CN110351032A - 资源配置方法及装置 - Google Patents

资源配置方法及装置 Download PDF

Info

Publication number
CN110351032A
CN110351032A CN201810280916.5A CN201810280916A CN110351032A CN 110351032 A CN110351032 A CN 110351032A CN 201810280916 A CN201810280916 A CN 201810280916A CN 110351032 A CN110351032 A CN 110351032A
Authority
CN
China
Prior art keywords
time
domain resource
uplink
signaling
downlink
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810280916.5A
Other languages
English (en)
Other versions
CN110351032B (zh
Inventor
马小骏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN201810280916.5A priority Critical patent/CN110351032B/zh
Priority to PCT/CN2019/077656 priority patent/WO2019192287A1/zh
Publication of CN110351032A publication Critical patent/CN110351032A/zh
Application granted granted Critical
Publication of CN110351032B publication Critical patent/CN110351032B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种资源配置方法及装置。该方法包括:终端设备接收网络设备发送的第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;所述终端设备接收所述网络设备发送的第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;所述终端设备根据所述第一信令和所述第二信令确定目标时域资源;所述终端设备在所述目标时域资源上发送或接收数据。本申请解决了无线通信网络中上下行资源分配周期与CSI‑RS、SRS、PDCCH、GC‑PDCCH等信道或信号的配置周期不匹配的问题。

Description

资源配置方法及装置
技术领域
本申请涉及通信技术领域,尤其涉及一种资源配置方法及装置。
背景技术
无线通信网络中,例如新空口(New Radio,NR)网络中,为了适应上下行业务的变化,支持灵活的半静态上下行资源分配,通过上下行资源分配信令能够组合出灵活的上下行资源分配周期,并在周期中进一步配置出下行、上行、灵活的时域资源。
无线通信网络中同时支持信道状态信息参考信号(Channel State InformationReference Signal,CSI-RS)、探测参考信号(Sounding Reference Signal,SRS)以及组公共物理下行控制信道(Group Common Physical Downlink Control Channel,GC-PDCCH)等信道或信号的半静态收发周期配置。
由于上下行资源分配周期的组合灵活多变,可能会出现与上述信道或信号的配置周期不匹配的情况,从而导致系统性能的损失。
发明内容
本申请实施例提供一种用于无线通信的方法及装置,解决了无线通信网络中上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
第一方面,本申请实施例提供一种用于无线通信的方法,包括:
终端设备接收来自网络设备的第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;
所述终端设备接收来自所述网络设备的第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;
所述终端设备根据所述第一信令和所述第二信令确定目标时域资源;
所述终端设备利用所述目标时域资源发送或接收数据。
在上述方案中,终端设备接收用于指示数据收发的时域资源参数集的第一信令和用于指示上下行资源分配周期的第二信令,并根据所述第一信令和所述第二信令共同决定收发所述数据的目标时域资源,从而解决了无线通信网络中上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
在一种可能实现的设计中,所述终端设备根据所述第一信令和所述第二信令确定目标时域资源,包括:
所述终端设备根据所述M个时域资源参数集确定K个时域资源参数集,并根据所述K个时域资源参数集确定K组时域资源为目标时域资源;或者,所述终端设备根据所述M个时域资源参数集确定M组时域资源,并根据所述M组时域资源确定K组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
在本方案中,所述终端设备可以根据第一预定义规则或所述网络设备发送的第三信令确定所述M个时域资源参数集中的K个时域资源参数集;或者,所述终端设备可以根据第四预定义规则或所述网络设备发送的第六信令确定所述M组时域资源中的K组时域资源。
在一种可能实现的设计中,所述终端设备根据所述K个时域资源参数集确定所述K组时域资源为目标时域资源,包括:
所述终端设备根据所述K个时域资源参数集中的时域资源参数集k在所述K个上下行资源分配周期中的上下行资源分配周期k’上确定第k组时域资源,所述k和k’为小于或等于K的正整数。
在本方案中,所述终端设备可以根据第二预定义规则或所述网络设备发送的第四信令确定,根据所述时域资源参数集k在所述上下行资源分配周期k’上确定所述第k组时域资源。
在一种可能实现的设计中,所述终端设备根据所述第一信令和所述第二信令确定目标时域资源,包括:
所述终端设备根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K组时域资源为目标时域资源;所述M为小于K的正整数,或者所述M为小于或等于K的正整数。。
在一种可能实现的设计中,所述终端设备根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定所述M*K组时域资源为目标时域资源,包括:
所述终端设备根据所述M个时域资源参数集确定M组时域资源,根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K-M组时域资源。
在一种可能实现的设计中,所述终端设备根据所述第一信令和所述第二信令确定目标时域资源,包括:
所述终端设备根据所述M个时域资源参数集确定M组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
在一种可能实现的设计中,所述终端设备根据所述M个时域资源参数集确定M组时域资源为目标时域资源,包括:
所述终端设备根据所述M个时域资源参数集中的时域资源参数集m在所述K个上下行资源分配周期中的上下行资源分配周期k上确定第m组时域资源,所述m和k为小于或等于K的正整数。
在本方案中,所述终端设备可以根据第三预定义规则或所述网络设备发送的第五信令确定,根据所述时域资源参数集m在所述上下行资源分配周期k上确定所述第m组时域资源。
在一种可能实现的设计中,所述数据包括参考信号,控制信道中的至少一种。
在一种可能实现的设计中,所述时域资源参数集包含所述数据的周期参数和所述数据的偏置参数。
在一种可能实现的设计中,所述第一信令为一条信令,所述M个时域资源参数集由所述一条信令中的M个字段分别承载;或者所述第一信令为M条信令,所述M个时域资源参数集由所述M条信令分别承载。
在一种可能实现的设计中,所述第一信令为下行控制信息、RRC信令、系统消息和MAC CE中的至少一种;所述目标时域资源为发送或接收所述数据的时域位置。
在一种可能实现的设计中,所述目标时域资源包含一个或多个基本时间单元,所述基本时间单元为符号、时隙、子帧和无线帧中的任意一种。
第二方面,本申请实施例提供一种终端设备,包括:
收发模块和处理模块;
所述收发模块用于接收网络设备发送的第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;所述收发模块用于接收所述网络设备发送的第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;
所述处理模块用于根据所述第一信令和所述第二信令确定目标时域资源;
所述收发模块还用于在所述目标时域资源上发送或接收数据。在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集确定K个时域资源参数集,并根据所述K个时域资源参数集确定K组时域资源为目标时域资源;或者,所述处理模块根据所述M个时域资源参数集确定M组时域资源,并根据所述M组时域资源确定K组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
在本方案中,所述处理模块可以根据第一预定义规则或所述网络设备发送的第三信令确定所述M个时域资源参数集中的K个时域资源参数集;或者,所述处理模块可以根据第四预定义规则或所述网络设备发送的第六信令确定所述M组时域资源中的K组时域资源。
在一种可能实现的设计中,所述处理模块,具体用于根据所述K个时域资源参数集中的时域资源参数集k在所述K个上下行资源分配周期中的上下行资源分配周期k’上确定第k组时域资源,所述k和k’为小于或等于K的正整数。
在本方案中,所述处理模块可以根据第二预定义规则或所述网络设备发送的第四信令确定,根据所述时域资源参数集k在所述上下行资源分配周期k’上确定所述第k组时域资源。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K组时域资源为目标时域资源;所述M为小于K的正整数,或者所述M为小于或等于K的正整数。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集确定M组时域资源,根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K-M组时域资源。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集确定M组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集中的时域资源参数集m在所述K个上下行资源分配周期中的上下行资源分配周期k上确定第m组时域资源,所述m和k为小于或等于K的正整数。
在本方案中,所述处理模块可以根据第三预定义规则或所述网络设备发送的第五信令确定,根据所述时域资源参数集m在所述上下行资源分配周期k上确定所述第m组时域资源。
在一种可能实现的设计中,所述数据包括参考信号,控制信道中的至少一种。
在一种可能实现的设计中,所述时域资源参数集包含所述数据的周期参数和所述数据的偏置参数。
在一种可能实现的设计中,所述第一信令为一条信令,所述M个时域资源参数集由所述一条信令中的M个字段分别承载;或者所述第一信令为M条信令,所述M个时域资源参数集由所述M条信令分别承载。
在一种可能实现的设计中,所述第一信令为下行控制信息、RRC信令、系统消息和MAC CE中的至少一种;所述目标时域资源为发送或接收所述数据的时域位置。
在一种可能实现的设计中,所述目标时域资源包含一个或多个基本时间单元,所述基本时间单元为符号、时隙、子帧和无线帧中的任意一种。
上述第二方面以及第二方面的各可能的实施方式所提供的通信装置,其有益效果可以参照上述第一方面以及第一方面的各可能的实施方式所带来的有益效果,在此不再赘述。
第三方面,本申请实施例提供一种终端设备,包括:处理器和存储器,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得终端设备以执行上述第一方面任一项所述的方法。
第四方面,本申请实施例提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述第一方面任一项所述的方法。
第五方面,本申请实施例提供一种芯片系统,包括:处理器,用于支持终端设备实现上述第一方面任一项所述的方法。
第六方面,本申请实施例提供一种用于无线通信的方法,包括:
网络设备向终端设备发送第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;
所述网络设备向所述终端设备发送第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;
所述网络设备确定目标时域资源,并利用所述目标时域资源接收或发送数据。
在一种可能实现的设计中,所述网络设备确定目标时域资源,包括:
所述网络设备根据所述M个时域资源参数集确定K个时域资源参数集,并根据所述K个时域资源参数集确定K组时域资源为目标时域资源;或者,所述网络设备根据所述M个时域资源参数集确定M组时域资源,并根据所述M组时域资源确定K组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
在本方案中,所述网络设备可以根据第一预定义规则确定所述M个时域资源参数集中的K个时域资源参数集;或者,所述网络设备可以根据第四预定义规则确定所述M组时域资源中的K组时域资源。
在本方案中,所述网络设备还可以根据需要自行确定所述M个时域资源参数集中的K个时域资源参数集,并向所述终端设备发送第三信令通知所述终端设备;或者,所述网络设备还可以根据需要自行确定所述M组时域资源中的K组时域资源,并向所述终端设备发送第六信令通知所述终端设备。
在一种可能实现的设计中,所述网络设备根据所述K个时域资源参数集确定K组时域资源为目标时域资源,包括:
所述网络设备根据所述K个时域资源参数集中的时域资源参数集k在所述K个上下行资源分配周期中的上下行资源分配周期k’上确定第k组时域资源,所述k和k’为小于或等于K的正整数。
在本方案中,所述网络设备可以根据第二预定义规则确定,根据所述时域资源参数集k在所述上下行资源分配周期k’上确定所述第k组时域资源。
在本方案中,所述网络设备还可以根据需要自行根据所述时域资源参数集k在所述上下行资源分配周期k’上确定所述第k组时域资源,并向所述终端设备发送第四信令通知所述终端设备。
在一种可能实现的设计中,所述网络设备确定目标时域资源,包括:
所述网络设备根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K组时域资源为目标时域资源;所述M为小于K的正整数,或者所述M为小于或等于K的正整数。。
在一种可能实现的设计中,所述网络设备根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定所述M*K组时域资源为目标时域资源,包括:
所述网络设备根据所述M个时域资源参数集确定M组时域资源,根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K-M组时域资源。
在一种可能实现的设计中,所述网络设备确定目标时域资源,包括:
所述网络设备根据所述M个时域资源参数集确定M组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
在一种可能实现的设计中,所述网络设备根据所述M个时域资源参数集确定M组时域资源为目标时域资源,包括:
所述网络设备根据所述M个时域资源参数集中的时域资源参数集m在所述K个上下行资源分配周期中的上下行资源分配周期k上确定第m组时域资源,所述m和k为小于或等于K的正整数。
在本方案中,所述网络设备可以根据第三预定义规则确定,根据所述时域资源参数集m在所述上下行资源分配周期k上确定所述第m组时域资源。
在本方案中,所述网络设备还可以根据需要自行根据所述时域资源参数集m在所述上下行资源分配周期k上确定所述第m组时域资源,并向所述终端设备发送第五信令通知所述终端设备。
在一种可能实现的设计中,所述数据包括参考信号,控制信道中的至少一种。
在一种可能实现的设计中,所述时域资源参数集包含所述数据的周期参数和所述数据的偏置参数。
在一种可能实现的设计中,所述第一信令为一条信令,所述M个时域资源参数集由所述一条信令中的M个字段分别承载;或者所述第一信令为M条信令,所述M个时域资源参数集由所述M条信令分别承载。
在一种可能实现的设计中,所述第一信令为下行控制信息、RRC信令、系统消息和MAC CE中的至少一种;所述目标时域资源为发送或接收所述数据的时域位置。
在一种可能实现的设计中,所述目标时域资源包含一个或多个基本时间单元,所述基本时间单元为符号、时隙、子帧和无线帧中的任意一种。
第七方面,本申请实施例提供一种网络设备,包括:
收发模块和处理模块;
所述收发模块用于向终端设备发送第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;所述收发模块用于向所述终端设备发送第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;
所述处理模块用于确定目标时域资源;
所述收发模块还用于在所述目标时域资源上接收或发送数据。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集确定K个时域资源参数集,并根据所述K个时域资源参数集确定K组时域资源为目标时域资源;或者,所述处理模块根据所述M个时域资源参数集确定M组时域资源,并根据所述M组时域资源确定K组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
在本方案中,所述处理模块可以根据第一预定义规则确定所述M个时域资源参数集中的K个时域资源参数集;或者,所述处理模块可以根据第四预定义规则确定所述M组时域资源中的K组时域资源。
在本方案中,所述处理模块还可以根据需要自行确定所述M个时域资源参数集中的K个时域资源参数集;或者,所述处理模块还可以根据需要自行确定所述M组时域资源中的K组时域资源。此时,所述收发模块还用于向所述终端设备发送第六信令,所述第六信令用于通知所述终端设备所述K个时域资源参数集或K组时域资源。
在一种可能实现的设计中,所述处理模块,具体用于根据所述K个时域资源参数集中的时域资源参数集k在所述K个上下行资源分配周期中的上下行资源分配周期k’上确定第k组时域资源,所述k和k’为小于或等于K的正整数。
在本方案中,所述处理模块可以根据第二预定义规则确定,根据所述时域资源参数集k在所述上下行资源分配周期k’上确定所述第k组时域资源。
在本方案中,所述处理模块还可以根据需要自行根据所述时域资源参数集k在所述上下行资源分配周期k’上确定所述第k组时域资源。此时,所述收发模块还用于向所述终端设备发送第四信令,所述第四信令用于通知所述终端设备在所述上下行资源分配周期k’上确定所述第k组时域资源。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K组时域资源为目标时域资源;所述M为小于K的正整数,或者所述M为小于或等于K的正整数。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集确定M组时域资源,根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K-M组时域资源。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集确定M组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
在一种可能实现的设计中,所述处理模块,具体用于根据所述M个时域资源参数集中的时域资源参数集m在所述K个上下行资源分配周期中的上下行资源分配周期k上确定第m组时域资源,所述m和k为小于或等于K的正整数。
在本方案中,所述处理模块可以根据第三预定义规则确定,根据所述时域资源参数集m在所述上下行资源分配周期k上确定所述第m组时域资源。
在本方案中,所述处理模块还可以根据需要自行根据所述时域资源参数集m在所述上下行资源分配周期k上确定所述第m组时域资源。此时,所述收发模块还用于向所述终端设备发送第五信令,所述第五信令用于通知所述终端设备在所述上下行资源分配周期k上确定所述第m组时域资源。
在一种可能实现的设计中,所述数据包括参考信号,控制信道中的至少一种。
在一种可能实现的设计中,所述时域资源参数集包含所述数据的周期参数和所述数据的偏置参数。
在一种可能实现的设计中,所述第一信令为一条信令,所述M个时域资源参数集由所述一条信令中的M个字段分别承载;或者所述第一信令为M条信令,所述M个时域资源参数集由所述M条信令分别承载。
在一种可能实现的设计中,所述第一信令为下行控制信息、RRC信令、系统消息和MAC CE中的至少一种;所述目标时域资源为发送或接收所述数据的时域位置。
在一种可能实现的设计中,所述目标时域资源包含一个或多个基本时间单元,所述基本时间单元为符号、时隙、子帧和无线帧中的任意一种。
第八方面,本申请实施例提供一种网络设备,包括:处理器和存储器,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得网络设备以执行上述第六方面任一项所述的方法。
第九方面,本申请实施例提供一种存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述第六方面任一项所述的方法。
第十方面,本申请实施例提供一种芯片系统,包括:处理器,用于支持终端设备实现上述第六方面任一项所述的方法。
第十一方面,本申请实施例提供一种通信系统,包括上述终端设备和网络设备。
本申请实施例提供的用于无线通信的方法及装置,通过终端设备接收用于指示数据收发的时域资源参数集的第一信令和用于指示上下行资源分配周期的第二信令,并根据所述第一信令和所述第二信令共同决定收发所述数据的目标时域资源,从而解决了无线通信网络中上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
附图说明
图1为本申请实施例提供的资源配置方法应用的通信系统的示意图;
图2为基本时间单元的结构的示意图;
图3A为一种半静态上下行资源分配的示意图;
图3B为另一种半静态上下行资源分配的示意图;
图4为一种两个上下行资源分配周期拼接的半静态上下行资源分配的示意图;
图5为本申请实施例提供的资源配置方法的流程图;
图6A为一种网络设备为终端设备分配的时域资源示意;
图6B为另一种网络设备为终端设备分配的时域资源示意;
图7A为一种第一上下行资源分配周期的示意图;
图7B为一种第一上下行资源分配周期和第二上下行资源分配周期的示意图;
图7C为一种第一上下行资源分配周期和第二上下行资源分配周期拼接成第三上下行资源分配周期的示意图;
图8为第一种终端设备确定时域资源的流程图;
图9为第二种终端设备确定时域资源的流程图;
图10为第三种终端设备确定时域资源的流程图;
图11为第四种终端设备确定时域资源的流程图;
图12A为一种第一目标时域资源和第二目标时域资源的分布示意;
图12B为另一种第一目标时域资源和第二目标时域资源的分布示意;
图13为本申请实施例提供的一种终端设备根据M与K的关系确定执行方法的流程图;
图14为本申请实施例提供的一种通信装置的结构示意图;
图15为本申请实施例提供的一种终端设备的结构示意图;
图16为本申请实施例提供的一种通信装置示意图;
图17为本申请实施例提供的又一种通信装置示意图。
具体实施方式
本发明实施例提供的资源配置方法及装置可以应用于通信系统中。如图1示出了一种通信系统结构示意图。该通信系统中包括一个或多个网络设备(清楚起见,图中示出网络设备10和网络设备20),以及与该一个或多个网络设备通信的一个或多个终端设备。图中所示终端设备11和终端设备12与网络设备10连接,所示终端设备21和终端设备22与网络设备20连接。
本发明实施例描述的技术可用于各种通信系统,例如2G,3G,4G,4.5G,5G通信系统,多种通信系统融合的系统,或者未来演进网络。例如码分多址(code divisionmultiple access,CDMA)、宽带码分多址(wideband code division multiple access,WCDMA)、时分多址(time division multiple access,TDMA)、频分多址(frequencydivision multiple access,FDMA)、正交频分多址(orthogonal frequency-divisionmultiple access,OFDMA)、单载波频分多址(single carrier FDMA,SC-FDMA),长期演进(long term evolution,LTE)系统,新空口(new radio,NR)系统,无线保真(wireless-fidelity,WiFi)系统、全球微波互联接入(worldwide interoperability for microwaveaccess,WiMAX)系统,以及第三代合作伙伴计划(3rd generation partnership project,3GPP)相关的蜂窝系统等,以及其他此类通信系统。
本申请中,网络设备可以是任意一种具有无线收发功能的设备。包括但不限于:全球移动通信系统(Global System for Mobile,GSM)或CDMA中的基站(base transceiverstation,BTS),WCDMA中的基站(NodeB),LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),NR中的基站(gNodeB或gNB)或收发点(transmission receptionpoint,TRP),3GPP后续演进的基站,WiFi系统中的接入节点,无线中继节点,无线回传节点等。基站可以是:宏基站,微基站,微微基站,小站,中继站等。多个基站可以支持上述提及的同一种技术的网络,也可以支持上述提及的不同技术的网络。基站可以包含一个或多个共站或非共站的传输接收点(Transmission receiving point,TRP)。网络设备还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器、集中单元(centralized unit,CU),和/或分布单元(distributed unit,DU)。网络设备还可以是服务器,可穿戴设备,或车载设备等。以下以网络设备为基站为例进行说明。所述多个网络设备可以为同一类型的基站,也可以为不同类型的基站。基站可以与终端设备进行通信,也可以通过中继站与终端设备进行通信。终端设备可以与不同技术的多个基站进行通信,例如,终端设备可以与支持LTE网络的基站通信,也可以与支持5G网络的基站通信,还可以支持与LTE网络的基站以及5G网络的基站的双连接。
终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持、穿戴或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。本申请的实施例对应用场景不做限定。终端设备有时也可以称为终端、用户设备(user equipment,UE)、接入终端设备、UE单元、UE站、移动站、移动台、远方站、远程终端设备、移动设备、UE终端设备、终端设备、无线通信设备、UE代理或UE装置等。终端也可以是固定的或者移动的。
图2示意了一种基本时间单元的结构举例。图2所示的基本时间单元为时隙。如图2所示,所述基本时间单元包括多个时域符号。例如,对于正常循环前缀(Nomal CyclicPrefix,NCP)配置下的时隙,该时隙包括14个时域符号(后续简称为符号),分别标记为符号0、符号1、…、符号13。
可以理解,所述基本时间单元也可以是符号,子帧、迷你时隙、无线帧或传输时间间隔(transmission time interval,TTI)等,本发明实施例并不限定。例如,若基本时间单元为子帧、迷你时隙、或TTI等,则,所述基本时间单元可以包含不同个数的时域符号。作为一个例子,当所述基本时间单元为迷你时隙时,该迷你时隙可以包括X个时域符号,所述X为大于或等于1且小于14的整数。此外针对扩展循环前缀(Extend Cyclic Prefix,ECP)配置,基本时间单元的符号个数也可以定义为其他的值,本发明实施例并不限定。例如,当所述基本时间单元为ECP配置下的时隙时,该时隙可以包括12个符号。
每个符号有其特定的传输状态,所述传输状态包括下行、上行、灵活中的一种,其中灵活的传输状态也可称为未知的传输状态。
当一个符号的传输状态为下行时,称该符号为下行符号。所述下行符号可以映射下行数据,所述下行数据是由网络设备发送给终端设备的数据,所述下行数据包括下行参考信号、下行控制信道、下行数据信道、同步信号、和/或广播信道等。网络设备在所述下行符号上进行下行数据发送,终端设备在所述下行符号上进行下行数据接收。
当一个符号的传输状态为上行时,称该符号为上行符号。所述上行符号可以映射上行数据,所述上行数据是由终端设备发送给网络设备的数据,所述上行数据包括上行参考信号、上行控制信道、上行数据信道、随机接入信道等。网络设备在所述上行符号上进行上行数据接收,终端设备在所述上行符号上进行上行数据发送。
当一个符号的传输状态为灵活或未知时,称该符号为灵活符号或未知符号。所述灵活符号可以在网络设备发送的下行控制信令的指示下被用作下行符号或上行符号。当所述灵活符号在网络设备发送的下行控制信令的指示下被用作下行符号时,所述灵活符号可以映射下行数据,网络设备在所述灵活符号上进行下行数据发送,终端设备在所述灵活符号上进行下行数据接收;当所述灵活符号在网络设备发送的下行控制信令的指示下变为上行符号时,所述灵活符号可以映射上行数据,网络设备在所述灵活符号上进行上行数据接收,终端设备在所述灵活符号上进行上行数据发送;当所述灵活符号没有被配置为为下行符号或上行符号时,所述灵活符号可以不映射下行数据或上行数据,终端设备在所述灵活符号上既不进行下行数据的接收下行也不进行上行数据的发送。
时隙的时隙格式由一个时隙内所有符号的传输状态确定。表1中示意了若干种可能的时隙格式,其中D、U或X分别代表下行、上行和灵活,时隙中每个符号的传输状态是下行、上行和灵活中的一种。表1中的每一行代表一种具体的时隙格式,并使用一个序号指示该具体的时隙格式。例如图2所示时隙格式中,符号0和符号1为下行符号,符号2和符号3为灵活符号,符号4~符号13为上行符号,其对应的就是表1中的时隙格式38。需要说明的是,表1仅给出了时隙格式的举例,基于不同符号的传输状态,还可能有其他的时隙格式,本发明实施例并不限定。
表1.时隙结构示意
通信系统支持半静态上下行资源分配,在半静态上下行资源分配中,网络设备通过上下行资源分配信令为终端设备配置下行、上行、灵活的时域资源。所述上下行资源分配信令可以是无线资源控制(RRC,Radio Resource Control)信令、系统消息或媒体接入控制的控制元素(Medium Access Control Control Element,MAC CE)等。上下行资源分配信令中可以包含若干参数,作为一个例子,该上下行资源分配信令可以包含5个参数:
上下行资源分配周期参数;
下行时隙参数:用以指示所述上下行资源分配周期内从最前面开始往后包含多少个下行时隙;
下行符号参数:用以指示所述上下行资源分配周期内紧接着最后一个下行时隙之后包含多少个下行符号;
上行时隙参数:用以指示所述上下行资源分配周期内从最后面开始往前包含多少个上行时隙;
上行符号参数:用以指示所述上下行资源分配周期内紧接着第一个上行时隙之前包含多少个上行符号;
图3A和图3B示意了两种可能的半静态上下行资源分配。若终端设备通过上下行资源分配信令中的上下行资源分配周期参数获知一个上下行资源分配周期包含10个时隙,且下行时隙参数为1、下行符号参数为0、上行时隙参数为1,上行符号参数为0,则终端设备可以确定出如图3A所示的半静态上下行资源分配;若终端设备通过上下行资源分配信令中的上下行资源分配周期参数获知一个上下行资源分配周期包含10个时隙,且下行时隙参数为4、下行符号参数为12、上行时隙参数为1,上行符号参数为12,则终端设备可以确定出如图3B所示的半静态上下行资源分配。图3A和图3B所示的半静态上下行资源分配仅示意了两种可能的分配,本发明实施例并不限定。
所述上下行资源分配周期参数可以直接或间接指示一个上下行资源分配周期内的时隙个数。终端设备可以通过上下行资源分配信令中的上下行资源分配周期参数获知一个上下行资源分配周期内的时隙个数。例如,所述上下行资源分配周期参数可以表示一个上下行资源分配周期的时隙个数,也可以表示一个上下行资源分配周期的时间(例如以毫秒为单位的值)。在一个例子中,可以设置(预定义,配置或存储等)绝对时间与时隙个数的对应关系。例如,可以支持的上下行资源分配周期的绝对时间包括{0.5,0.625,1,1.25,2,2.5,5,10}ms,可以设置这些上下行资源分配周期的绝对时间在不同的子载波间隔参数下,对应的时隙个数。终端设备可以根据所述绝对时间和子载波间隔参数确定一个上下行资源分配周期内的时隙个数。表2示出了一种可能的对应关系举例。(“-”表示这种上下行资源分配周期的绝对时间在这种子载波间隔参数下不可用):
表2.不同子载波间隔参数下的上下行资源分配周期
15kHz 30kHz 60kHz 120kHz
0.5ms - 1时隙 2时隙 4时隙
0.625ms - - - 5时隙
1ms 1时隙 2时隙 4时隙 8时隙
1.25ms - - 5 10时隙
2ms 2时隙 4时隙 8时隙 16时隙
2.5ms - 5时隙 10时隙 20时隙
5ms 5时隙 10时隙 20时隙 40时隙
10ms 10时隙 20时隙 40时隙 80时隙
在半静态上下行资源分配中还可以支持多个(两个或两个以上)上下行资源分配周期拼接的方式,以支持更加灵活的半静态上下行数据收发,从而适应更加灵活的上下行业务变化。下面结合图4以两个上下行资源分配周期拼接为例进行说明。
在两个上下行资源分配周期拼接的半静态上下行资源分配中,网络设备通过两个上下行资源分配信令分别为两个上下行资源分配周期配置下行、上行、和灵活的时域资源。图4示意了一种可能的两个上下行资源分配周期拼接的半静态上下行资源分配。终端设备收到两个上下行资源分配信令。终端设备通过第一个上下行资源分配信令中的上下行资源分配周期参数获知第一个上下行资源分配周期包含5个时隙,且下行时隙参数为4、下行符号参数为11、上行时隙参数为0,上行符号参数为2,则终端设备可以确定出如图4所示的上下行资源分配周期1内的上下行时域资源;终端设备通过第二个上下行资源分配信令中的上下行资源分配周期参数获知第二个上下行资源分配周期包含4个时隙,且下行时隙参数为2、下行符号参数为11、上行时隙参数为1,上行符号参数为2,则终端设备可以确定出如图4所示的上下行资源分配周期2内的上下行时域资源;终端设备将上述两个上下行资源分配周期顺序串联,拼接成一个完整的半静态上下行资源分配;终端设备可以将上下行资源分配周期1和上下行资源分配周期2相加看成所述完整的半静态上下行资源分配的上下行资源分配周期。图4仅示意了一种可能的上下行资源分配,本发明实施例并不限定。两个上下行资源分配周期拼接时还可以进一步对两个周期的选择做进一步限定,例如,可以限定两个周期之和的整数倍只能为某些特定值。终端设备通过上下行资源分配信令中的上下行资源分配周期获知上下行资源分配周期内时隙个数的方法与前述相同,在此不再赘述。
通信系统中存在周期数据,例如信道状态信息参考信号(Channel StateInformation Reference Signal,CSI-RS)、探测参考信号(Sounding Reference Signal,SRS)以及组公共物理下行控制信道(Group Common Physical Downlink ControlChannel,GC-PDCCH)等。终端设备在获得这些周期数据的周期后,还可以再根据一些额外的配置参数,例如偏置、参考点,即可确定接收或发送周期数据的实际时域位置。
需要说明的是,本申请中提到的信道可以理解为承载信号或信息的物理信道,也可以理解为由物理信道承载的信号或信息;本申请中提到的信号或信息可以理解为由物理信道承载的信号或信息,也可以理解为承载该信号或信息的物理信道。例如,本申请中提到的控制信道既可以理解为承载控制信息或控制信号的物理控制信道,也可以理解为由物理控制信道承载的控制信息或控制信号。
GC-PDCCH可以用来承载网络设备下发的下行控制信息(Downlink ControlInformation,DCI),所述DCI可以动态地通知终端设备某一个或某几个时隙的时隙格式,其中所述时隙包含半静态上下行资源分配中分配的灵活符号,因此该DCI也可以称为时隙格式信息或时隙格式指示(Slot Format Information/Slot Format Indicator,SFI)。所述SFI由GC-PDCCH承载,网络设备可以为终端设备配置GC-PDCCH的检测周期,终端设备根据网络设备为其配置的GC-PDCCH检测周期对GC-PDCCH进行周期性的检测,以获得相应的SFI。GC-PDCCH检测周期与子载波间隔参数有关,一种可能的配置关系如表3所示(“-”表示这种GC-PDCCH检测周期在这种子载波间隔参数下不可用):
表3.不同子载波间隔参数下的GC-PDCCH检测周期
CSI-RS由网络设备提供,是供终端设备用来进行信道状态测量的下行参考信号,。CSI-RS支持周期性的配置,即网络设备可以为终端设备配置CSI-RS的检测周期,终端设备根据网络设备为其配置的CSI-RS检测周期对CSI-RS进行周期性的检测和测量,以获得相应的信道状态信息。例如,CSI-RS检测周期包括{4,5,8,10,16,20,32,40,64,80,160,320,640}时隙。
SRS是网络设备用来进行信道状态测量的上行参考信号,由终端设备提供。SRS支持周期性的配置,即网络设备可以为终端设备配置SRS的发送周期,终端设备根据网络设备为其配置的SRS发送周期进行SRS的发送,网络设备即可对SRS进行周期性的检测和测量,以获得相应的信道状态信息。例如,可以支持的SRS检测周期包括{1,2,4,5,8,10,16,20,32,40,64,80,160,320,640,1280,2560}时隙。
上述半静态上下行资源分配中的上下行资源分配周期与上述周期数据的发送或检测周期可能会出现不匹配的情况。由于半静态上下行资源分配支持多个上下行资源分配周期的拼接,且所述多个上下行资源分配周期内可以有不同的上下行资源分配,因此上述周期数据的发送或检测周期可能无法匹配拼接周期后形成的上下行资源分配,导致系统性能损失。例如,根据表2所示的上下行资源分配周期,在30kHz子载波间隔下,若将2ms(4个时隙)和2.5ms(5个时隙)拼接成一个4.5ms(9个时隙)的周期;而上述周期数据(GC-PDCCH、CSI-RS、SRS)均没有9时隙的周期配置,这样可能会导致周期数据与半静态上下行资源分配的冲突,从而影响系统性能。又例如,在另一种可能的配置情况下,在30kHz子载波间隔下,将第一个5ms(10个时隙)和第二个5ms(10个时隙)拼接成一个10ms(20个时隙)的周期;由于第一个5ms周期与第二个5ms周期上的上下行资源分配可以不同,可能导致上述周期数据(GC-PDCCH、CSI-RS、SRS)无法按照5ms或更小的周期进行配置,从而影响系统性能。
本申请实施例提供的资源配置方法及装置,通过终端设备接收用于指示数据收发的时域资源参数集的第一信令和用于指示上下行资源分配周期的第二信令,并根据所述第一信令和所述第二信令共同决定收发所述数据的目标时域资源,从而解决了半静态上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
下面以具体实施例结合附图对本申请的技术方案进行详细说明。下面这几个具体的实施例可以相互结合,对于相同或相似的概念或过程可能在某些实施例不再赘述。
图5为本申请实施例提供的资源配置方法的流程图,该方法可以适用于图1所示的通信系统。如图5所示,本实施例的方法可以包括:
步骤501,终端设备接收网络设备发送的第一信令,所述第一信令用于指示所述终端设备发送或接收数据的M个时域资源参数集,所述M为正整数。
本步骤中,所述第一信令可以用于指示所述终端设备接收控制信道的M个时域资源参数集。所述时域资源参数集包含控制信道周期和控制信道偏置。所述终端设备根据所述控制信道周期和控制信道偏置确定可以接收所述控制信道的时域位置。所述时域位置可以是一个或多个基本时间单元(例如时隙)。可选地,所述终端设备根据所述控制信道周期获得接收所述控制信道的时间间隔,根据所述控制信道偏置获得接收所述控制信道的时域位置相对于参考时域位置所偏置的基本时间单元个数,其中所述参考时域位置可以是预定义或默认的,也可以是由网络设备通知终端设备的。下面结合图6A和图6B详细说明。
图6A中示意了一种可能的实施方式,以M=1为例,所述第一信令用于指示所述终端设备接收第一控制信道的第一时域资源参数集,所述第一时域资源参数集包含第一控制信道周期和第一控制信道偏置。所述终端设备根据所述第一控制信道周期获得接收所述第一控制信道的时间间隔。,图6A中示意了所述第一控制信道周期的一种举例,如图6A所示,第一控制信道周期的长度为10个时隙。所述终端设备根据所述第一控制信道偏置获得接收所述第一控制信道的时域位置相对于参考时域位置所偏置的基本时间单元个数。图6A中示意了所述第一控制信道偏置的一种举例,如图6A所示,第一控制信道偏置为0个时隙,参考时域位置为时隙0。所述终端设备根据图6A中示意的第一控制信道周期和第一控制信道偏置,确定可以接收所述第一控制信道的时隙为时隙0和时隙10。图6B中示意了另一种可能的实施方式,以M=2为例,所述第一信令用于指示所述终端设备接收第一控制信道的第一时域资源参数集和接收第二控制信道的第二时域资源参数集,所述第一时域资源参数集包含第一控制信道周期和第一控制信道偏置,所述第二时域资源参数集包含第二控制信道周期和第二控制信道偏置。所述终端设备根据所述第一控制信道周期获得接收所述第一控制信道的时间间隔,根据所述第二控制信道周期获得接收所述第二控制信道的时间间隔,图6B中示意了所述第一控制信道周期和所述第二控制信道周期的一种示例,如图6B所示,所述第一控制信道周期的长度为10个时隙,第二控制信道周期的长度为10个时隙;所述终端设备根据所述第一控制信道偏置获得接收所述第一控制信道的时域位置相对于参考时域位置所偏置的基本时间单元个数,根据所述第二控制信道偏置获得接收所述第二控制信道的时域位置相对于参考时域位置所偏置的基本时间单元个数,图6B中示意了所述第一控制信道偏置和第二控制信道偏置的一种示例,其中该第一控制信道偏置为0个时隙,该第一控制信道偏置为4个时隙,参考时域位置为时隙0。所述终端设备根据图6B中示意的第一控制信道周期和第一控制信道偏置以及第二控制信道周期和第二控制信道偏置,确定可以接收所述第一控制信道的时隙为时隙0和时隙10,可以接收所述第二控制信道的时隙为时隙4和时隙14。
需要说明的是,所述第一控制信道和所述第二控制信道可以承载相同的控制信息,也可以承载不同的控制信息。本示例中所示的第一控制信道和第二控制信道可以是发送给相同终端设备或相同终端设备集合的。可以理解的是,所述第一控制信道和所述第二控制信道也可以是发送给不同终端设备或不同终端设备集合的。
可选地,所述终端设备还可以在根据所述时域资源参数集中的所述控制信道周期和所述控制信道偏置的基础上,进一步结合控制信道资源集合信息获得频域位置和/或时域位置。所述频域位置可以为终端设备可以用于接收控制信道的频域位置。所述时域位置可以为在一个基本时间单元内终端设备可以用于接收控制信道的时域位置,例如时域符号,或者可用于确定时域符号的信息等。所述控制信道资源集合信息可以是由网络侧下发的一条或多条信令承载,也可以是预定义或默认的。例如,所述控制信道资源集合信息可以确定出NR中定义的Control-resource set(CORESET),该CORESET包含频域上的一个或多个资源块和时域上的时隙内的一个或多个时域符号,终端设备可以在由CORESET确定的时频资源上尝试检测控制信道。
例如在图6A中,终端设备在确定可以接收所述第一控制信道的时隙为时隙0和时隙10的基础上,结合第一控制信道资源集合信息进一步确定可以接收所述第一控制信道的时域资源为时隙0和时隙10中的第一个符号,可以接收所述第一控制信道的频域资源为f1。
再例如在图6B中,终端设备在确定可以接收所述第一控制信道的时隙为时隙0和时隙10的基础上,结合第一控制信道资源集合信息进一步确定可以接收所述第一控制信道的时域资源为时隙0和时隙10中的第一个符号,可以接收所述第一控制信道的频域资源为f1;终端设备在确定可以接收所述第二控制信道的时隙为时隙4和时隙14的基础上,结合第二控制信道资源集合信息进一步确定可以接收所述第二控制信道的时域资源为时隙4和时隙14中的第一个符号,可以接收所述第二控制信道的频域资源为f2。
本发明实施例中第一信令承载M个时域资源参数集可以通过多种方式实现。
以M=2为例,所述第一信令可以是一条信令,所述第一时域资源参数集和所述第二时域资源参数集分别由所述第一信令中两个字段承载。以GC-PDCCH控制信道的配置为例,上述第一信令的配置可以如表4所示,其中信令SlotFormatIndicatorSFI的字段timeResourceParameterSet1和字段timeResourceParameterSet2分别包含上述第一时域资源参数集和第二时域资源参数集。
表4.M=2为例,GC-PDCCH的一种配置方式
以M=2为例,所述第一信令也可以是两条信令,所述第一时域资源参数集和所述第二时域资源参数集分别由所述两条信令承载。以GC-PDCCH控制信道的配置为例,上述第一信令的配置可以如表5所示,其中信令SlotFormatIndicatorSFI1和信令SlotFormatIndicatorSFI2分别包含上述第一时域资源参数集和第二时域资源参数集。
表5.M=2为例,GC-PDCCH的另一种配置方式
以M=3为例,所述第一信令可以是一条信令,3个时域资源参数集分别由所述第一信令中3个字段承载。以GC-PDCCH控制信道的配置为例,上述第一信令的配置可以如表6所示,其中信令SlotFormatIndicatorSFI的字段timeResourceParameterSet1、字段timeResourceParameterSet2和字段timeResourceParameterSet3分别包含第一时域资源参数集、第二时域资源参数集和第三时域资源参数集。
表6.M=3为例,GC-PDCCH的第一种配置方式
以M=3为例,所述第一信令可以是一条信令,而3个时域资源参数集中的2个时域资源参数集由第一信令中的一个字段承载,另一个时域资源参数集由第一信令中的另一个字段承载。以GC-PDCCH控制信道的配置为例,上述第一信令的配置可以如表7所示,其中信令SlotFormatIndicatorSFI的字段timeResourceParameterSet1包含第一时域资源参数集和第二时域资源参数集,字段timeResourceParameterSet2包含第三时域资源参数集。
表7.M=3为例,GC-PDCCH的第二种配置方式
以M=3为例,所述第一信令可以是三条信令,3个时域资源参数集分别由所述第一信令中的三条信令承载。以GC-PDCCH控制信道的配置为例,上述第一信令的配置可以如表8所示,其中信令SlotFormatIndicatorSFI1、信令SlotFormatIndicatorSFI2和信令SlotFormatIndicatorSFI3分别包含第一时域资源参数集、第二时域资源参数集和第三时域资源参数集。
表8.M=3为例,GC-PDCCH的第三种配置方式
以M=3为例,所述第一信令可以是两条信令,3个时域资源参数集中的2个时域资源参数集由第一信令中的一条信令承载,另一个时域资源参数集由第一信令中的另一条信令承载。以GC-PDCCH控制信道的配置为例,上述第一信令的配置可以如表9所示,其中信令SlotFormatIndicatorSFI1包含第一时域资源参数集和第二时域资源参数集,信令SlotFormatIndicatorSFI2包含第三时域资源参数集。
表9.M=3为例,GC-PDCCH的第四种配置方式
M取其他可能值的实施方式可以采用与上述实施方式类似的方法,或者是基于上述,本申请实施例不再赘述。所述控制信道可以是PDCCH、GC-PDCCH等下行控制信道,本申请实施例不做限制。所述第一信令可以是下行控制信息、RRC信令、系统消息或MAC CE等,或者是上述各种信令的任意组合,本申请实施例不做限定。
本步骤中,所述第一信令还可以用于指示所述终端设备发送或接收参考信号的M个时域资源参数集,所述参考信号可以是CSI-RS、SRS等参考信号,本申请实施例不做限制。其主要内容与上述第一信令指示终端设备接收控制信道的M个时域资源参数集类似,本申请实施例不再赘述。
本发明实施例能够实现无线信道或信号的半静态收发配置,进一步地能够同时支持多组半静态收发资源的配置,因此可以降低无线信道或信号的半静态收发配置的配置开销。
步骤502,所述终端设备接收所述网络设备发送的第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数。
本步骤中,所述第二信令用于指示所述终端设备在半静态上下行资源分配中的K个上下行资源分配周期以及所述K个上下行资源分配周期内的下行时域资源、上行时域资源和灵活时域资源。可选地,其中所述K个上下行资源分配周期以一定的先后顺序在时域上串联。
在图7A示意的一种可能的实施方式中,以K=1为例,所述第二信令指示所述终端设备第一上下行资源分配周期以及所述第一上下行资源分配周期内的第一下行时域资源、第一上行时域资源和第一灵活时域资源。
在图7B示意的另一种可能的实施方式中,以K=2为例,所述第二信令指示所述终端设备第一上下行资源分配周期以及所述第一上下行资源分配周期内的第一下行时域资源、第一上行时域资源和第一灵活时域资源,所述第二信令还指示所述终端设备第二上下行资源分配周期以及所述第二上下行资源分配周期内的第二下行时域资源、第二上行时域资源和第二灵活时域资源。图7B示意的实施方式中,两个上下行资源分配周期以{第一上下行资源分配周期,第二上下行资源分配周期}的顺序在时域上串联。本申请实施例对串联的顺序不做限制,例如串联顺序也可以是{第二上下行资源分配周期,第一上下行资源分配周期}。
可选地,在图7C示意的另一种可能的实施方式中,串联后的第一上下行资源分配周期和第二上下行资源分配周期为第三上下行资源分配周期,第三上下行资源分配周期参数为第一上下行资源分配周期参数和第二上下行资源分配周期参数之和。
在图7A和图7B所示的实施方式中,所述第一上下行资源分配周期内的第一下行时域资源包含所述第一上下行资源分配周期内的所有第一下行时隙和所有第一下行符号;所述第一上下行资源分配周期内的第一上行时域资源包含所述第一上下行资源分配周期内的所有第一上行时隙和所有第一上行符号;所述第一上下行资源分配周期内的第一灵活时域资源包含所述第一上下行资源分配周期内除了所述第一下行时域资源和所述第一上行时域资源以外的时域资源。在图7B所示的实施方式中,所述第二上下行资源分配周期内的第二下行时域资源包含所述第二上下行资源分配周期内的所有第二下行时隙和所有第二下行符号;所述第二上下行资源分配周期内的第二上行时域资源包含所述第二上下行资源分配周期内的所有第二上行时隙和所有第二上行符号;所述第二上下行资源分配周期内的第二灵活时域资源包含所述第二上下行资源分配周期内除了所述第二下行时域资源和所述第二上行时域资源以外的时域资源。
在图7A示意的一种可能的实施方式中,以K=1为例,所述第二信令包含第一上下行资源分配周期参数、第一下行时隙参数、第一下行符号参数、第一上行时隙参数和第一上行符号参数。
所述终端设备根据所述第一上下行资源分配周期参数获得第一上下行资源分配周期在时域上的基本时间单元的数量。例如在图7A中,所述终端设备根据所述第一上下行资源分配周期参数获得第一上下行资源分配周期占用10个时隙。
所述终端设备根据所述第一下行时隙参数获得所述第一上下行资源分配周期内从最前面开始往后包含多少个第一下行时隙。例如在图7A中,所述终端设备根据所述第一下行时隙参数获得所述第一上下行资源分配周期内从最前面开始往后包含4个第一下行时隙。
所述终端设备根据所述第一下行符号参数获得所述第一上下行资源分配周期内紧接着最后一个第一下行时隙之后包含多少个第一下行符号。例如在图7A中,所述终端设备根据所述第一下行符号参数获得所述第一上下行资源分配周期内紧接着最后一个第一下行时隙之后包含12个第一下行符号。
所述终端设备根据所述第一上行时隙参数获得所述第一上下行资源分配周期内从最后面开始往前包含多少个第一上行时隙。例如在图7A中,所述终端设备根据所述第一上行时隙参数获得所述第一上下行资源分配周期内从最后面开始往前包含1个第一上行时隙。
所述终端设备根据所述第一上行符号参数获得所述第一上下行资源分配周期内紧接着第一个第一上行时隙之前包含多少个第一上行符号。例如在图7A中,所述终端设备根据所述第一上行符号参数获得所述第一上下行资源分配周期内紧接着第一个第一上行时隙之前包含12个第一上行符号。
在图7A所示意的这种可能的实施方式中,所述第一下行时域资源占用时隙0-时隙3,以及时隙4的前12个符号。所述第一上行时域资源占用时隙9和时隙8的后12个符号。所述第一灵活时域资源占用时隙5-时隙7,以及时隙4的后2个符号和时隙8的前2个符号。
在图7B示意的另一种可能的实施方式中,以K=2为例,所述第二信令包含第一上下行资源分配周期参数、第一下行时隙参数、第一下行符号参数、第一上行时隙参数和第一上行符号参数,所述第二信令还包含第二上下行资源分配周期参数、第二下行时隙参数、第二下行符号参数、第二上行时隙参数和第二上行符号参数。
所述终端设备根据所述第一上下行资源分配周期参数和所述第二上下行资源分配周期参数,获得第一上下行资源分配周期和第二上下行资源分配周期在时域上的基本时间单元的数量。例如在图7B中,所述终端设备根据所述第一上下行资源分配周期参数和所述第二上下行资源分配周期参数,获得第一上下行资源分配周期和第二上下行资源分配周期占用5个时隙和5个时隙。两个上下行资源分配周期以{第一上下行资源分配周期,第二上下行资源分配周期}的顺序在时域上串联。
所述终端设备根据所述第一下行时隙参数和所述第二下行时隙参数,获得所述第一上下行资源分配周期内从最前面开始往后包含多少个第一下行时隙,以及所述第二上下行资源分配周期内从最前面开始往后包含多少个第二下行时隙。例如在图7B中,所述终端设备根据所述第一下行时隙参数获得所述第一上下行资源分配周期内从最前面开始往后包含4个第一下行时隙;所述终端设备还根据所述第二下行时隙参数获得所述第二上下行资源分配周期内从最前面开始往后包含2个第二下行时隙。
所述终端设备根据所述第一下行符号参数和所述第二下行符号参数,获得所述第一上下行资源分配周期内紧接着最后一个第一下行时隙之后包含多少个第一下行符号,以及所述第二上下行资源分配周期内紧接着最后一个第二下行时隙之后包含多少个第二下行符号。例如在图7B中,所述终端设备根据所述第一下行符号参数获得所述第一上下行资源分配周期内紧接着最后一个第一下行时隙之后包含11个第一下行符号;所述终端设备还根据所述第二下行符号参数获得所述第二上下行资源分配周期内紧接着最后一个第二下行时隙之后包含11个第二下行符号。
所述终端设备根据所述第一上行时隙参数和所述第二上行时隙参数,获得所述第一上下行资源分配周期内从最后面开始往前包含多少个第一上行时隙,以及所述第二上下行资源分配周期内从最后面开始往前包含多少个第二上行时隙。例如在图7B中,所述终端设备根据所述第一上行时隙参数获得所述第一上下行资源分配周期内从最后面开始往前包含0个第一上行时隙(即所述第一上下行资源分配周期内没有第一上行时隙);所述终端设备还根据所述第二上行时隙参数获得所述第二上下行资源分配周期内从最后面开始往前包含2个第二上行时隙。
所述终端设备根据所述第一上行符号参数和所述第二上行符号参数,获得所述第一上下行资源分配周期内紧接着第一个第一上行时隙之前包含多少个第一上行符号,以及所述第二上下行资源分配周期内紧接着第一个第二上行时隙之前包含多少个第二上行符号。例如在图7B中,所述终端设备根据所述第一上行符号参数获得所述第一上下行资源分配周期内紧接着第一个第一上行时隙之前包含2个第一上行符号;所述终端设备还根据所述第二上行符号参数获得所述第二上下行资源分配周期内紧接着第一个第二上行时隙之前包含2个第二上行符号。
在图7B所示意的这种可能的实施方式中,所述第一下行时域资源占用时隙0-时隙3,以及时隙4的前11个符号,所述第一上行时域资源占用时隙4的后2个符号,所述第一灵活时域资源占用时隙4的第12个符号;所述第二下行时域资源占用时隙5-时隙6,以及时隙7的前11个符号,所述第二上行时域资源占用时隙8-时隙9和时隙7的后2个符号,所述第二灵活时域资源占用时隙7的第12个符号。
可以理解的是,所述第二信令可以通过多种方式指示上下行资源分配周期以及所述上下行资源分配周期内的下行时域资源、上行时域资源和灵活时域资源。例如,以K=1为例,所述第二信令可以包含第一上下行资源分配周期参数、第一下行符号参数和第一上行符号参数;所述终端设备根据所述第一上下行资源分配周期参数、第一下行符号参数和第一上行符号参数获得第一上下行资源分配周期以及所述第一上下行资源分配周期内的第一下行时域资源、第一上行时域资源和第一灵活时域资源。又例如,以K=2为例,所述第二信令可以包含第一上下行资源分配周期参数、第一下行符号参数和第一上行符号参数,以及第二上下行资源分配周期参数、第二下行符号参数和第二上行符号参数;所述终端设备根据所述第一上下行资源分配周期参数、第一下行符号参数和第一上行符号参数获得第一上下行资源分配周期以及所述第一上下行资源分配周期内的第一下行时域资源、第一上行时域资源和第一灵活时域资源;所述终端设备根据所述第二上下行资源分配周期参数、第二下行符号参数和第二上行符号参数获得第二上下行资源分配周期以及所述第二上下行资源分配周期内的第二下行时域资源、第二上行时域资源和第二灵活时域资源。
在图7B所示意的这种可能的实施方式中,可选地,所述第一上下行资源分配周期的第一上下行资源分配周期参数,以及所述第一上下行资源分配周期内的第一下行时隙参数、第一下行符号参数、第一上行时隙参数、第一上行符号参数可以统称为第一上下行资源分配周期参数集;所述第二上下行资源分配周期的第二上下行资源分配周期参数,以及所述第二上下行资源分配周期内的第二下行时隙参数、第二下行符号参数、第二上行时隙参数、第二上行符号参数可以统称为第二上下行资源分配周期参数集。本发明对第二信令承载K个上下行资源分配周期参数集的方式不做限定。在图7B所示意的实施方式中,以K=2为例,所述第二信令可以是一条信令,所述第一上下行资源分配周期参数集和所述第二上下行资源分配周期参数集分别由所述第二信令中两个字段承载;或者,所述第二信令也可以是两条信令,所述第一上下行资源分配周期参数集和所述第二上下行资源分配周期参数集分别由所述第二信令的所述两条信令承载。以K=3为例,所述第二信令可以是一条信令,3个上下行资源分配周期参数集分别由所述第二信令中3个字段承载;或者是3个上下行资源分配周期参数集中的2个上下行资源分配周期参数集由第二信令中的一个字段承载,另一个上下行资源分配周期参数集由第二信令中的另一个字段承载。仍以K=3为例,所述第二信令可以是三条信令,3个上下行资源分配周期参数集分别由所述第二信令中的三条信令承载;或者所述第二信令可以是两条信令,3个上下行资源分配周期参数集中的2个上下行资源分配周期参数集由第二信令中的一条信令承载,另一个上下行资源分配周期参数集由第二信令中的另一条信令承载。
K取其他可能值的实施方式与上述实施方式类似,本申请实施例不再赘述。所述第二信令可以是下行控制信息、RRC信令、系统消息或MAC CE等,或者是上述各种信令的任意组合,本申请实施例不做限定。
需要说明的是,所述上下行资源分配周期参数可以直接或间接指示一个上下行资源分配周期内的时隙个数,具体方法可参考本申请前述内容,此处不再赘述
本发明实施例能够实现半静态上下行资源分配,并且在半静态上下行资源分配中可以支持多个(两个或两个以上)上下行资源分配周期串联的方式,因此可以支持更加灵活的半静态上下行数据收发,从而在保留半静态配置方式、降低配置开销的基础上,同时能够适应更加灵活的上下行业务变化。
步骤503,所述终端设备根据所述第一信令和所述第二信令确定目标时域资源。
本步骤中,所述终端设备根据所述第一信令和所述第二信令共同确定用于发送或接收所述数据的目标时域资源。
根据步骤501和步骤502所述,所述终端设备接收所述网络设备发送的第一信令和第二信令,根据第一信令获得发送或接收数据的M个时域资源参数集,根据第二信令获得K个上下行资源分配周期,M和K均为正整数。
在一种设计中,所述M与K的取值关系可以是预定义或默认的,例如,M>K,M≥K,M<K,M≤K,或者M=K。当M与K的取值关系是预定义或默认的,则终端设备默认依据下述实施方式中所描述的方案进行相应操作。需要说明的是,本申请中对于M>K与M≥K时的处理方案实质可以是相同的。M<K与M≤K时的处理方案实质可以是相同的。
在另一种设计中,所述M与K的取值关系还可以是变化的。例如,所述终端设备可以根据所述网络设备发送的所述第一信令和所述第二信令判断M与K的取值关系,从而确定适用于下下所述的M>K(或M≥K),M<K(或M≤K),或者M=K中的哪种操作。
步骤503在一种可能的实施方式中,对于M>K(或M≥K)的情形,以K=2为例,所述终端设备根据所述第二信令确定K=2个上下行资源分配周期,以及所述两个上下行资源分配周期内的下行时域资源、上行时域资源和灵活时域资源,所述K=2个上下行资源分配周期包含第一上下行资源分配周期和第二上下行资源分配周期;具体的确定方法参照步骤502中相关描述,在此不再赘述。以M=3为例,所述第一信令指示所述终端设备接收第一控制信道、第二控制信道和第三控制信道的第一时域资源参数集、第二时域资源参数集和第三时域资源参数集。所述终端设备从所述M=3个时域资源参数集中确定K=2个目标时域资源参数集,根据所述2个目标时域资源参数集确定两组用于接收目标控制信道的目标时域资源,所述目标控制信道为所述第一控制信道、第二控制信道和第三控制信道中的两个。下面结合图8的流程图具体说明上述M>K(或M≥K)的实施方式。如图8所示,本实施例的方法可以包括:
步骤801,终端设备从M个时域资源参数集中确定K个目标时域资源参数集。可选地,所述终端设备可以通过预定义规则或由网络设备下发的配置信令获得如何从M个时域资源参数集中确定K个目标时域资源参数集。
对于M>K(或M≥K)的情形,例如以M=3、K=2为例,终端设备从3个时域资源参数集中确定2个目标时域资源参数集。在一种可能的实施方式中,所述终端设备可以根据第一预定义规则从3个时域资源参数集中确定2个目标时域资源参数集。所述第一预定义规则可以是从3个时域资源参数集中按顺序选取前2个时域资源参数集作为目标时域资源参数集。例如所述3个时域资源参数集为{第一时域资源参数集,第二时域资源参数集,第三时域资源参数集},则所述终端设备确定第一时域资源参数集和第二时域资源参数集作为所述目标时域资源参数集;所述第一预定义规则还可以是其他确定目标时域资源参数集的规则,例如,还可以是从3个时域资源参数集中按顺序选取后2个时域资源参数集作为目标时域资源参数集,或者是从3个时域资源参数集中选取对应时域资源上信号质量最好的2个时域资源参数集等,本申请实施例不做限制。
在另一种可能的实施方式中,所述终端设备还可以根据网络设备发送的第三信令确定2个目标时域资源参数集。例如,所述第三信令可以指示所述终端设备从3个时域资源参数集中按顺序选取前2个时域资源参数集作为目标时域资源参数集。例如所述3个时域资源参数集为{第一时域资源参数集,第二时域资源参数集,第三时域资源参数集},则所述终端设备确定第一时域资源参数集和第二时域资源参数集作为所述目标时域资源参数集;所述第三信令还可以指示从3个时域资源参数集中按顺序选取后2个时域资源参数集作为目标时域资源参数集,或者是从3个时域资源参数集中选取对应时域资源上信号质量最好的2个时域资源参数集等,本申请实施例不做限制。所述第三信令可以是下行控制信息、RRC信令、系统消息或MAC CE等,或者是上述各种信令的任意组合,本申请实施例不做限定。
步骤802,所述终端设备根据所述K个目标时域资源参数集确定K组用于发送或接收数据的目标时域资源。可选地,所述终端设备可以通过预定义规则或由网络设备下发的配置信令获得如何根据所述K个目标时域资源参数集确定K组用于发送或接收数据的目标时域资源。
以K=2为例,终端设备根据所述2个目标时域资源参数集确定2组用于接收控制信道的目标时域资源。所述2个目标时域资源参数集中包含第一目标时域资源参数集和第二目标时域资源参数集,所述2组用于接收控制信道的目标时域资源包含第一目标时域资源和第二目标时域资源。
在一种可能的实施方式中,所述终端设备根据第二预定义规则,在所述第一上下行资源分配周期内根据所述第一目标时域资源参数集确定第一目标时域资源,在所述第二上下行资源分配周期内根据所述第二目标时域资源参数集确定第二目标时域资源。所述第二预定义规则还可以是其他规则,例如在所述第一上下行资源分配周期内根据所述第二目标时域资源参数集确定第二目标时域资源,在所述第二上下行资源分配周期内根据所述第一目标时域资源参数集确定第一目标时域资源,本申请实施例不做限定。
在另一种可能的实施方式中,所述终端设备根据网络设备发送的第四信令指示所述终端设备在所述第一上下行资源分配周期内根据所述第一目标时域资源参数集确定第一目标时域资源,在所述第二上下行资源分配周期内根据所述第二目标时域资源参数集确定第二目标时域资源。所述第四信令还可以指示其他规则,例如在所述第一上下行资源分配周期内根据所述第二目标时域资源参数集确定第二目标时域资源,在所述第二上下行资源分配周期内根据所述第一目标时域资源参数集确定第一目标时域资源,本申请实施例不做限定。所述第四信令可以是下行控制信息、RRC信令、系统消息或MAC CE等,或者是上述各种信令的任意组合,本申请实施例不做限定。
本发明实施例能够实现从M个时域资源参数集中确定其中的K个时域资源参数集,并根据确定出的K个时域资源参数集确定K个上下行资源分配周期内的K组目标时域资源,从而能够在尽可能少的改变CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号配置方法的前提下,保证CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号在K个上下行资源分配周期内的发送或接收,解决了上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
步骤503的另一种可能的实施方式中,对于M>K(或M≥K)的情形,以K=2为例,所述终端设备根据所述第二信令确定K=2个上下行资源分配周期,以及所述两个上下行资源分配周期内的下行时域资源、上行时域资源和灵活时域资源,所述K=2个上下行资源分配周期包含第一上下行资源分配周期和第二上下行资源分配周期;具体的确定方法在步骤502中已经有详细描述,在此不再赘述。以M=3为例,所述第一信令指示所述终端设备接收第一控制信道、第二控制信道和第三控制信道的第一时域资源参数集、第二时域资源参数集和第三时域资源参数集。进一步地,所述终端设备根据所述第一时域资源参数集确定可以用于接收第一控制信道的第一时域资源,根据所述第二时域资源参数集确定可以用于接收第二控制信道的第二时域资源,根据所述第三时域资源参数集确定可以用于接收第三控制信道的第三时域资源。进一步地,所述终端设备从所述第一时域资源、第二时域资源和第三时域资源这三组时域资源中确定2组时域资源作为接收目标控制信道的目标时域资源,所述目标控制信道为所述第一控制信道、第二控制信道和第三控制信道中的两个。
下面结合图9的流程图具体说明上述M>K(或M≥K)的实施方式。如图9所示,本实施例的方法可以包括:
步骤901,终端设备根据M个时域资源参数集确定M组时域资源。
以M=3为例,终端设备根据3个时域资源参数集确定3组时域资源。具体地,所述3个时域资源参数集包含第一时域资源参数集、第二时域资源参数集和第三时域资源参数集,所述3组时域资源包含第一时域资源、第二时域资源和第三时域资源。所述终端设备根据所述第一时域资源参数集确定可以用于接收第一控制信道的第一时域资源,根据所述第二时域资源参数集确定可以用于接收第二控制信道的第二时域资源,根据所述第三时域资源参数集确定可以用于接收第三控制信道的第三时域资源。
步骤902,所述终端设备从所述M组时域资源中确定K组用于发送或接收数据的目标时域资源。可选地,所述终端设备可以通过预定义规则或由网络设备下发的配置信令获得如何从所述M组时域资源中确定K组用于发送或接收数据的目标时域资源。
本步骤中,对于M>K(或M≥K)的情形,结合具体的取值M=3,K=2和实施方式,所述终端设备从所述3组时域资源中确定2组用于接收控制信道的目标时域资源。所述2组用于接收控制信道的目标时域资源包含第一目标时域资源和第二目标时域资源。
在一种可能的实施方式中,所述终端设备根据第四预定义规则,在所述第一上下行资源分配周期内确定第一目标时域资源,在所述第二上下行资源分配周期内确定第二目标时域资源。所述第四预定义规则还可以是其他规则,例如在所述第一上下行资源分配周期内确定第二目标时域资源,在所述第二上下行资源分配周期内确定第一目标时域资源,本申请实施例不做限定。
在另一种可能的实施方式中,所述终端设备根据网络设备发送的第六信令指示所述终端设备在所述第一上下行资源分配周期内确定第一目标时域资源,在所述第二上下行资源分配周期内确定第二目标时域资源。所述第六信令还可以指示其他规则,例如在所述第一上下行资源分配周期内确定第二目标时域资源,在所述第二上下行资源分配周期内确定第一目标时域资源,本申请实施例不做限定。所述第六信令可以是下行控制信息、RRC信令、系统消息或MAC CE等,或者是上述各种信令的任意组合,本申请实施例不做限定。
本发明实施例能够实现从M组时域资源中确定其中的K组时域资源,并根据确定出的K组时域资源确定K个上下行资源分配周期内的K组目标时域资源,从而能够在尽可能少的改变CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号配置方法的前提下,保证CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号在K个上下行资源分配周期内的发送或接收,解决了上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
步骤503的另一种可能的实施方式中,对于M>K(或M≥K)的情形,例如,假设K=2,所述终端设备根据所述第二信令确定K=2个上下行资源分配周期,以及所述两个上下行资源分配周期内的下行时域资源、上行时域资源和灵活时域资源,所述K=2个上下行资源分配周期包含第一上下行资源分配周期和第二上下行资源分配周期;具体的确定方法在步骤502中已经有详细描述,在此不再赘述。以M=3为例,所述第一信令指示所述终端设备接收第一控制信道、第二控制信道和第三控制信道的第一时域资源参数集、第二时域资源参数集和第三时域资源参数集。进一步地,所述终端设备根据所述第一时域资源参数集、第二时域资源参数集和第三时域资源参数集在所述2个上下行资源分配周期内确定接收第一控制信道、第二控制信道和第三控制信道的第一目标时域资源、第二目标时域资源和第三目标时域资源。
下面结合图10的流程图具体说明上述M>K(或M≥K)的实施方式。如图10所示,本实施例的方法可以包括:
步骤1001,终端设备根据M个时域资源参数集在K个上下行资源分配周期内确定M组用于发送或接收数据的目标时域资源。可选地,所述终端设备可以通过预定义规则或由网络设备下发的配置信令获得如何根据M个时域资源参数集在K个上下行资源分配周期内确定M组用于发送或接收数据的目标时域资源。
本步骤中,对于M>K(或M≥K)的情形,例如以M=3,K=2为例进行说明,所述终端设备根据3个时域资源参数集在2个上下行资源分配周期内确定3组用于接收控制信道的目标时域资源。所述3组用于接收控制信道的目标时域资源包含第一目标时域资源、第二目标时域资源和第三目标时域资源。
在一种可能的实施方式中,所述终端设备根据第三预定义规则,在所述第一上下行资源分配周期内根据所述第一时域资源参数集确定所述第一目标时域资源,在所述第二上下行资源分配周期内根据所述第二时域资源参数集确定所述第二目标时域资源,在所述第二上下行资源分配周期内根据所述第三时域资源参数集确定所述第三目标时域资源。所述第三预定义规则还可以是其他规则,例如在所述第一上下行资源分配周期内根据所述第一时域资源参数集确定所述第一目标时域资源,在所述第一上下行资源分配周期内根据所述第二时域资源参数集确定所述第二目标时域资源,在所述第二上下行资源分配周期内根据所述第三时域资源参数集确定所述第三目标时域资源,本申请实施例不做限定。
在另一种可能的实施方式中,所述终端设备根据网络设备发送的第五信令指示所述终端设备在所述第一上下行资源分配周期内根据所述第一时域资源参数集确定所述第一目标时域资源,在所述第二上下行资源分配周期内根据所述第二时域资源参数集确定所述第二目标时域资源,在所述第二上下行资源分配周期内根据所述第三时域资源参数集确定所述第三目标时域资源。所述第五信令还可以指示其他规则,例如在所述第一上下行资源分配周期内根据所述第一时域资源参数集确定所述第一目标时域资源,在所述第一上下行资源分配周期内根据所述第二时域资源参数集确定所述第二目标时域资源,在所述第二上下行资源分配周期内根据所述第三时域资源参数集确定所述第三目标时域资源,本申请实施例不做限定。所述第五信令可以是下行控制信息、RRC信令、系统消息或MAC CE等,或者是上述各种信令的任意组合,本申请实施例不做限定。
本发明实施例能够实现根据M组时域资源确定K个上下行资源分配周期内的M组目标时域资源,从而能够在尽可能少的改变CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号配置方法的前提下,保证CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号在K个上下行资源分配周期内的发送或接收,解决了上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
步骤503的另一种可能的实施方式中,对于M<K(或M≤K)的情形,以K=2为例,所述终端设备根据所述第二信令确定K=2个上下行资源分配周期,以及所述两个上下行资源分配周期内的下行时域资源、上行时域资源和灵活时域资源,所述K=2个上下行资源分配周期包含第一上下行资源分配周期和第二上下行资源分配周期;具体的确定方法在步骤502中已经有详细描述,在此不再赘述。对于M<K(或M≤K)的情形,以M=1为例,所述第一信令指示所述终端设备接收第一控制信道的第一时域资源参数集,所述终端设备根据所述第一时域资源参数集确定接收第一控制信道的第一目标时域资源。进一步地,所述终端设备根据所述第一时域资源参数集,以及所述第一上下行资源分配周期和第二上下行资源分配周期中的至少一个上下行资源分配周期确定第二时域资源参数集,并根据所述第二时域资源参数集确定接收第二控制信道的第二目标时域资源。
下面结合图11的流程图具体说明上述M<K(或M≤K)的实施方式。如图11所示,本实施例的方法可以包括步骤1101和步骤1102;需要说明的是,所述步骤1101和步骤1102的执行顺序本申请实施例不做限定,可以先执行步骤1101,也可以先执行步骤1102,也可以同时执行步骤1101和步骤1102:
步骤1101,终端设备根据M个时域资源参数集确定用于发送或接收数据的M组目标时域资源。
本步骤中,对于M<K(或M≤K)的情形,以M=1,K=2为例,所述终端设备根据第一时域资源参数集确定用于接收第一控制信道的第一目标时域资源。具体的确定方法在步骤501有详细描述,在此不再赘述。
步骤1102,所述终端设备根据所述M个时域资源参数集和K个上下行资源分配周期中的至少一个上下行资源分配周期确定用于发送或接收数据的M*K-M组目标时域资源。可选地,所述终端设备可以通过预定义规则或由网络设备下发的配置信令获得如何根据所述M个时域资源参数集和K个上下行资源分配周期中的至少一个上下行资源分配周期确定用于发送或接收数据的M*K-M组目标时域资源。需要说明的是,在K=1为例的一种实施方式中,所述终端设备可以不执行本步骤。
本步骤中,对于M<K(或M≤K)的情形,以M=1,K=2为例,所述终端设备根据所述第一时域资源参数集和2个上下行资源分配周期中的至少一个上下行资源分配周期确定用于接收第二控制信道的第二目标时域资源。
在一种可能的实施方式中,所述终端设备根据第一时域资源参数集和第一上下行资源分配周期确定用于接收第二控制信道的第二目标时域资源。所述第一上下行资源分配周期采用第二信令指示,所述第二信令包含第一上下行资源分配周期参数,具体的指示方法在步骤502有详细描述,在此不再赘述。所述终端设备根据所述第一时域资源参数集和所述第一上下行资源分配周期参数,确定用于接收第二控制信道的第二目标时域资源。可选地,所述终端设备可以根据第五预定义规则或由网络设备发送的第七信令,确定第二目标时域资源占用的时隙t2与所述第一目标时域资源占用的时隙t1之间的关系为t2=t1+T1+t_delta,T1为所述第一上下行资源分配周期参数,t_delta为一个可取正值或负值或0值的偏置参数。
图12A示意了一种第一目标时域资源和第二目标时域资源的分布。所述第一目标时域资源占用图示的时隙0和时隙9。所述终端设备由第二信令获知第一上下行资源分配周期参数为5个时隙。可选地,所述终端设备可以根据所述第五预定义规则或由网络设备发送的所述第七信令,确定第二目标时域资源占用的时隙t2与所述第一目标时域资源占用的时隙t1之间的关系为t2=t1+T1,即t_delta=0,则所述终端设备可以确定第二目标时域资源占用图示的时隙5和时隙14。
图12B示意了另一种第一目标时域资源和第二目标时域资源的分布。所述第一目标时域资源占用图示的时隙0和时隙9。所述终端设备由第二信令获知第一上下行资源分配周期参数为5个时隙。可选地,所述终端设备可以根据所述第五预定义规则或由网络设备发送的所述第七信令,确定第二目标时域资源占用的时隙t2与所述第一目标时域资源占用的时隙t1之间的关系为t2=t1+T1-1,即t_delta=-1,则所述终端设备可以确定第二目标时域资源占用图示的时隙,4和时隙13。
在另一种可能的实施方式中,所述终端设备根据第一时域资源参数集和第二上下行资源分配周期确定用于接收第二控制信道的第二目标时域资源。所述第二上下行资源分配周期采用第二信令指示,所述第二信令包含第二上下行资源分配周期参数,具体的指示方法在步骤502有详细描述,在此不再赘述。所述终端设备根据所述第一时域资源参数集和所述第二上下行资源分配周期参数,确定用于接收第二控制信道的第二目标时域资源。可选地,所述终端设备可以根据第六预定义规则或由网络设备发送的第八信令,确定第二目标时域资源占用的时隙t2与所述第一目标时域资源占用的时隙t1之间的关系为t2=t1-T2+t_delta,T2为所述第二上下行资源分配周期参数,t_delta为一个可取正值或负值或0值的偏置参数。
如图12A所示,所述第一目标时域资源占用图示的时隙0和时隙9。所述终端设备由第二信令获知第二上下行资源分配周期参数为4个时隙。可选地,所述终端设备可以根据所述第六预定义规则或由网络设备发送的所述第八信令,确定第二目标时域资源占用的时隙t2与所述第一目标时域资源占用的时隙t1之间的关系为t2=t1-T2,即t_delta=0,则所述终端设备可以确定第二目标时域资源占用图示的时隙5和时隙14。
如图12B所示,所述第一目标时域资源占用图示的时隙0和时隙9。所述终端设备由第二信令获知第二上下行资源分配周期参数为4个时隙。可选地,所述终端设备可以根据所述第六预定义规则或由网络设备发送的所述第八信令,确定第二目标时域资源占用的时隙t2与所述第一目标时域资源占用的时隙t1之间的关系为t2=t1-T2-1,即t_delta=-1,则所述终端设备可以确定第二目标时域资源占用图示的时隙,4和时隙13。
需要说明的是,上述实施方式中的t1及t2之间的关系以及相应公式仅为举例,也可以基于上述公式适当变形,或采用其他公式,本申请实施例不做限定。所述第七信令,第八信令可以是下行控制信息、RRC信令、系统消息或MAC CE等,或者是上述各种信令的任意组合,本申请实施例不做限定。本发明实施例能够实现根据M个时域资源参数集和K个上下行资源分配周期,共同确定K个上下行资源分配周期内的M*K组目标时域资源,从而能够在尽可能少的改变CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号配置方法的前提下,保证CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号在K个上下行资源分配周期内的发送或接收,解决了上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
步骤503在另一种可能的实施方式中,对于M=K的情形,以M=K=2为例,所述终端设备根据所述第二信令确定K=2个上下行资源分配周期,以及所述两个上下行资源分配周期内的下行时域资源、上行时域资源和灵活时域资源,所述K=2个上下行资源分配周期包含第一上下行资源分配周期和第二上下行资源分配周期。具体的确定方法可参照步骤502部分的相关描述述,在此不再赘述。所述第一信令指示所述终端设备接收第一控制信道和第二控制信道的第一时域资源参数集和第二时域资源参数集。进一步地,所述终端设备根据第七预定义规则或由网络设备发送的第九信令确定,根据所述第一时域资源参数集在所述第一上下行资源分配周期内确定用于接收第一控制信道的第一目标时域资源,根据所述第二时域资源参数集在所述第二上下行资源分配周期内确定用于接收第二控制信道的第二目标时域资源;或者,所述终端设备根据第七预定义规则或由网络设备发送的第九信令确定,根据所述第一时域资源参数集在所述第二上下行资源分配周期内确定用于接收第一控制信道的第一目标时域资源,根据所述第二时域资源参数集在所述第一上下行资源分配周期内确定用于接收第二控制信道的第二目标时域资源。进一步地,所述第九信令可以是下行控制信息、RRC信令、系统消息或MAC CE等,或者是上述各种信令的任意组合,本申请实施例不做限定。
本发明实施例能够实现根据M个时域资源参数集和K个上下行资源分配周期确定K个上下行资源分配周期内的K(或M)组目标时域资源,从而能够在尽可能少的改变CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号配置方法的前提下,保证CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号在K个上下行资源分配周期内的发送或接收,解决了上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
可选地,如前所述,若M与K的取值关系可以变化,则步骤503中所述终端设备还可以进一步根据所述第一信令中M与所述第二信令中K的取值关系,确定使用步骤503上述可能实施方式中的哪一种。例如,当所述终端设备根据所述第一信令确定M=3、K=2时,则所述终端设备确定使用上述M=3、K=2时的实施方式;又例如,当所述终端设备根据所述第一信令确定M=1、K=2时,则所述终端设备确定使用上述M=1、K=2时的实施方式;又例如,当所述终端设备根据所述第一信令确定M=2、K=2时,则所述终端设备确定使用上述M=2、K=2时的实施方式。需要说明的是,上述M和K的具体取值仅作为示例,实际实施时所述终端设备还可以根据M和K之间的大小关系确定使用的具体实施方式,本申请实施例不做限定。例如如图13所示,终端设备在步骤1301中接收所述第一信令和所述第二信令,根据所述第一信令中M与所述第二信令中K的关系确定应该执行步骤1302-步骤1304中的哪一个步骤。如果M>K(或M≥K),则所述终端设备确定执行M>K(或M≥K)对应的步骤1302;如果M=K,则所述终端设备确定执行M=K对应的步骤1303;如果M<K(或M≤K),则所述终端设备确定执行M<K(或M≤K)对应的步骤1304。所述步骤1302-步骤1304中的具体操作本发明实施例不做限制,例如可以参考前述图8-图11所述的具体步骤,此处不再赘述。
需要说明的是,步骤503中确定的时域资源除了可以用于所述终端设备接收控制信道以外,还可以用于所述第一信令还可以用于所述终端设备发送或接收参考信号,所述参考信号可以是CSI-RS、SRS等参考信号,本申请实施例不做限制。
步骤504,所述终端设备在所述目标时域资源上发送或接收所述数据。
本步骤中,所述终端设备在步骤503中确定的目标时域资源上发送或接收所述数据。所述确定的目标时域资源为步骤503中确定的目标时域资源。所述数据可以是控制信道和/或参考信号,所述控制信道可以是PDCCH、GC-PDCCH等下行控制信道,所述参考信号可以是CSI-RS、SRS等下行或上行参考信号。当所述数据为下行控制信道时,所述终端设备在所述目标时域资源上接收所述下行控制信道;当所述数据为下行参考信号时,所述终端设备在所述目标时域资源上接收所述下行参考信号;当所述数据为上行参考信号时,所述终端设备在所述目标时域资源上发送所述上行参考信号。
本申请实施例提供的资源配置方法及装置,通过终端设备接收用于指示数据收发的时域资源参数集的第一信令和用于指示上下行资源分配周期的第二信令,并根据所述第一信令和所述第二信令共同决定收发所述数据的目标时域资源,从而解决了无线通信网络中上下行资源分配周期与CSI-RS、SRS、PDCCH、GC-PDCCH等信道或信号的配置周期不匹配的问题。
需要说明的是,本申请中,例如图2,图3A,图3B,图4,图6A,图6B,图7A,图7B,图7C,图12A,图12B中的符号索引或时隙索引,仅是为了表述方便的一种举例。本领域的技术人员可以理解,也可以采用其他的索引值。例如通过标准协议定义,或者基站和终端预先约定,或者预配置等方式,采用其他的索引值,使得通信双方理解一致。
可以理解的是,上述各个方法实施例中由终端设备实现的方法,也可以由可用于终端的部件(例如,集成电路,芯片等等)实现,上述方法实施例中由网络设备实现的方法,也可以由可用于网络设备的部件(例如,集成电路,芯片等等)实现。
相应于上述方法实施例给出的无线通信方法中的方法和步骤,本申请实施例还提供了相应的通信装置,所述通信装置包括用于执行图5、图8、图9、图10、图11或图13所示实施例中每个部分相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
图14给出了一种通信装置的结构示意图。所述通信装置1400可以是图1中的网络设备10或20,也可以是图1中的终端设备11、12、21或22。通信装置可用于实现上述方法实施例中描述的对应于网络设备或者终端设备的方法,具体参见上述方法实施例中的说明。
所述通信装置1400可以包括一个或多个处理器1401,所述处理器1401也可以称为处理单元,可以实现一定的控制功能。所述处理器1401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,分布单元(distributedunit,DU)或集中单元(centralized unit,CU)等)进行控制,执行软件程序,处理软件程序的数据。
在一种可选的设计中,处理器1401也可以存有指令1403,所述指令可以被所述处理器运行,使得所述通信装置1400执行上述方法实施例中描述的对应于网络设备或者终端设备的方法。
在又一种可能的设计中,通信装置1400可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。
可选的,所述通信装置1400中可以包括一个或多个存储器1402,其上存有指令1404,所述指令可在所述处理器上被运行,使得所述通信装置1400执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的,处理器中也可以存储指令和/或数据。所述处理器和存储器可以单独设置,也可以集成在一起。
可选的,所述通信装置1400还可以包括收发器1405和/或天线1406。所述处理器1401可以称为处理单元,对通信装置(终端设备或者基站)进行控制。所述收发器1405可以称为收发单元、收发机、收发电路或者收发器等,用于实现通信装置的收发功能。
在一个设计中,一种通信装置1400(例如,集成电路、无线设备、电路模块,网络设备,终端设备等)可包括处理器1401和收发器1405。若该通信装置1400用于实现对应于网络设备的操作时,例如,可以由收发器1405向终端设备发送第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;可以由收发器1405向终端设备发送第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;可以由处理器1401确定目标时域资源;可以由收发器1405利用所述目标时域资源接收数据或者利用所述目标时域资源发送数据
另一个设计中,若该通信装置1400用于实现对应于终端设备的操作时,例如,可以由收发器1405接收来自网络设备的第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;可以由收发器1405接收来自所述网络设备的第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;可以由处理器1401根据所述第一信令和所述第二信令确定目标时域资源;可以由收发器1405利用所述目标时域资源发送数据或者利用所述目标时域资源接收数据。
本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specificintegrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxidesemiconductor,PMOS)、双极结型晶体管(Bipolar Junction Transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
虽然在以上的实施例描述中,通信装置以网络设备或者终端设备为例来描述,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述设备可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据和/或指令的存储部件;
(3)ASIC,例如调制解调器(MSM);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端、智能终端、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
图15提供了一种终端设备的结构示意图。该终端设备可适用于图1所示出的系统中。为了便于说明,图15仅示出了终端设备的主要部件。如图15所示,终端1500包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端进行控制,执行软件程序,处理软件程序的数据。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当用户设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到用户设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图15仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本发明实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图15中的处理器集成了基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在一个例子中,可以将具有收发功能的天线和控制电路视为终端设备1500的收发单元1511,将具有处理功能的处理器视为终端设备1500的处理单元1512。如图15所示,终端设备1500包括收发单元1511和处理单元1512。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元1511中用于实现接收功能的器件视为接收单元,将收发单元1511中用于实现发送功能的器件视为发送单元,即收发单元1511包括接收单元和发送单元。示例性的,接收单元也可以称为接收机、接收器、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
如图16所示,本申请又一实施例提供了一种通信装置1600,该通信装置可以是终端设备,也可以是终端设备的部件(例如,集成电路,芯片等等),或者可以是其他通信模块,用于实现图5、图8、图9、图10、图11或图13所示方法实施例中对应于终端设备的操作,该通信装置可以包括:收发模块1601、处理模块1602。可选的,还可以包括存储模块1603。
收发模块1601用于接收来自网络设备的第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;用于接收来自所述网络设备的第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;
处理模块1602用于根据所述第一信令和所述第二信令确定目标时域资源;
收发模块1601还可以用于利用所述目标时域资源发送或接收数据。
可选地,所述处理模块1602,具体用于根据所述M个时域资源参数集确定K个时域资源参数集,并根据所述K个时域资源参数集确定K组时域资源为目标时域资源;或者,所述第一确定单元根据所述M个时域资源参数集确定M组时域资源,并根据所述M组时域资源确定K组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
可选地,所述处理模块1602,具体用于根据所述K个时域资源参数集中的时域资源参数集k在所述K个上下行资源分配周期中的上下行资源分配周期k’上确定第k组时域资源,所述k和k’为小于或等于K的正整数。
可选地,所述处理模块1602,具体用于根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K组时域资源为目标时域资源;所述M为小于K的正整数,或者所述M为小于或等于K的正整数。
可选地,所述处理模块1602,具体用于根据所述M个时域资源参数集确定M组时域资源,根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K-M组时域资源。
可选地,所述处理模块1602,具体用于根据所述M个时域资源参数集确定M组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
可选地,所述处理模块1602,具体用于根据所述M个时域资源参数集中的时域资源参数集m在所述K个上下行资源分配周期中的上下行资源分配周期k上确定第m组时域资源,所述m和k为小于或等于K的正整数。
可选地,所述数据包括参考信号,控制信道中的至少一种。
可选地,所述时域资源参数集包含所述数据的周期参数和所述数据的偏置参数。
可选地,所述第一信令为一条信令,所述M个时域资源参数集由所述一条信令中的M个字段分别承载;或者所述第一信令为M条信令,所述M个时域资源参数集由所述M条信令分别承载。
可选地,所述第一信令为下行控制信息、RRC信令、系统消息和MAC CE中的至少一种;所述目标时域资源为发送或接收所述数据的时域位置。
可选地,所述目标时域资源包含一个或多个基本时间单元,所述基本时间单元为符号、时隙、子帧和无线帧中的任意一种。
对于图5、图8、图9、图10、图11或图13所示实施例,存储模块1603,用于存储参数、信息和指令中的至少一种。
可以理解的是,上述收发模块1601中可以包含一个或多个接收单元和/或发送单元,例如收发模块1601中可以包含第一接收单元、第二接收单元、第三接收单元和第一发送单元;上述处理模块1602中可以包含一个或多个确定单元,例如处理模块1602中可以包含第一确定单元。
在一种可能的设计中,如图16中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
需要说明的是,本申请实施例中的通信装置1600中各个模块的操作和实现方式可以进一步参考前述对应方法实施例中的相应描述。
相应于上述方法实施例给出的通信方法中网络设备所实现的方法和步骤,本申请实施例还提供了相应的通信装置,所述通信装置包括用于执行图5、图8、图9、图10、图11或图13中每个部分相应的模块。所述模块可以是软件,也可以是硬件,或者是软件和硬件结合。
如图17所示,本申请实施例提供了一种通信装置,该通信装置可以是网络设备,也可以是网络设备的部件(例如,集成电路,芯片等等),或者可以是其他通信模块,用于实现图5、图8、图9、图10、图11或图13所示方法实施例中对应于网络设备的操作。该通信装置1700可以包括:收发模块1701和处理模块1702。可选的,还可以包括存储模块1703。
收发模块1701用于向终端设备发送第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;用于向所述终端设备发送第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;
处理模块1702用于确定目标时域资源;
所述收发模块1701还可以用于利用所述目标时域资源上接收或发送数据。
可选地,所述处理模块1702,具体用于根据所述M个时域资源参数集确定K个时域资源参数集,并根据所述K个时域资源参数集确定K组时域资源为目标时域资源;或者,所述处理模块1702根据所述M个时域资源参数集确定M组时域资源,并根据所述M组时域资源确定K组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
可选地,所述处理模块1702,具体用于根据所述K个时域资源参数集中的时域资源参数集k在所述K个上下行资源分配周期中的上下行资源分配周期k’上确定第k组时域资源,所述k和k’为小于或等于K的正整数。
可选地,所述处理模块1702,具体用于根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K组时域资源为目标时域资源;所述M为小于K的正整数,或者所述M为小于或等于K的正整数。
可选地,所述处理模块1702,具体用于根据所述M个时域资源参数集确定M组时域资源,根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K-M组时域资源。
可选地,所述处理模块1702,具体用于根据所述M个时域资源参数集确定M组时域资源为目标时域资源;所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
可选地,所述处理模块1702,具体用于根据所述M个时域资源参数集中的时域资源参数集m在所述K个上下行资源分配周期中的上下行资源分配周期k上确定第m组时域资源,所述m和k为小于或等于K的正整数。
可选地,所述数据包括参考信号,控制信道中的至少一种。
可选地,所述时域资源参数集包含所述数据的周期参数和所述数据的偏置参数。
在一种可能实现的设计中,所述第一信令为一条信令,所述M个时域资源参数集由所述一条信令中的M个字段分别承载;或者所述第一信令为M条信令,所述M个时域资源参数集由所述M条信令分别承载。
可选地,所述第一信令为下行控制信息、RRC信令、系统消息和MAC CE中的至少一种;所述目标时域资源为发送或接收所述数据的时域位置。
可选地,所述目标时域资源包含一个或多个基本时间单元,所述基本时间单元为符号、时隙、子帧和无线帧中的任意一种。
对于图5、图8、图9、图10、图11或图13所示实施例,存储模块1703,用于存储参数、信息和指令中的至少一种。
可以理解的是,上述收发模块1701中可以包含一个或多个接收单元和/或发送单元,例如收发模块1701中可以包含第二发送单元、第三发送单元、第四发送单元和第四接收单元;上述处理模块1702中可以包含一个或多个确定单元,例如处理模块1702中可以包含第二确定单元。
在一种可能的设计中,如图17中的一个或者多个模块可能由一个或者多个处理器来实现,或者由一个或者多个处理器和存储器来实现;或者由一个或多个处理器和收发器实现;或者由一个或者多个处理器、存储器和收发器实现,本申请实施例对此不作限定。所述处理器、存储器、收发器可以单独设置,也可以集成。
需要说明的是,本申请实施例中的通信装置1700中各个模块的操作和实现方式可以进一步参考前述对应方法实施例中的相应描述。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请所描述的技术可通过各种方式来实现。例如,这些技术可以用硬件、软件或者硬件结合的方式来实现。对于硬件实现,用于在通信装置(例如,基站,终端、网络实体、或芯片)处执行这些技术的处理单元,可以实现在一个或多个通用处理器、数字信号处理器(DSP)、数字信号处理器件(DSPD)、专用集成电路(ASIC)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、或其它可编程逻辑装置,离散门或晶体管逻辑,离散硬件部件,或上述任何组合中。通用处理器可以为微处理器,可选地,该通用处理器也可以为任何传统的处理器、控制器、微控制器或状态机。处理器也可以通过计算装置的组合来实现,例如数字信号处理器和微处理器,多个微处理器,一个或多个微处理器联合一个数字信号处理器核,或任何其它类似的配置来实现。
本领域普通技术人员可以理解:本文中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
本申请实施例中所描述的方法或算法的步骤可以直接嵌入硬件、处理器执行的指令、或者这两者的结合。存储器可以是RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、可移动磁盘、CD-ROM或本领域中其它任意形式的存储媒介。例如,存储器可以与处理器连接,以使得处理器可以从存储器中读取信息,并可以向存储器存写信息。可选地,存储器还可以集成到处理器中。处理器和存储器可以设置于ASIC中,ASIC可以设置于终端中。可选地,处理器和存储器也可以设置于终端中的不同的部件中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据包中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据包中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据包中心等数据包存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。上面的组合也应当包括在计算机可读介质的保护范围之内。
本说明书中各个实施例之间相同或相似的部分可以互相参考。
以上所述的本申请实施方式并不构成对本申请保护范围的限定。

Claims (15)

1.一种用于无线通信的方法,其特征在于,包括:
接收来自网络设备的第一信令,所述第一信令用于指示M个时域资源参数集,所述M为正整数;
接收来自所述网络设备的第二信令,所述第二信令用于指示K个上下行资源分配周期,所述K为正整数;
根据所述第一信令和所述第二信令确定目标时域资源;
利用所述目标时域资源发送或接收数据。
2.根据权利要求1所述的方法,其特征在于,
所述根据所述第一信令和所述第二信令确定目标时域资源,包括:
根据所述M个时域资源参数集确定K个时域资源参数集,并根据所述K个时域资源参数集确定K组时域资源为目标时域资源;
所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
3.根据权利要求2所述的方法,其特征在于,所述根据所述K个时域资源参数集确定所述K组时域资源为目标时域资源,包括:
根据所述K个时域资源参数集中的时域资源参数集k在所述K个上下行资源分配周期中的上下行资源分配周期k’上确定第k组时域资源,所述k和k’为小于或等于K的正整数。
4.根据权利要求1所述的方法,其特征在于,
所述根据所述第一信令和所述第二信令确定目标时域资源,包括:
所述根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K组时域资源为目标时域资源;
所述M为小于K的正整数,或者所述M为小于或等于K的正整数。
5.根据权利要求4所述的方法,其特征在于,所述根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定所述M*K组时域资源为目标时域资源,包括:
根据所述M个时域资源参数集确定M组时域资源,根据所述M个时域资源参数集和所述K个上下行资源分配周期中的至少一个上下行资源分配周期确定M*K-M组时域资源。
6.根据权利要求1所述的方法,其特征在于,
所述根据所述第一信令和所述第二信令确定目标时域资源,包括:
根据所述M个时域资源参数集确定M组时域资源为目标时域资源;
所述M为大于K的正整数,或者所述M为大于或等于K的正整数。
7.根据权利要求6所述的方法,其特征在于,所述根据所述M个时域资源参数集确定M组时域资源为目标时域资源,包括:
根据所述M个时域资源参数集中的时域资源参数集m在所述K个上下行资源分配周期中的上下行资源分配周期k上确定第m组时域资源,所述m和k为小于或等于K的正整数。
8.根据权利要求1-7任一项所述的方法,其特征在于:所述数据包括参考信号,控制信道中的至少一种。
9.根据权利要求1-8任一项所述的方法,其特征在于:
所述时域资源参数集包含所述数据的周期参数和所述数据的偏置参数。
10.根据权利要求1-9任一项所述的方法,其特征在于:
所述第一信令为一条信令,所述M个时域资源参数集由所述一条信令中的M个字段分别承载;或者
所述第一信令为M条信令,所述M个时域资源参数集由所述M条信令分别承载。
11.根据权利要求1-10任一项所述的方法,其特征在于:
所述第一信令为下行控制信息、RRC信令、系统消息和MAC CE中的至少一种;
所述目标时域资源为发送或接收所述数据的时域位置。
12.根据权利要求1-11任一项所述的方法,其特征在于:
所述目标时域资源包含一个或多个基本时间单元,所述基本时间单元为符号、时隙、子帧和无线帧中的任意一种。
13.一种通信装置,其特征在于,所述通信装置用于执行如权利要求1-12任一项所述的方法。
14.一种通信装置,其特征在于,包括:处理器和存储器,所述存储器用于存储程序,当所述程序被所述处理器执行时,使得通信装置以执行权利要求1-12任一项所述的方法。
15.一种存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-12任一项所述的方法。
CN201810280916.5A 2018-04-02 2018-04-02 资源配置方法及装置 Active CN110351032B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201810280916.5A CN110351032B (zh) 2018-04-02 2018-04-02 资源配置方法及装置
PCT/CN2019/077656 WO2019192287A1 (zh) 2018-04-02 2019-03-11 资源配置方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810280916.5A CN110351032B (zh) 2018-04-02 2018-04-02 资源配置方法及装置

Publications (2)

Publication Number Publication Date
CN110351032A true CN110351032A (zh) 2019-10-18
CN110351032B CN110351032B (zh) 2022-04-26

Family

ID=68099774

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810280916.5A Active CN110351032B (zh) 2018-04-02 2018-04-02 资源配置方法及装置

Country Status (2)

Country Link
CN (1) CN110351032B (zh)
WO (1) WO2019192287A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210029683A1 (en) * 2018-04-13 2021-01-28 Vivo Mobile Communication Co.,Ltd. Physical downlink control channel monitoring method, user equipment and network side device
CN113596963A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 通信方法及装置
CN113993215A (zh) * 2020-02-11 2022-01-28 Oppo广东移动通信有限公司 一种时域资源的确定方法及装置、终端设备
WO2024016347A1 (zh) * 2022-07-22 2024-01-25 Oppo广东移动通信有限公司 通信方法及通信装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287281A (zh) * 2007-04-11 2008-10-15 北京三星通信技术研究有限公司 无线通信系统中下行调度控制信令的传输设备和方法
CN101646209A (zh) * 2008-08-04 2010-02-10 大唐移动通信设备有限公司 半持续调度的业务数据处理方法及基站
WO2010018508A1 (en) * 2008-08-12 2010-02-18 Koninklijke Philips Electronics N.V. A method for communicating in a network, radio stations and a system therefor
CN101877911A (zh) * 2009-04-30 2010-11-03 大唐移动通信设备有限公司 一种专用调度请求资源的分配方法及装置
US20110310841A1 (en) * 2009-01-30 2011-12-22 Jung In Uk Effective method of handover in wideband radio access system
CN105636177A (zh) * 2014-11-06 2016-06-01 中兴通讯股份有限公司 数据传输结束的指示、处理方法及装置
WO2017031643A1 (zh) * 2015-08-21 2017-03-02 华为技术有限公司 资源分配、指示及识别资源类型、接收数据的方法及装置
WO2017075782A1 (zh) * 2015-11-05 2017-05-11 华为技术有限公司 消息发送方法、资源分配方法及设备
CN107425948A (zh) * 2016-05-24 2017-12-01 华为技术有限公司 参考信号的传输方法及装置、网络设备和用户设备
WO2017215642A1 (zh) * 2016-06-16 2017-12-21 华为技术有限公司 一种资源分配方法、网络设备及终端设备
CN107623564A (zh) * 2016-07-13 2018-01-23 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107734520A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 一种资源配置方法及装置
CN107734668A (zh) * 2016-08-12 2018-02-23 中国移动通信有限公司研究院 一种帧结构的配置方法、网络侧设备及终端

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8102809B2 (en) * 2007-06-19 2012-01-24 Texas Instruments Incorporated Time-sharing of sounding resources
CN102761968B (zh) * 2011-04-27 2017-03-01 艾利森电话股份有限公司 多用户设备的探测参考信号上行资源分配方法及基站

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101287281A (zh) * 2007-04-11 2008-10-15 北京三星通信技术研究有限公司 无线通信系统中下行调度控制信令的传输设备和方法
CN101646209A (zh) * 2008-08-04 2010-02-10 大唐移动通信设备有限公司 半持续调度的业务数据处理方法及基站
WO2010018508A1 (en) * 2008-08-12 2010-02-18 Koninklijke Philips Electronics N.V. A method for communicating in a network, radio stations and a system therefor
US20110310841A1 (en) * 2009-01-30 2011-12-22 Jung In Uk Effective method of handover in wideband radio access system
CN101877911A (zh) * 2009-04-30 2010-11-03 大唐移动通信设备有限公司 一种专用调度请求资源的分配方法及装置
CN105636177A (zh) * 2014-11-06 2016-06-01 中兴通讯股份有限公司 数据传输结束的指示、处理方法及装置
WO2017031643A1 (zh) * 2015-08-21 2017-03-02 华为技术有限公司 资源分配、指示及识别资源类型、接收数据的方法及装置
WO2017075782A1 (zh) * 2015-11-05 2017-05-11 华为技术有限公司 消息发送方法、资源分配方法及设备
CN107425948A (zh) * 2016-05-24 2017-12-01 华为技术有限公司 参考信号的传输方法及装置、网络设备和用户设备
WO2017215642A1 (zh) * 2016-06-16 2017-12-21 华为技术有限公司 一种资源分配方法、网络设备及终端设备
CN107623564A (zh) * 2016-07-13 2018-01-23 上海朗帛通信技术有限公司 一种无线通信中的方法和装置
CN107734520A (zh) * 2016-08-11 2018-02-23 华为技术有限公司 一种资源配置方法及装置
CN107734668A (zh) * 2016-08-12 2018-02-23 中国移动通信有限公司研究院 一种帧结构的配置方法、网络侧设备及终端

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP: "《TR 36.828 V11.0.0》", 《3GPP TECHNICAL REPORT》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210029683A1 (en) * 2018-04-13 2021-01-28 Vivo Mobile Communication Co.,Ltd. Physical downlink control channel monitoring method, user equipment and network side device
US11477778B2 (en) * 2018-04-13 2022-10-18 Vivo Mobile Communication Co., Ltd. Physical downlink control channel monitoring method, user equipment and network side device
CN113993215A (zh) * 2020-02-11 2022-01-28 Oppo广东移动通信有限公司 一种时域资源的确定方法及装置、终端设备
CN113993215B (zh) * 2020-02-11 2023-08-04 Oppo广东移动通信有限公司 一种时域资源的确定方法及装置、终端设备
CN113596963A (zh) * 2020-04-30 2021-11-02 华为技术有限公司 通信方法及装置
CN113596963B (zh) * 2020-04-30 2024-02-02 华为技术有限公司 通信方法及装置
WO2024016347A1 (zh) * 2022-07-22 2024-01-25 Oppo广东移动通信有限公司 通信方法及通信装置

Also Published As

Publication number Publication date
CN110351032B (zh) 2022-04-26
WO2019192287A1 (zh) 2019-10-10

Similar Documents

Publication Publication Date Title
CN110492913A (zh) 一种信号传输方法和装置
CN110351032A (zh) 资源配置方法及装置
TWI767999B (zh) 包括用於基帶單元及遠端無線電頭之組態模式之範例之無線裝置及系統
WO2021211560A1 (en) Self interference noise cancellation to support multiple frequency bands with neural networks or recurrent neural networks
CN110071749A (zh) 一种天线选择指示方法、装置和系统
CN109802792A (zh) 接收参考信号的方法和发送参考信号的方法
CN109802799A (zh) 用于多载波通信的载波切换
CN109803421A (zh) 随机接入方法、终端及网络设备
CN109802817A (zh) 一种信息发送、接收的方法及装置
CN109392120A (zh) 信息指示方法及相关设备
CN110351859A (zh) 资源指示值的获取方法及装置
CN110381588A (zh) 通信的方法和通信装置
CN110266459A (zh) 通信的方法和通信装置
CN106961315A (zh) 一种窄带pbch传输方法及装置
CN112134664A (zh) 资源确定方法及装置
WO2021017995A1 (zh) 控制信息传输方法及装置
CN110267227A (zh) 一种数据传输方法、相关设备及系统
CN109150463A (zh) 信息发送、接收方法及装置
CN110351809A (zh) 系统消息冗余版本确定方法及装置
CN111865855A (zh) 生成参考信号的方法、检测参考信号的方法和通信装置
CN108288988A (zh) 上行参考信号的发送、接收处理方法、装置及基站、终端
CN113383593A (zh) 通信方法、装置及系统
WO2018171783A1 (zh) 信号传输方法、装置及系统
CN109600852A (zh) 一种资源指示方法、通信装置及网络设备
CN110545164A (zh) 用于通信系统中干扰指示的方法及装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant