CN110354795B - 气体喷嘴、气体反应设备及气体水解反应方法 - Google Patents

气体喷嘴、气体反应设备及气体水解反应方法 Download PDF

Info

Publication number
CN110354795B
CN110354795B CN201910466940.2A CN201910466940A CN110354795B CN 110354795 B CN110354795 B CN 110354795B CN 201910466940 A CN201910466940 A CN 201910466940A CN 110354795 B CN110354795 B CN 110354795B
Authority
CN
China
Prior art keywords
gas
nozzle
outlet
deacidification
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910466940.2A
Other languages
English (en)
Other versions
CN110354795A (zh
Inventor
段先健
王跃林
王成刚
吴春蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Huifu Nano Materials Co Ltd
Guangzhou Hui Fu Research Institute Co ltd
Original Assignee
Hubei Huifu Nano Materials Co Ltd
Guangzhou Hui Fu Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Huifu Nano Materials Co Ltd, Guangzhou Hui Fu Research Institute Co ltd filed Critical Hubei Huifu Nano Materials Co Ltd
Priority to CN201910466940.2A priority Critical patent/CN110354795B/zh
Publication of CN110354795A publication Critical patent/CN110354795A/zh
Priority to PCT/CN2019/114853 priority patent/WO2020238009A1/zh
Priority to US17/429,890 priority patent/US20220204341A1/en
Priority to EP19931394.1A priority patent/EP3900822A4/en
Application granted granted Critical
Publication of CN110354795B publication Critical patent/CN110354795B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/26Nozzle-type reactors, i.e. the distribution of the initial reactants within the reactor is effected by their introduction or injection through nozzles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/19Fluorine; Hydrogen fluoride
    • C01B7/191Hydrogen fluoride
    • C01B7/193Preparation from silicon tetrafluoride, fluosilicic acid or fluosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/0013Controlling the temperature of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/004Feeding of the particles in the reactor; Evacuation of the particles out of the reactor by means of a nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/0055Separating solid material from the gas/liquid stream using cyclones
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/152Preparation of hydrogels
    • C01B33/1525Preparation of hydrogels from or via fluosilicic acid or salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00504Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner

Abstract

本发明涉及一种气体喷嘴、气体反应设备及气体水解反应方法,该气体喷嘴的喷嘴腔体的侧壁上设有多个燃料气体通道,多个燃料气体通道环绕喷嘴腔体的侧壁设置,从喷嘴进气口通入的混合气体被从多个燃料气体通道通入的燃料气体包围在其中。各燃料气体通道朝向喷嘴出气口倾斜,并且,各燃料气体通道还朝向同一时钟方向倾斜。如此,从多个燃料气体通道通入的燃料气体形成向下的锥形螺旋火焰,将从喷嘴进气口的混合气体形成的火焰包裹在其中,从喷嘴出气口喷出。如此,一方面可以保证混合气体进入燃烧区域的温度足够高,使得反应能够进行,另一方面,也可以进一步使燃料气体和原料气体进行混合,保证反应充分。

Description

气体喷嘴、气体反应设备及气体水解反应方法
技术领域
本发明涉及气体反应领域,特别是涉及一种气体喷嘴、气体反应设备及气体水解反应方法。
背景技术
氟是一种重要的资源,在工业中有着重要的地位。氟化氢是最初的氟化工产品,可制备一系列产品,如氟塑料、氟橡胶、无机氟化物、制冷剂等。自然界中能加以利用的氟资源主要以萤石(CaF2)、冰晶石(Na3(AlF6))及氟磷灰石(Ca10(PO4)6F2)的形式存在。然而,冰晶石和萤石在地壳中的蕴藏量有限,其中萤石作为一种不可再生的战略资源,已受到各国的保护,被限制开采。世界上90%的氟资源以伴生的状态包含在磷矿石中,磷矿石中氟的含量虽然仅有3%-4%,但蕴藏量极大,是十分重要的氟资源。
在磷化工中的含氟副产物主要是氟硅酸或氟硅酸盐。另外,在钼矿中提取后的尾矿处理中,也存在大量的氟硅酸和四氟化硅。对于上述含氟副产物的利用,重点都在对氟资源的提取利用,而对其中含量更高的硅未能进行利用,未实现效益的最大化。因此,有必要对上述含氟副产物进行综合利用,同时对氟资源和硅资源进行提取利用。
气相法工艺(也称作热解法工艺)是将反应物在高温火焰中进行反应,然后经过一系列后处理工序得到最终产品的工艺。最常见的气相法二氧化硅是以氯硅烷为原料在氢氧火焰中进行高温水解反应(SiCl4+2H2+O2→SiO2+4HCl)得到的,但是以四氟化硅为原料制备气相法二氧化硅的则比较少。
由于常温下,二氧化硅与氢氟酸的反应(SiO2+HF→SiF4+H2O)是非常容易进行的,所以其逆反应很难发生。因此一般高温条件下,制备二氧化硅和氟化氢的收率很低,很难对四氟化硅加以充分利用。
发明内容
基于此,有必要提供一种气体喷嘴、气体反应设备及气体水解反应方法,以解决传统工艺利用四氟化硅制备二氧化硅和氟化氢收率低、难以对四氟化硅加以充分利用的问题。
一种气体喷嘴,包括喷嘴腔体,所述喷嘴腔体的两端分别设有喷嘴进气口和喷嘴出气口,所述喷嘴腔体的侧壁上设有多个燃料气体通道,多个所述燃料气体通道环绕所述喷嘴腔体的侧壁设置,各所述燃料气体通道朝向所述喷嘴出气口倾斜,并且,各所述燃料气体通道还朝向同一时钟方向倾斜。
在其中一个示例中,所述喷嘴腔体为中空的筒状结构,所述喷嘴腔体的两端开口分别为所述喷嘴进气口和所述喷嘴出气口。
在其中一个示例中,多个所述燃料气体通道均匀分布。
在其中一个示例中,所述燃料气体通道为4个或4个以上。
在其中一个示例中,相邻的两个所述燃料气体通道的开口之间的距离为2mm~300mm。
在其中一个示例中,各所述燃料气体通道向所述喷嘴出气口倾斜的角度为30°~85°
在其中一个示例中,各所述燃料气体通道向相邻所述燃料气体通道倾斜的角度为30°~85°。
在其中一个示例中,所述气体喷嘴还包括第一夹套结构,所述第一夹套结构套设在所述喷嘴腔体上,所述第一夹套结构与所述喷嘴腔体之间形成第一通气腔,各所述燃料气体通道与上述第一通气腔连通,所述第一夹套上设有第一夹套进气口,所述第一夹套进气口与所述第一通气腔连通。
一种气体反应设备,包括供气装置、反应室以及上述任一实施例的气体喷嘴,所述供气装置与所述气体喷嘴的喷嘴进气口连通,所述反应室与所述气体喷嘴的喷嘴出气口连通。
在其中一个示例中,所述供气装置包括混合腔体和第二夹套结构,所述混合腔体设有混合进气口以及与所述混合进气口连通的混合出气口,所述第二夹套结构套设在所述混合腔体上,所述第二夹套结构与所述混合腔体之间形成第二通气腔,所述第二夹套结构设有与所述第二通气腔连通的第二夹套进气口以及第二夹套出气口,所述第二夹套出气口环绕所述混合出气口设置,所述第二夹套出气口和所述混合出气口分别与所述喷嘴腔体的喷嘴进气口连通。
在其中一个示例中,所述气体反应设备还包括气固分离装置,所述气固分离装置具有分离腔以及与所述分离腔连通的分离进料口、分离气体出口和分离固体出口,所述分离进料口与所述反应室的出料口连通。
在其中一个示例中,所述体反应设备还包括布袋除尘器,所述布袋除尘器具有除尘腔以及与所述除尘腔连通的除尘进料口、除尘气体出口和除尘固体出口,所述除尘进料口与所述气固分离装置的分离气体出口连通,所述除尘固体出口与所述气固分离装置的分离进料口连通。
在其中一个示例中,所述体反应设备还包括脱酸装置,所述脱酸装置具有脱酸腔以及与所述脱酸腔连通的脱酸进料口、脱酸气体出口和脱酸固体出口,所述脱酸进料口与所述气固分离装置的分离固体出口连通。
在其中一个示例中,所述脱酸装置有多级,后一级脱酸装置的脱酸进料口与前一级脱酸装置的脱酸固体出口连通,第一级脱酸装置的脱酸进料口与所述气固分离装置的分离固体出口连通。
在其中一个示例中,所述脱酸装置还设有与所述脱酸腔连通的脱酸气体进口,后一级脱酸装置的脱酸气体出口与前一级脱酸装置的脱酸气体进口连通,第一级脱酸装置的脱酸气体出口与所述气固分离装置的分离进料口连通。
一种气体水解反应方法,使用上述任一实施例的气体反应设备,所述气体水解反应方法包括以下步骤:
通过所述供气装置向所述喷嘴腔体通入原料气体和燃料气体的混合气体并点燃,形成第一火焰;
通过所述燃料气体通道向所述喷嘴腔体中通入燃料气体并点燃,形成围绕所述第一火焰的第二火焰。
在其中一个示例中,所述原料气体包含四氟化硅,所述燃料气体燃烧能够生成水。
与现有方案相比,本发明具有以下有益效果:
上述气体喷嘴、气体反应设备及气体水解反应方法,喷嘴腔体的侧壁上设有多个燃料气体通道,多个燃料气体通道环绕喷嘴腔体的侧壁设置,从喷嘴进气口通入的混合气体被从多个燃料气体通道通入的燃料气体包围在其中。各燃料气体通道朝向喷嘴出气口倾斜,并且,各燃料气体通道还朝向同一时钟方向倾斜。如此,从多个燃料气体通道通入的燃料气体形成向下的锥形螺旋火焰,将从喷嘴进气口的混合气体形成的火焰包裹在其中,从喷嘴出气口喷出。如此,一方面可以保证混合气体进入燃烧区域的温度足够高,使得反应能够进行,另一方面,也可以进一步使燃料气体和原料气体进行混合,保证反应充分。
附图说明
图1为一实施例的气体喷嘴的结构示意图;
图2为图1所示气体喷嘴中喷嘴腔体的结构示意图;
图3为图1所示气体喷嘴中喷嘴腔体俯视图;
图4为包含图1所示气体喷嘴的气体反应设备的部分结构示意图;
图5为图4所示气体反应设备的另一部分结构示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
需要说明的是,当元件被称为“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
请结合图1至图3,本发明的一实施例的气体喷嘴100,包括喷嘴腔体110,喷嘴腔体110的两端分别设有喷嘴进气口112和喷嘴出气口114。原料气体和燃料气体的混合气体可从喷嘴进气口112通入喷嘴腔体110中形成火焰,从喷嘴出气口114喷出喷嘴腔体110。
喷嘴腔体110的侧壁上设有多个燃料气体通道116。多个燃料气体通道116环绕喷嘴腔体110的侧壁设置。多个燃料气体通道116位于喷嘴进气口112与喷嘴出气口114之间。如此,从喷嘴进气口112的混合气体被从多个燃料气体通道116通入的燃料气体21包围在其中。
各燃料气体通道116朝向喷嘴出气口114倾斜,并且,各燃料气体通道116还朝向同一时钟方向倾斜。如此,从多个燃料气体通道116通入的燃料气体形成向下的锥形螺旋火焰22,将从喷嘴进气口112的混合气体形成的火焰21包裹在其中,从喷嘴出气口114喷出。如此,一方面可以保证混合气体进入燃烧区域的温度足够高,使得反应能够进行,另一方面,也可以进一步使燃料气体和原料气体进行混合,保证反应充分。
以四氟化硅水解反应生成二氧化硅和氟化氢为例,原料气体四氟化硅可以是来自磷化工的副产物和钼矿尾矿砂以及其他途径获得的四氟化硅。可实现磷化工和钼矿尾矿副产物四氟化硅的综合利用,把氟资源和硅资源充分利用,变废为宝,解决了磷化工及钼矿尾矿副产物出路问题。
燃料气体可选择氢气和氧气,也可以选择氢气和空气,氢气和氧气反应生成的水可与四氟化硅进行反应,同时氢气和氧气反应释放大量热量提供四氟化硅反应的温度场。为保证氟资源的回收利用,燃烧气体优选为纯度大于99.0%的氢气和纯度大于99.0%的氧气,减少二氧化碳等副产物的产生。在尾气处理系统气体分离条件允许的状态下,也可用可燃烧生成水的可燃气体,如甲醚、甲烷、乙醇等低沸点可燃气体。
在图示的具体示例中,喷嘴腔体110为中空的筒状结构,具体为圆筒状结构。喷嘴腔体110的两端开口分别为喷嘴进气口112和喷嘴出气口114。
如图2和图3所示,在其中一个示例中,通过在喷嘴腔体110的侧壁设置多根进气管形成燃料气体通道116。
在其中一个示例中,多个燃料气体通道116均匀分布。在其中一个示例中,多个燃料气体通道116以喷嘴腔体110的中轴线为中心呈中心对称分布。
可选地,燃料气体通道116可以根据喷嘴腔体110的尺寸进行选择。在其中一个示例中,燃料气体通道116为4个或4个以上。进一步地,在其中一个示例中,燃料气体通道116为5个至20个,例如6个、8个、10个、15个等等。
可选地,相邻的两个燃料气体通道116的开口之间的距离可以根据喷嘴腔体110的尺寸进行选择。在其中一个示例中,相邻的两个燃料气体通道116的开口之间的距离为2mm~300mm。进一步地,在其中一个示例中,相邻的两个燃料气体通道116的开口之间的距离为5mm~200mm。再进一步地,在其中一个示例中,相邻的两个燃料气体通道116的开口之间的距离为20mm~100mm。在一些具体的示例中,相邻的两个燃料气体通道116的开口之间的距离相同,如20mm、30mm、50mm、80mm等等。
如图2所示,在其中一个示例中,各燃料气体通道116向喷嘴出气口114倾斜的角度α为30°~85°。例如在喷嘴腔体110为中空的圆筒状结构的示例中,各燃料气体通道116与喷嘴腔体110的横截面的夹角为30°~85°。
进一步地,在其中一个示例中,各燃料气体通道116向喷嘴出气口114倾斜的角度为40°~75°。
在一些具体的示例中,各燃料气体通道116向喷嘴出气口114倾斜的角度相同,如35°、45°、55°、65°、75°等等。
在其他示例中,各燃料气体通道116向喷嘴出气口114倾斜的角度α也可以不相同,例如相邻的燃料气体通道116的角度α不同,而中间间隔固定数量的(如1个、2个等)燃料气体通道116的两个燃料气体通道116的角度α相同,这样,可以形成不同锥度的螺旋火焰,能够提高反应环境温度并加强气体混合效果。在一个具体的示例中,中间间隔1个燃料气体通道116的两个燃料气体通道116的角度α为60°,与之相邻的燃料气体通道116的角度α为30°。
如图3所示,在其中一个示例中,各燃料气体通道116向相邻燃料气体通道116倾斜的角度β为30°~85°。例如在喷嘴腔体110为中空的圆筒状结构的示例中,各燃料气体通道116的开口方向与与其反向延伸线在喷嘴腔体110的交点处的径向的夹角为30°~85°。
进一步地,在其中一个示例中,各燃料气体通道116向相邻燃料气体通道116倾斜的角度β为40°~75°。
在一些具体的示例中,各燃料气体通道116向相邻燃料气体通道116倾斜的角度β相同,如35°、45°、55°、65°、75°等等。
在其他示例中,各燃料气体通道116向相邻燃料气体通道116倾斜的角度β也可以不相同,例如相邻的燃料气体通道116的角度β不同,而中间间隔固定数量的(如1个、2个等)燃料气体通道116的两个燃料气体通道116的角度β相同,这样,可以形成不同锥度的螺旋火焰,能够提高反应环境温度并加强气体混合效果。在一个具体的示例中,中间间隔1个燃料气体通道116的两个燃料气体通道116的角度β为60°,与之相邻的燃料气体通道116的角度β为30°。
如图2所示,在其中一个示例中,各燃料气体通道116设置在喷嘴腔体110靠近喷嘴进气口112的一端的侧壁上。在其他示例中,喷嘴腔体110的侧壁从靠近喷嘴进气口112一端至靠近喷嘴出气口114一端也可以设置多组燃料气体通道116,每组燃料气体通道116环绕,喷嘴腔体110的侧壁设置。
如图1所示,在其中一个示例中,气体喷嘴100还包括第一夹套结构120。第一夹套结构120套设在喷嘴腔体110上。夹套结构与喷嘴腔体110之间形成第一通气腔122。第一夹套上设有第一夹套进气口124。第一通气腔122与第一夹套进气口124及燃料气体通道116连通。
在图1所示的具体示例中,第一夹套进气口124有两个,且该两个第一夹套进气口124相对设置。如此,可分别从两个夹套进气口通入燃料气体,第一通气腔122中的燃料气体再经由各燃料气体通道116进入喷嘴腔体110中。无需从各燃料气体通道116一一通入气体,操作方便,并且可使得进入喷嘴腔体110中的各气流均匀稳定。
如图1所示,在其中一个示例中,气体喷嘴100还包括安装机构130,安装机构130可用于将气体喷嘴100与混合气体供气单元进行安装连接。例如,安装机构130上可设置法兰134与混合气体供气单元进行密封连接。
安装机构130与喷嘴腔体110连接,并且设有安装孔132,安装孔132与喷嘴腔体110的喷嘴进气口112连通。混合气体供气单元可伸入安装孔132中向喷嘴腔体110内供应气体。
进一步地,在其中一个示例中,安装机构130上设置有观察镜136,观察镜136倾斜并朝向喷嘴腔体110内以供观察喷嘴腔体110内的火焰状况。在图所示的具体示例中,安装机构130上设置有两个观察镜136,且该两个观察镜136相对设置,以提供更多观察视角。可以理解,观察镜136还可以有更多个,如三个、四个。
如图4所示,进一步地,本发明还提供一种气体反应设备10,包括供气装置200、反应室300以及上述任一示例的气体喷嘴100。
其中,供气装置200与气体喷嘴100的喷嘴进气口112连通。供气装置200向气体喷嘴100提供气体来源。反应室300与气体喷嘴100的喷嘴出气口114连通。反应室300提供气体反应的空间。
如图4所示,在其中一个示例中,供气装置200包括混合腔体210和第二夹套结构220。
其中,混合腔体210设有混合进气口212以及与混合进气口212连通的混合出气口214。第二夹套结构220套设在混合腔体210上。第二夹套结构220与混合腔体210之间形成第二通气腔222。第二夹套结构220设有与第二通气腔222连通的第二夹套进气口224以及第二夹套出气口226。第二夹套出气口226环绕混合出气口214设置。第二夹套出气口226和混合出气口214分别与喷嘴腔体110的喷嘴进气口112连通。
进行气体反应时,可从混合进气口212通入原料气体和燃料气体,原料气体和燃料气体在混合腔体210内进行气体混合,再从混合出气口214通出并点燃形成火焰211。同时,可从第二夹套进气口224向第二通气腔222通入燃料气体,燃料气体从第二夹套出气口226通出并点燃形成火焰212。这样,由于第二夹套出气口226环绕混合出气口214设置,火焰212包裹火焰211共同形成火焰21,火焰212作为保护火焰为原料气体的反应提供高温场,同时在喷嘴腔体110形成的螺旋火焰22包裹火焰21,进一步提高反应的温度,形成的温度场达到1600-2500℃,这样可以充分保证四氟化硅的水解反应顺利进行。
在图4所示的具体示例中,混合腔体210的混合进气口212有两个,两个混合进气口212相对设置,可分别通入原料气体和燃料气体。
如图4所示,在其中一个示例中,混合腔体210为中空管状,混合腔体210内设置有多层气体分散板216。气体分散板216可以呈多孔状,也可以是发散状。每层气体分散板216将混合腔体210内的气体流道分成多股。通过设置气体分散板216,可以使得原料与燃料气体充分混合均匀,特别是将气体分散板216分层设置,可以进一步提高原料气体与燃料气体的混合效果。在图所示的具体示例中,混合腔体210内从上到下设置有三层气体分散板216。
如图4所示,在其中一个示例中,混合腔体210设有温度检测器218。温度检测器218可以实时检测混合腔体210内的气体温度,便于实时掌握混合腔体210内的温度情况。
如图5所示,在其中一个示例中,气体反应设备10还包括气固分离装置230。气固分离装置230具有分离腔以及与分离腔连通的分离进料口、分离气体出口和分离固体出口,分离进料口与反应室300的出料口连通。
在本示例中,反应室300中的反应产物(气固混合物)经由分离进料口通入气固分离装置230的分离腔中进气气体和固体发分离处理。一般高温条件下,四氟化硅与水的反应是首先生成硅酸和氟化氢(SiF4+H2O→H2SiO3+HF),然而四氟化硅与氟化氢还会再进行反应(SiF4+2HF=H2SiF6)。本示例的气体反应设备10将反应产物分离出反应室,特别是将氟化氢气体尽快分离出反应腔体,有利于正反应的继续进行,克服逆反应的影响,提高了产品收率。
气固分离得到的氟化氢等气体经由分离气体出口排出分离腔,得到的二氧化硅等固体经由分离固体出口排出分离腔。
气固分离装置230可以选择但不限于旋风分离器,具有效率较高、成本低廉等优点。
在其中一个示例中,气固分离装置230和反应室300之间还设有聚集器,从反应室300出来的反应产物经聚集器聚集和冷却后,再通入气固分离装置230中进行气固分离处理,可提高气固分离装置230的利用效率。
如图5所示,在其中一个示例中,气体反应设备10还包括布袋除尘器240。布袋除尘器240具有除尘腔以及与除尘腔连通的除尘进料口、除尘气体出口和除尘固体出口。除尘进料口与气固分离装置230的分离气体出口连通,除尘固体出口与气固分离装置230的分离进料口连通。
经过气固分离装置230分离得到的气体产物(包括反应产物氟化氢)中夹带少量二氧化硅粉体,气体产物从气固分离装置230的分离气体出口经由布袋除尘器240的除尘进料口进入除尘腔中进行除尘处理。气体中的粉体经过布袋除尘器240的过滤沉降之后,从除尘固体出口经由气固分离装置230的分离进料口返回到气固分离装置230的分离腔中。如此,避免了尾气将部分二氧化硅产物带走,提高了二氧化硅的产率。
如图5所示,连通除尘固体出口与气固分离装置230的分离进料口的管道设置有除尘输送器242,用于将获得的粉体输送回到气固分离装置230中。
经过布袋除尘器240处理后的尾气从除尘气体出口排出除尘腔。
如图5所示,在其中一个示例中,气体反应设备10还包括尾气处理装置250,尾气处理装置250与布袋除尘器240的除尘气体出口连通。布袋除尘器240排出的尾气通入尾气处理装置250进行处理,避免污染环境。
尾气处理装置250主要是把反应尾气中的粉尘以及其他气体分离,获得氟化氢气体或者经吸收后获得氢氟酸,充分利用氟资源。经过布袋除尘器240后,尾气中的粉尘已非常低了。在尾气处理装置250中,可采用沉降罐对尾气中的粉尘进一步分离,然后再经过过滤器过滤,得到无尘尾气。然后经过冷冻干燥器进行冷冻干燥等工艺,把尾气中的二氧化碳、少量的四氟化硅等分离,得到高纯氟化氢气体,或者经吸收后得到氢氟酸。
如图5所示,在其中一个示例中,气体反应设备10还包括脱酸装置。脱酸装置具有脱酸腔以及与脱酸腔连通的脱酸进料口、脱酸气体出口和脱酸固体出口,脱酸进料口与气固分离装置230的分离固体出口连通。脱酸装置可采用市面上售卖的脱酸装置。
反应产物经过气固分离装置230分离处理后,二氧化硅固体产物仍然附着有氟化氢气体。在本示例中,二氧化硅产物从气固分离装置230经由脱酸装置的脱酸进料口通入脱酸腔中进行脱酸处理,去除附着于二氧化硅颗粒表面的氟化氢等气体,提高二氧化硅的酸碱度和纯度。如图5所示,连通脱酸进料口与气固分离装置230的分离固体出口的管道上设置有脱酸输送器266,用于将固体产物输送至脱酸装置中。
脱酸腔中脱除的气体经由脱酸气体出口。进一步地,在其中一个示例中,脱酸装置的脱酸气体出口与气固分离装置230的分离进料口连通,脱酸腔中脱除的气体可以返回到气固分离装置230中。这样,气体中少量的二氧化硅粉体又返回气固分离装置230中进行气固分离,减少产物损失。
如图5所示,连通脱酸气体出口与气固分离装置230的分离进料口的管道上设置有阀门268,以用于气体流通控制。
如图5所示,在其中一个示例中,气体反应设备10设置有多级脱酸装置。后一级脱酸装置的脱酸进料口与前一级脱酸装置的脱酸固体出口连通,第一级脱酸装置261的脱酸进料口与气固分离装置230的分离固体出口连通。如此,能够逐步提高二氧化硅产物的酸碱度和纯度。
如图5所示,连通后一级脱酸装置的脱酸进料口与前一级脱酸装置的脱酸固体出口的管道上设置有脱酸输送器266。
进一步地,在其中一个示例中,脱酸装置还设有与脱酸腔连通的脱酸气体进口。后一级脱酸装置的脱酸气体出口与前一级脱酸装置的脱酸气体进口连通,第一级脱酸装置261的脱酸气体出口与气固分离装置230的分离进料口连通。在图所示的具体示例中,气体反应设备10设置有四级脱酸装置。第一级脱酸装置261出来的粉体经进入第二级脱酸装置262,尾气返回到气固分离装置230。经过第二级脱酸装置262脱酸后的粉体进入第三级脱酸装置263,尾气返回第一级脱酸装置261,经过第三级脱酸装置263脱酸后的粉体进入第四级脱酸装置264,尾气返回第二级脱酸装置262,依此一共进行四级脱酸处理。经四级脱酸后的粉体进入料仓270。
脱酸腔中脱除的气体,因还夹带部分粉体,则依此返回上一级脱酸装置,经过循环脱酸和过滤,可充分脱除吸附在二氧化硅表面的氟化氢气体。经过四级脱酸处理,二氧化硅粉体的收率高于99%。通过这种多级串联的脱酸装置,可以保证脱酸装置内部存在微负压,有利于吸附在二氧化硅表面的氟化氢等气体的脱除,同时也保证脱酸装置内粉体的高效流动,提高了脱酸效率和生产效率,最终产品的pH值高于3.8。
如图5所示具体示例的气体反应设备10,通过有效分离和脱附工艺,克服了传统方法得到的二氧化硅中含有过高氟硅酸和氟化氢的弊端,大大提高了二氧化硅的应用广泛性,同时获得高纯氟化氢,使得氟资源也得到充分利用。
进一步地,本发明还提供一种采用上述任一示例的气体反应设备10进行气体水解反应的方法,该方法包括以下步骤:
通过所述供气装置200向所述喷嘴腔体110通入原料气体和燃料气体的混合气体并点燃,形成第一火焰;
通过所述燃料气体通道116向所述喷嘴腔体110中通入燃料气体并点燃,形成围绕所述第一火焰的第二火焰。
以四氟化硅水解反应制备二氧化硅和氟化氢为例,结合一具体示例的气体反应设备10对本发明作进一步说明。
请参照图4和图5,一个具体示例的气体水解反应的方法的流程说明如下:
本示例采用的原料气体四氟化硅可以是来自磷化工的副产物和钼矿尾矿砂以及其他途径获得的四氟化硅。燃料气体可选择氢气和氧气,也可以选择氢气和空气,也可以是可燃烧生成水的可燃气体,如甲醚、甲烷、乙醇等低沸点可燃气体,优选为纯度大于99.0%的氢气和纯度大于99.0%的氧气,减少二氧化碳等副产物的产生。
从混合腔体210的两个混合进气口212分别通入原料气体和燃料气体。原料气体和燃料气体经过混合腔体210中三层气体分散板216的混合作用形成均匀的混合气体。混合气体从混合腔体210的混合出气口214通出并点燃形成火焰211。同时,从第二夹套结构220的第二夹套进气口224向第二通气腔222通入燃料气体,燃料气体从第二夹套出气口226通出并点燃形成火焰212。火焰212包裹火焰211共同形成火焰21,火焰212作为保护火焰为原料气体的反应提供高温场。
从第一夹套结构120的两个第一夹套进气口124通入燃料气体,具有一定的通气速度使得燃料气体经多个燃料气体通道116以一定速度喷入喷嘴腔体110中并点燃,形成向下的锥形螺旋火焰22,将从喷嘴进气口112的混合气体形成的火焰21包裹在其中,形成1600-2500℃的温度场,使得水解反应能够进行。火焰喷至反应室300进行水解反应,生成二氧化硅和氟化氢粗产品。
粗产品经聚集器聚集和冷却后,通过管道输送至气固分离装置230(旋风分离器)中进行气固分离处理。经过气固分离装置230分离得到的气体产物从气固分离装置230的分离气体出口经由布袋除尘器240的除尘进料口进入除尘腔中进行除尘处理。气体中的粉体经过布袋除尘器240的过滤沉降之后,从除尘固体出口经由气固分离装置230的分离进料口返回到气固分离装置230的分离腔中。经过布袋除尘器240处理后的尾气通入尾气处理装置250进行处理。者经吸收后获得氢氟酸,充分利用氟资源。经过布袋除尘器240后,尾气中的粉尘已非常低了。在尾气处理装置250中,可采用沉降罐对尾气中的粉尘进一步分离,然后再经过过滤器过滤,得到无尘尾气。然后经过冷冻干燥器进行冷冻干燥等工艺,把尾气中的二氧化碳、少量的四氟化硅等分离,得到高纯氟化氢气体,或者经吸收后得到氢氟酸。
气固分离装置230分离得到的二氧化硅产物经过四级脱酸装置进行脱酸处理,去除附着于二氧化硅颗粒表面的氟化氢等气体。第一级脱酸装置261出来的粉体经进入第二级脱酸装置262,尾气返回到气固分离装置230。经过第二级脱酸装置262脱酸后的粉体进入第三级脱酸炉,尾气返回第一级脱酸装置261,依此一共进行四级脱酸处理。脱酸腔中脱除的气体,依此返回上一级脱酸装置,第一级脱酸装置261的脱除的气体经管道输送回气固分离装置230中。最终从第四级脱酸装置264出来的二氧化硅产物收率高于99%,pH值高于3.8。
可以理解,上述气体喷嘴100、气体反应设备10及气体水解反应方法,除了可应用于四氟化硅的水解反应,也可以应用于其他的一些需要高温条件的气体反应中。
上述气体喷嘴100、气体反应设备10及气体水解反应方法,喷嘴腔体110的侧壁上设有多个燃料气体通道116,多个燃料气体通道116环绕喷嘴腔体110的侧壁设置,从喷嘴进气口112通入的混合气体被从多个燃料气体通道116通入的燃料气体包围在其中。各燃料气体通道116朝向喷嘴出气口114倾斜,并且,各燃料气体通道116还朝向同一时钟方向倾斜。如此,从多个燃料气体通道116通入的燃料气体形成向下的锥形螺旋火焰,将从喷嘴进气口112的混合气体形成的火焰包裹在其中,从喷嘴出气口114喷出。如此,一方面可以保证混合气体进入燃烧区域的温度足够高,使得反应能够进行,另一方面,也可以进一步使燃料气体和原料气体进行混合,保证反应充分。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (13)

1.一种气体喷嘴,其特征在于,包括喷嘴腔体,所述喷嘴腔体的两端分别设有喷嘴进气口和喷嘴出气口,所述喷嘴腔体的侧壁上设有多个燃料气体通道,多个所述燃料气体通道环绕所述喷嘴腔体的侧壁设置,各所述燃料气体通道朝向所述喷嘴出气口倾斜,并且,各所述燃料气体通道还朝向同一时钟方向倾斜;
所述气体喷嘴还包括第一夹套结构,所述第一夹套结构套设在所述喷嘴腔体上,所述第一夹套结构与所述喷嘴腔体之间形成第一通气腔,各所述燃料气体通道与上述第一通气腔连通,所述第一夹套上设有第一夹套进气口,所述第一夹套进气口与所述第一通气腔连通。
2.如权利要求1所述的气体喷嘴,其特征在于,所述喷嘴腔体为中空的筒状结构,所述喷嘴腔体的两端开口分别为所述喷嘴进气口和所述喷嘴出气口;和/或
多个所述燃料气体通道均匀分布;和/或
所述燃料气体通道为4个或4个以上;和/或
相邻的两个所述燃料气体通道的开口之间的距离为2mm~300mm。
3.如权利要求1所述的气体喷嘴,其特征在于,各所述燃料气体通道向所述喷嘴出气口倾斜的角度为30°~85°;和/或
各所述燃料气体通道向相邻所述燃料气体通道倾斜的角度为30°~85°。
4.如权利要求1~3任一项所述的气体喷嘴,其特征在于,所述喷嘴腔体的侧壁设置多根进气管形成所述燃料气体通道。
5.一种气体反应设备,其特征在于,包括供气装置、反应室以及如权利要求1~4任一项所述的气体喷嘴,所述供气装置与所述气体喷嘴的喷嘴进气口连通,所述反应室与所述气体喷嘴的喷嘴出气口连通;
所述供气装置包括混合腔体和第二夹套结构,所述混合腔体设有混合进气口以及与所述混合进气口连通的混合出气口,所述第二夹套结构套设在所述混合腔体上,所述第二夹套结构与所述混合腔体之间形成第二通气腔,所述第二夹套结构设有与所述第二通气腔连通的第二夹套进气口以及第二夹套出气口,所述第二夹套出气口环绕所述混合出气口设置,所述第二夹套出气口和所述混合出气口分别与所述喷嘴腔体的喷嘴进气口连通。
6.如权利要求5所述的气体反应设备,其特征在于,所述混合腔体设有温度检测器,所述温度检测器用于实时检测所述混合腔体内的气体温度。
7.如权利要求5或6所述的气体反应设备,其特征在于,还包括气固分离装置,所述气固分离装置具有分离腔以及与所述分离腔连通的分离进料口、分离气体出口和分离固体出口,所述分离进料口与所述反应室的出料口连通。
8.如权利要求7所述的气体反应设备,其特征在于,还包括布袋除尘器,所述布袋除尘器具有除尘腔以及与所述除尘腔连通的除尘进料口、除尘气体出口和除尘固体出口,所述除尘进料口与所述气固分离装置的分离气体出口连通,所述除尘固体出口与所述气固分离装置的分离进料口连通。
9.如权利要求7所述的气体反应设备,其特征在于,还包括脱酸装置,所述脱酸装置具有脱酸腔以及与所述脱酸腔连通的脱酸进料口、脱酸气体出口和脱酸固体出口,所述脱酸进料口与所述气固分离装置的分离固体出口连通。
10.如权利要求9所述的气体反应设备,其特征在于,所述脱酸装置有多级,后一级脱酸装置的脱酸进料口与前一级脱酸装置的脱酸固体出口连通,第一级脱酸装置的脱酸进料口与所述气固分离装置的分离固体出口连通。
11.如权利要求10所述的气体反应设备,其特征在于,所述脱酸装置还设有与所述脱酸腔连通的脱酸气体进口,后一级脱酸装置的脱酸气体出口与前一级脱酸装置的脱酸气体进口连通,第一级脱酸装置的脱酸气体出口与所述气固分离装置的分离进料口连通。
12.一种气体水解反应方法,其特征在于,使用如权利要求5~11任一项所述的气体反应设备,所述气体水解反应方法包括以下步骤:
通过所述供气装置向所述喷嘴腔体通入原料气体和燃料气体的混合气体并点燃,形成第一火焰;
通过所述燃料气体通道向所述喷嘴腔体中通入燃料气体并点燃,形成围绕所述第一火焰的第二火焰。
13.如权利要求12所述的气体水解反应方法,其特征在于,所述原料气体包含四氟化硅,所述燃料气体燃烧能够生成水。
CN201910466940.2A 2019-05-31 2019-05-31 气体喷嘴、气体反应设备及气体水解反应方法 Active CN110354795B (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910466940.2A CN110354795B (zh) 2019-05-31 2019-05-31 气体喷嘴、气体反应设备及气体水解反应方法
PCT/CN2019/114853 WO2020238009A1 (zh) 2019-05-31 2019-10-31 气体喷嘴、气体反应设备及气体水解反应方法
US17/429,890 US20220204341A1 (en) 2019-05-31 2019-10-31 Gas nozzle, gas reaction device and gas hydrolysis reaction method
EP19931394.1A EP3900822A4 (en) 2019-05-31 2019-10-31 GAS NOZZLE, GAS REACTION DEVICE AND GAS HYDROLYSIS REACTION METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910466940.2A CN110354795B (zh) 2019-05-31 2019-05-31 气体喷嘴、气体反应设备及气体水解反应方法

Publications (2)

Publication Number Publication Date
CN110354795A CN110354795A (zh) 2019-10-22
CN110354795B true CN110354795B (zh) 2020-11-20

Family

ID=68215321

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910466940.2A Active CN110354795B (zh) 2019-05-31 2019-05-31 气体喷嘴、气体反应设备及气体水解反应方法

Country Status (4)

Country Link
US (1) US20220204341A1 (zh)
EP (1) EP3900822A4 (zh)
CN (1) CN110354795B (zh)
WO (1) WO2020238009A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110354795B (zh) * 2019-05-31 2020-11-20 广州汇富研究院有限公司 气体喷嘴、气体反应设备及气体水解反应方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422805A (zh) * 2002-12-30 2003-06-11 广州吉必时科技实业有限公司 一种高分散纳米二氧化硅的制备方法
CN1858498A (zh) * 2006-05-16 2006-11-08 北京航空航天大学 切向驻涡燃烧室
CN101120210A (zh) * 2005-02-18 2008-02-06 国际技术公司及国际技术公开有限公司 用于电弧炉中冶金处理的多功能喷射器及相关燃烧方法
CN101734668A (zh) * 2009-12-28 2010-06-16 周庆华 一种气相法白炭黑的制备方法及其所用设备
CN201672512U (zh) * 2010-05-13 2010-12-15 葛立奎 卧式连续炭化转炉用热源喷嘴

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1462395A (en) * 1922-06-12 1923-07-17 Smith S Dock Company Ltd Construction of spraying nozzles or atomizers
DE2743567C2 (de) * 1977-09-28 1984-12-13 Castolin S.A., Lausanne, St. Sulpice, Vaud Brennerdüse für Flammspritzgeräte
KR100673385B1 (ko) * 2005-05-31 2007-01-24 한국과학기술연구원 나노분말 연소반응기와, 그 나노분말 연소반응기를 이용한나노분말 합성장치와, 그 나노분말 합성장치의 제어방법
CN100369811C (zh) * 2006-04-29 2008-02-20 广州吉必时科技实业有限公司 一种多晶硅生产过程中的副产物的综合利用方法
US20110162379A1 (en) * 2010-01-06 2011-07-07 General Electric Company Apparatus and method for supplying fuel
CN102167334A (zh) * 2011-03-18 2011-08-31 中国恩菲工程技术有限公司 多晶硅副产物四氯化硅处理方法
CN203615346U (zh) * 2013-10-15 2014-05-28 中国石油化工股份有限公司 用于丙烯腈焚烧炉的天然气喷枪
CN204739592U (zh) * 2015-06-05 2015-11-04 天津特贝佳环保科技发展有限公司 一种用于燃烧器的废气均匀环
CN107583594B (zh) * 2017-09-29 2019-10-25 宜昌南玻硅材料有限公司 一种带环隙空气强制冷却嘴套的精密反应器及纳米级气相法白炭黑的制备方法
CN108101001B (zh) * 2018-01-31 2023-08-22 广州汇富研究院有限公司 粉体材料制备装置
CN110354795B (zh) * 2019-05-31 2020-11-20 广州汇富研究院有限公司 气体喷嘴、气体反应设备及气体水解反应方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1422805A (zh) * 2002-12-30 2003-06-11 广州吉必时科技实业有限公司 一种高分散纳米二氧化硅的制备方法
CN101120210A (zh) * 2005-02-18 2008-02-06 国际技术公司及国际技术公开有限公司 用于电弧炉中冶金处理的多功能喷射器及相关燃烧方法
CN1858498A (zh) * 2006-05-16 2006-11-08 北京航空航天大学 切向驻涡燃烧室
CN101734668A (zh) * 2009-12-28 2010-06-16 周庆华 一种气相法白炭黑的制备方法及其所用设备
CN201672512U (zh) * 2010-05-13 2010-12-15 葛立奎 卧式连续炭化转炉用热源喷嘴

Also Published As

Publication number Publication date
CN110354795A (zh) 2019-10-22
EP3900822A1 (en) 2021-10-27
US20220204341A1 (en) 2022-06-30
WO2020238009A1 (zh) 2020-12-03
EP3900822A4 (en) 2022-03-02

Similar Documents

Publication Publication Date Title
US4519999A (en) Waste treatment in silicon production operations
CN100369811C (zh) 一种多晶硅生产过程中的副产物的综合利用方法
JP2006511324A (ja) 排ガスからのガス状汚染物質除去方法および設備
CN110354795B (zh) 气体喷嘴、气体反应设备及气体水解反应方法
CN101472666A (zh) 从气流中除氟用的方法和装置
CN104075332B (zh) 用于提高黄磷尾气综合利用率的系统和方法
CN100579896C (zh) 鲁奇炉出口煤气加纯氧非催化部分氧化制取合适氢碳比合成气的方法及系统
CA1162383A (en) Process for producing hydrogen fluoride from fluorine containing material by continuous pyrohydrolysis
US4036938A (en) Production of high purity hydrogen fluoride from silicon tetrafluoride
US8945293B2 (en) Silicon oxide removal apparatus and facility for recycling inert gas for use in silicon single crystal manufacturing apparatus
CN103693687A (zh) 制备二氧化钛的方法和系统
CN112441604B (zh) 一种制备高纯氟化物的方法
CN111603883A (zh) 一种回收高纯SiO2和盐酸的装置及方法
JP2012519651A (ja) 様々なフッ化原料、非晶質シリカ及び硫酸を用いたテトラフルオロシランの連続式製造方法
CN104876190A (zh) 一种富氧助燃的废酸裂解工艺
CN106219557B (zh) 一种以微硅粉/硅藻土粉/蛋白石粉为原料低温制备气相白炭黑的工艺
CN103896332B (zh) 制备二氧化钛的方法和系统
CN108569676A (zh) 以烟气为热源的化学链空气分离制氧装置及方法
CN209890257U (zh) 一种新型天然气炭黑的制备系统
CN206045772U (zh) 用于脱除烟气中重金属和氟氯硫硝的氧化脱污装置
CN111235382A (zh) 一种环保节能的稀土精矿分段焙烧系统及焙烧方法
CN108190950B (zh) 二氧化锆的制备方法
CN102161474B (zh) 氯化氢气体的精制方法
CN206069375U (zh) 一种湿块矿配加焦粒型磷酸制备系统
CN102351156B (zh) 一种硫酸厂的无尾气生产装置及工艺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Duan Xianjian

Inventor after: Wang Yuelin

Inventor after: Wang Chenggang

Inventor after: Wu Chunlei

Inventor before: Duan Xianjian

Inventor before: Wang Yuelin

Inventor before: Wang Chenggang

Inventor before: Wu Chunlei

Inventor before: Li Zhengfa

CB03 Change of inventor or designer information
CB02 Change of applicant information

Address after: 510663 508 laboratory building 15, Nanxiang three road, science and Technology City, Guangzhou high tech Industrial Development Zone, Guangdong, China

Applicant after: Guangzhou Hui Fu Research Institute Co.,Ltd.

Applicant after: Hubei HuiFu nano materials Co.,Ltd.

Address before: 510663 508 laboratory building 15, Nanxiang three road, science and Technology City, Guangzhou high tech Industrial Development Zone, Guangdong, China

Applicant before: Guangzhou Hui Fu Research Institute Co.,Ltd.

Applicant before: YICHANG HUIFU SILICON MATERIAL Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Gas nozzle, gas reaction equipment, and gas hydrolysis reaction method

Granted publication date: 20201120

Pledgee: Bank of China Limited by Share Ltd. Guangzhou Liwan branch

Pledgor: Guangzhou Hui Fu Research Institute Co.,Ltd.

Registration number: Y2024980001357

PE01 Entry into force of the registration of the contract for pledge of patent right