ja) レーザ加工装置、これを動作させる方法、及びこれを用いてワークピースを加工する方法
CN100495215C (zh) 对光滑表面进行微米结构光刻蚀的方法及装置
US20170313617A1 (en) Method and apparatus for laser-cutting of transparent materials
JP2003245784A (ja) レーザ加工方法、レーザ加工装置及び立体構造体
Pohl et al. Solid-phase laser-induced forward transfer of variable shapes using a liquid-crystal spatial light modulator
CN101011780A (zh) 使用激光束形成通孔的方法
CN114160975B (zh) 异种材料的大幅面高强度激光焊接方法及装备
CN110355486B (zh) 一种基于倍频的双波长激光诱导向前转移加工方法
CN215658436U (zh) 一种太阳能电池薄膜清边光路系统
CN109132998A (zh) 单脉冲纳秒激光诱导透明介电材料表面周期性结构的方法
Gillner et al. High power parallel ultrashort pulse laser processing
Gretzki et al. Programmable diffractive optic for multi-beam processing: applications and limitations
CN109967896A (zh) 短脉冲激光诱导超声水流等离子体超精细切割装置及方法
US10882136B2 (en) Method and apparatus for forming a conductive track
KR20230124585A (ko) 레이저 프로세싱 장치, 그 동작 방법 및 이를 이용한 가공물 처리 방법
CN109870884B (zh) 一种激光干涉向后转移系统
CN113732488B (zh) 一种利用飞秒激光加工金属氧化物纳米光栅的方法及系统
CN215432111U (zh) 一种超快激光打孔装置
CN217608073U (zh) 透明材料激光转印装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant