CN110337494B - 表达靶向CDK9的RNAi效应子的H-1 PV - Google Patents

表达靶向CDK9的RNAi效应子的H-1 PV Download PDF

Info

Publication number
CN110337494B
CN110337494B CN201780083500.8A CN201780083500A CN110337494B CN 110337494 B CN110337494 B CN 110337494B CN 201780083500 A CN201780083500 A CN 201780083500A CN 110337494 B CN110337494 B CN 110337494B
Authority
CN
China
Prior art keywords
cells
cell
parvovirus
cdk9
shrna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780083500.8A
Other languages
English (en)
Other versions
CN110337494A (zh
Inventor
卡伦·涅托
吉恩·罗默拉尔
芭芭拉·鲁什
彼得·克拉默
李敏
安娜-葆拉·德奥利韦拉
安东尼奥·马奇尼
李俊伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Hexaell Biotech Co ltd
Original Assignee
Shanghai Hexaell Biotech Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Hexaell Biotech Co ltd filed Critical Shanghai Hexaell Biotech Co ltd
Publication of CN110337494A publication Critical patent/CN110337494A/zh
Application granted granted Critical
Publication of CN110337494B publication Critical patent/CN110337494B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/53Physical structure partially self-complementary or closed
    • C12N2310/531Stem-loop; Hairpin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/30Special therapeutic applications
    • C12N2320/32Special delivery means, e.g. tissue-specific
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2330/00Production
    • C12N2330/50Biochemical production, i.e. in a transformed host cell
    • C12N2330/51Specially adapted vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14311Parvovirus, e.g. minute virus of mice
    • C12N2750/14341Use of virus, viral particle or viral elements as a vector
    • C12N2750/14343Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Virology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Veterinary Medicine (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明涉及表达针对CDK9基因的RNAi效应子(优选shRNA)的创新的原细小病毒(PV),其显示出改善的抗癌活性。这些新病毒基于ΔH‑1PV沉默子平台,该平台由原细小病毒H‑1PV组成,其特征在于NS区域内的框内缺失(ΔH‑1PV)并且携带shRNA表达盒,其中shRNA的表达受H1聚合酶III启动子控制。在本发明中,发明人旨在使用ΔH‑1PV沉默子来沉默CDK9基因,该基因的活性通常在癌细胞中失调并且已知有助于肿瘤发生。本发明还提供了包括所述细小病毒的细胞或生物体。

Description

表达靶向CDK9的RNAi效应子的H-1 PV
技术领域
本发明涉及表达针对CDK9基因的RNAi效应子(优选shRNA)的创新的原细小病毒(protoparvoviruses,PV),其显示出改善的抗癌活性。这些新病毒基于ΔH-1PV沉默子平台,该平台由原细小病毒H-1PV组成,其特征为NS区域内的框内缺失(ΔH-1PV)并且携带RNA表达盒,优选shRNA表达盒,在该表达盒中RNA的表达受H1聚合酶III启动子控制。在本发明中,发明人旨在使用ΔH-1PV沉默子来沉默CDK9基因,该基因的活性通常在癌细胞中失调并且已知有助于肿瘤发生。本发明还提供了包括所述细小病毒的细胞或生物体。
背景技术
RNAi干扰,RNAi效应子和递送
RNA干扰(RNAi)首次被Andrew Fire和Craig Mello在秀丽隐杆线虫(Caenorhabditis elegans)中识别出来,之后因其发现他们在1998年被授予诺贝尔奖。RNAi的机制基于借助于与靶序列互补的双链RNA的宿主mRNA的序列特异性降解。RNAi是一种控制基因表达的天然存在的细胞过程,因此在许多细胞过程中起着关键作用,包括发育过程[1]。它也是免疫应答的重要组成部分,保护细胞免受如病毒和转座子等病原体的侵害[2]。在其发现后不久,RNAi技术被用于解决生物学问题和疾病的治疗选择,因为它具有高度的特异性和能力,以实现有效地敲除已知的基因序列[3]。在治疗上,RNAi通过递送小RNA双链体来起作用,包括微小RNA(miRNA)模拟物、小干扰RNA(siRNA)、短发夹RNA(shRNA)和Dicer底物RNA(dsiRNA)[4]。所有这四类RNAi效应子目前都在针对包括多种癌症在内的各种疾病的多个I-III期临床试验中进行了测试[5]。
通过RNAi介导的抗癌疗法靶向的基因的实例是KRAS、Polo样激酶1、弗林蛋白酶、Ephrin A型受体和c-myc。大多数临床研究涉及与纳米颗粒(例如脂质纳米颗粒)缀合的siRNA,其与裸siRNA相比具有优异的稳定性。然而,尽管有显著改善,但在注射后的前72小时内观察到siRNA的快速下降,其中大多数siRNA被肝细胞吸收(从注射开始30分钟后已在肝脏中发现注射剂量的大约50%)。因此,siRNA的有效递送仍然是该领域的主要瓶颈[5]。由于大多数递送系统是瞬时的并且在细胞分裂期间siRNA的细胞内浓度被稀释,因此通常需要重复给予siRNA。
短发夹RNA(shRNA)是另一类RNAi效应子[6]。shRNA通常由两个互补的(正义和反义)19-29个碱基对序列组成,所述序列由4-11个受损核苷酸的短茎环(loop)分开。通常,表达受RNA聚合酶(Pol)III启动子(例如U6、H1)或修饰的pol II启动子控制。转录shRNA后,通过茎环连接的正义链和反义链成对一起形成特征性发夹结构。该结构类似于细胞天然用于调节基因表达并需要核处理的前miRNA(pre-miRNA)[3]。在发现启动子驱动的shRNA表达后,病毒RNAi载体的设计成为可能[7]。用于在癌症基因治疗中递送和表达shRNA的病毒的实例是腺病毒、腺相关病毒、慢病毒和逆转录病毒。然而,大多数这些病毒在复制方面有缺陷,并因此沉默效应仅限于原代感染细胞。
溶瘤病毒和RNAi
溶瘤病毒(OV)是在癌细胞中选择性复制并杀死癌细胞,并且具有在整个肿瘤中扩散同时保留正常组织的能力的病毒。它们针对多种肿瘤模型的抗癌潜力已经在临床前水平上得到证实,并且至少十二种OV目前正在进行I-III期临床评估。特别是,Talimogenelaherparepvec(T-Vec;Amgen),其是一种表达免疫刺激细胞因子粒细胞-巨噬细胞集落刺激因子(GM-CSF)的改良单纯疱疹病毒(HSV),最近已被FDA和EMA批准用于治疗不可切除的转移性黑色素瘤。然而,用OV获得的临床前水平上的有希望的结果并不总是在临床上复制。肿瘤本质上通常是高度异质的,并且可能某些肿瘤对病毒诱导的溶瘤中度敏感。在某一肿瘤中,一部分细胞也可能在病毒治疗后存活,导致肿瘤再生长。因此,RNAi技术在基于OV的疗法情况下的应用是非常有吸引力的,因为它可以代表通过为病毒提供额外的作用模式来加强OV杀灭那些对其感染敏感性差的癌细胞的功效的方法。此外,OV介导的RNAi效应子的递送可以克服RNAi技术的一般障碍,即如何在癌细胞中特异性地实现这些分子的高水平表达,特别是在静脉内给药后。此外,OV可以复制并通过肿瘤扩散,从而具有扩增shRNA产生和递送的潜力。在溶瘤腺病毒(Ad)的情况下证明用RNAi效应子武装OV是有效的手段,例如表达靶向许多肿瘤相关基因(包括VEGF、MYCN、SATB1、C-Met、Ki67、IL-8、hTERT和FAK)的shRNA的Ad比其亲代病毒具有更高的抗癌活性[8-15]。还表明,溶瘤HSV可以被设计为有效表达RNAi效应子(shRNA和人工miRNA)[16]。
发明内容
发明目的
如上所述,如果shRNA由腺病毒、腺相关病毒、慢病毒和逆转录病毒递送,则病毒通常在复制方面有缺陷,并因此沉默效应限于原代感染细胞。
因此,本发明的目的是提供以更持久的方式有效下调细胞或生物体中癌症相关基因表达的方法。
根据本发明,这通过提供权利要求中限定的主题来实现。
发明概述
本发明涉及表达针对为癌症相关基因的CDK9基因的RNAi效应子(优选shRNA)的自主细小病毒H-1的缺失变体。
H-1 PV因其抗癌潜力而备受关注,因为它们对人类无致病性并具有溶瘤和抑瘤性质。对于这些病毒,现有的抗病毒免疫通常不是问题,因为人通常不会暴露于啮齿动物细小病毒感染。细小病毒基因组由约5100个碱基的单链DNA组成,其含有两个启动子P4和P38,它们分别调节非结构(NS1和NS2)和衣壳(VP1和VP2)蛋白的表达。P4启动子的激活是PV生命周期中的关键步骤。P4启动子的活性随后被其自身的基因产物NS1调节,但其初始活化完全依赖于主要在细胞周期的S期期间表达的宿主细胞因子。这种依赖性以及病毒不能刺激静止细胞进行增殖的事实有助于病毒的趋瘤性(oncotropism),其优先在增殖、转化或恶性细胞中复制。此外,细小病毒的细胞毒性也受到与致瘤性转化相关的细胞变化的刺激。NS1是主要的病毒毒性蛋白。已显示H-1PV激活癌细胞中的几种死亡途径。虽然PV的抗癌潜力得到大量临床前研究的支持,但预计效力可能是临床应用的限制因素。一些癌细胞可能在病毒治疗后存活,导致肿瘤复发。
在产生本发明的实验期间,可以显示在细小病毒基因组的特定位点处插入靶向CDK9基因的shRNA表达盒与细小病毒包装能力相容,不干扰病毒复制并增强病毒的内在细胞毒性。该病毒表达高水平的shRNA,并且在基因沉默方面非常有效。与复制缺陷型载体相比,H-1PV-沉默子的大优势在于其在增殖细胞(例如癌细胞)中复制和繁殖的能力。理论上,每个感染/转导细胞都可以成为新病毒颗粒的生产者。通过第二轮感染的子代病毒体可以通过肿瘤传播并有效递送和表达治疗性shRNA。在这种情况下,沉默信号可以被放大超过初始接种物。基于细小病毒的载体和shRNA技术共同弥补了彼此的限制:细小病毒的天然趋瘤性应该特异性地和有效地递送至增殖细胞(例如癌细胞)并介导增殖细胞(例如癌细胞)中shRNA的转导。
附图说明
图1:H-1PV沉默子载体的示意图。
ΔH-1PV病毒基因组的特征为涵盖核苷酸(nt)2022-2135的框内缺失。左(LP)和右回文序列(RP)用作复制的自引发起点;P4启动子调节编码非结构蛋白NS1和NS2的NS基因的表达,并且P38启动子调节编码VP1和VP2病毒蛋白的VP基因的表达。非编码区(NCR)位于VP区的下游,并且它被认为参与病毒基因组复制和衣壳化的调节。由H1-PolIII启动子和靶向shRNA序列组成的shRNA的表达盒被插入到ΔH-1PV基因组的NCR内的HpaI限制性位点。
图2:pΔH-1PVshCDK9在HEK293T细胞中的转染导致产生完全感染性病毒颗粒。
A)形态表型。如材料和方法部分中所述,通过电子显微镜分析HEK293T细胞中产生的病毒。各种病毒之间没有发现形态差异。
B)蚀斑大小的比较。如材料和方法部分中所述,将10倍连续稀释的指定病毒用于NB324K指示细胞中的蚀斑测定。除ΔH-1PVshCDK9-b外,所有病毒在感染后5天进行蚀斑染色,而对于ΔH-1PVshCDK9-b,6天后进行染色。
图3:ΔH-1PVshCDK9可以高滴度产生。
A)通过转染在HEK293T细胞中的产生。携带病毒基因组的DNA质粒在HEK293T细胞中瞬时转染。病毒纯化后,通过qPCR和蚀斑测定来滴定病毒批次。通过qPCR获得的值表示为每个接种细胞的衣壳化病毒基因组(Vg),而通过蚀斑测定获得的值表示为每个接种细胞的蚀斑形成单位(PFU)。
B)通过感染在NB324K细胞中的产生。用指定的病毒以相同的MOI(0.1PFU/细胞)感染NBK324细胞。然后如上所述纯化和滴定产生的病毒。
图4:ΔH-1PVshCDK9在基因沉默中是有效的。
A)用MOI 5(PFU/细胞)的指定的病毒感染PC3细胞。感染后48小时收获细胞,分离总RNA并逆转录。使用特异性引物通过qRT-PCR定量CDK9 mRNA水平。相对于GAPDH(用作管家基因)归一化值。值表示为相对于在模拟(假)处理细胞中获得的值的百分比,具有标准偏差条。给出了一式三份进行的代表性实验的平均值。
B)用MOI 5(PFU/细胞)的指定的病毒感染PC3细胞并生长72小时,然后裂解。对总细胞提取物进行SDS-PAGE,然后使用特异性抗体对CDK9和β-微管蛋白(上样对照)的蛋白质水平进行免疫印迹分析。
图5:ΔH-1PVshCDK9具有优异的溶瘤活性(I)
用指定的病毒以MOI(PFU/细胞)1(上图)或5(下图)感染PC3细胞。在感染后72小时,根据材料和方法部分中描述的方案,使用ApoTox-GloTM Triplex Assay试剂盒测定细胞膜完整性。
图6:ΔH-1PVshCDK9具有优异的溶瘤活性(II)
用指定的病毒以MOI(PFU/细胞)1(上图)或5(下图)感染PC3细胞。在72、96或120小时后,收获细胞,固定并如材料和方法部分所述通过用碘化丙啶染色细胞并分析含有片段化DNA的凋亡subG1细胞群进行流式细胞术。
图7:ΔH-1PVshCDK9具有优异的溶瘤活性(III)
将PC3癌细胞接种在96孔E-板中,并用指定的病毒以MOI 1(PFU/细胞)(上图)或MOI 15(下图)感染或用缓冲液(模拟)处理。每30分钟用XCELLigence系统实时监测细胞增殖和活力,持续约7天。数值表示为归一化细胞指数,其反映了附着在孔底部的活细胞数。将细胞指数相对于时间作图,作为细胞生长曲线的表示。每个实验条件至少一式三份进行,并显示平均值。箭头表示处理时间(细胞铺板后约24小时)。
图8:ΔH-1PVshCDK9具有优异的溶瘤活性(IV)
将AsPC-1接种在96孔E-平板中,并用指定的病毒以MOI 1(PFU/细胞)(上图)或MOI15(下图)感染或用缓冲液(模拟)处理。使用如图7中所述的XCELLigence系统实时监测细胞增殖和活力。箭头表示处理时间(细胞铺板后约24小时)。
图9:ΔH-1PVshCDK9具有增强的抑瘤能力。
A)实验安排。将5×106个胰腺癌来源的AsPC-1细胞皮下注射到5周龄雌性裸大鼠的右侧腹中。在7-10天后(当肿瘤达到200-250mm3的体积时),将荷瘤动物随机分成四组(n=6)。用PBS(对照)或病毒(总剂量为1×108pfu/动物,分成4次瘤内给药)处理组。
B)肿瘤生长。在指示的天数用数显卡尺测量肿瘤体积,并根据下式计算:体积(cm3)=宽度2×长度/2。根据动物福利法规,当肿瘤团块达到4000mm3时处死大鼠。显示的数据表示具有标准偏差条的平均值。
C)生存曲线。使用卡普兰-梅耶(Kaplan-Meier)方法分析如所示处理的荷瘤大鼠的存活。当肿瘤达到4000mm3的大小时,无条件地认为动物死亡。使用双侧对数秩(log-rank)检验针对显著性计算存活率的统计显著性,并使用Bonferroni方法对多次检验进行调整。**P<0.01被认为具有统计学显著性。
图10:H-1PVshCDK9在人前列腺癌的异种移植物大鼠模型中具有增强的抑瘤能力。
如图9图例中所述进行实验。通过将5×106个来自前列腺癌的PC3细胞皮下注射到雄性动物的右侧腹中来建立异种移植物。
A)肿瘤生长监测显示,与H-1PV野生型、ΔH-1PVsh-EGFP和ΔH-1PV对照病毒相比,ΔH-1PVshCDK9具有优异的抗癌活性。
B)卡普兰-梅耶存活曲线示出对于ΔH-1PVshCDK9,总体肿瘤存活率升高,其中9只动物中的2只在H-1PV wt和对照病毒无效阻止肿瘤生长的条件下被完全治愈。
具体实施方式
因此,本发明提供了一种用于下调细胞中CDK9的表达基于细小病毒H-1缺失变体的细小病毒,其特征在于,细小病毒H-1缺失变体含有涵盖核苷酸2022-2135的缺失,其中CDK9特异性核酸插入H-1细小病毒VP基因下游的非翻译区,并且可在RNA聚合酶可识别的启动子或启动子区的控制下在细胞中表达,其中所述CDK9特异性核酸可在RNAi中转录,并且其中所述细小病毒能够在该细胞中复制和繁殖。
该细小病毒H-1缺失变体(ΔH-1PV)的特征为涵盖野生型细小病毒H-1的核苷酸(nt)2022-2135的框内缺失(图1)。左(LP)和右回文序列(RP)用作复制的自引发起点;P4启动子调节编码非结构蛋白NS1和NS2的NS基因的表达,并且P38启动子调节编码VP1和VP2病毒蛋白的VP基因的表达。非编码区(NCR)位于VP区的下游,并且它被认为参与病毒基因组复制和衣壳化的调节。
细胞周期蛋白依赖性激酶9(CDK9)是与P-TEfb相关的细胞周期蛋白依赖性激酶。由该基因编码的蛋白质是细胞周期蛋白依赖性激酶(CDK)家族的成员。CDK家族成员已知是重要的细胞周期调节因子。发现该激酶是多蛋白复合物TAk/P-TEFBb的组成部分,其是用于RNA聚合酶II指导的转录的延伸因子,并且通过磷酸化RNA聚合酶II的最大亚基的C末端结构域起作用。CDK9通过与HIV-1Tat蛋白的相互作用参与AIDS,参与骨骼肌的分化,并且在癌发生中起作用。
以一种方式将CDK9特异性核酸插入病毒基因组中,即插入编码细小病毒衣壳蛋白的细小病毒VP基因的下游,使得病毒复制和细胞毒性不受影响。优选地,CDK9特异性核酸在H-1PV基因组的核苷酸4683处插入。
如本文所用的术语“CDK9特异性核酸”是指包含至少15、20、25、50、100或200个连续nt的核酸,其具有与CDK9靶基因的转录核苷酸序列的互补序列至少约75%、特别地至少约80%、更特别地至少约85%、非常特别地约90%、尤其约95%的序列同一性。
在本发明中,CDK9基因可以在体内细胞或体外细胞(离体)中下调。细胞可以是原代细胞或已经培养一段时间的细胞,或者细胞可以由培养的细胞系组成。细胞可以是患病细胞,诸如癌细胞或肿瘤或被病毒感染的细胞。细胞可以是产生所有造血细胞谱系的祖细胞、更成熟和完全成熟细胞的干细胞,产生所有造血细胞谱系的成熟细胞的祖细胞,产生特定的造血谱系的定向祖细胞,T淋巴细胞祖细胞,未成熟T淋巴细胞,成熟T淋巴细胞,骨髓祖细胞或单核细胞/巨噬细胞。细胞可以是干细胞或胚胎干细胞,其是全能的或全能性的。细胞可以是神经的细胞、神经细胞、上皮细胞、肌细胞、心细胞、肝细胞、肾细胞、干细胞、胚胎或胎儿干细胞或受精卵细胞。
优选地,将所述细小病毒变体配制成药物组合物,其中所述细小病毒以有效剂量存在并与药学上可接受的载体组合。
“药学上可接受的”意指包括不干扰活性成分的生物活性的有效性并且对其给药的患者无毒的任何载体。合适的药物载体的实例是本领域熟知的,并且包括磷酸盐缓冲盐水溶液、水、乳液诸如油/水乳液、各种类型的润湿剂、无菌溶液等。其它药学上相容的载体可包括凝胶、生物可吸收的基质材料、含有细小病毒(治疗剂)的植入部件,或任何其它合适的媒介物、递送或分配装置或材料。这些载体可以通过常规方法配制,并且可以以有效剂量向受试者给药。
“有效剂量”是指足以实现治疗的活性成分的量。“有效剂量”可以使用本领域技术人员已知的方法测定(参见例如,Fingl et al.,The Pharmocological Basis ofTherapeutics,Goodman and Gilman,eds.Macmillan Publishing Co.,New York,pp.1-46((1975))。
细小病毒的给药可以通过不同方式进行,例如通过静脉内、肿瘤内、腹膜内、皮下、肌肉内、局部或皮内给药。当然,给药途径取决于治疗的种类。优选的给药途径是静脉内(i.v.)、肿瘤内或支气管内给药。如果使用具有穿透血脑屏障能力的感染性病毒颗粒,则可以通过静脉内注射例如H1病毒进行治疗或至少开始治疗。
细小病毒的剂量方案可由主治医师根据患者数据、观察结果和其他临床因素(包括例如患者的体型、体表面积、年龄、性别、待给药的特定的改良细小病毒等、给药时间和途径、间充质肿瘤的类型、患者的一般健康状况,以及患者所经历的其他药物治疗)在本领域技术内容易地确定。
作为另一种特定的给药技术,细小病毒可以由植入患者体内的源来向患者给药。例如,导管,例如硅树脂或其他生物相容性材料的导管,可以连接到安装在患者体内的小皮下储存器(Rickham储存器),例如,在肿瘤切除期间,或通过单独的程序,以允许细小病毒在不同时间局部注射,而无需进一步手术干预。还可以通过立体定向手术技术或通过神经导航靶向技术将细小病毒注射到肿瘤中。
细小病毒的给药还可以通过使用合适的泵系统(例如,蠕动输注泵或对流增强递送(CED)泵)以低流速通过植入的导管连续输注病毒颗粒或含有病毒颗粒的流体来进行。
另一种给药细小病毒的方法来自植入装置,其构造和布置成将细小病毒分配到所需组织。例如,可以使用已经用细小病毒(例如细小病毒H1)浸渍的植入剂(植入片,wafer),其中在手术切除肿瘤结束时将植入剂附着到切除腔的边缘。在这种治疗干预中可以使用多个植入剂。活跃产生细小病毒H1变体的细胞可以注射到肿瘤中或在肿瘤切除后注射到肿瘤腔内。
在本发明特别优选的实施方式中,靶点特异性核酸插入H-1PV基因组的HpaI限制性位点。然而,还考虑将盒插入细小病毒基因组的其他区域,以及考虑其他RNAi触发分子诸如微小RNA和/或反义寡核苷酸。在本发明的另一特别优选的实施方式中,RNA聚合酶可识别的启动子或启动子区是RNA聚合酶II(Pol II)启动子,诸如例如CMV和人泛素C,或RNA聚合酶III(Pol III)启动子,诸如U6、H1、7SK和tRNA。特别优选的RNA聚合酶III(Pol III)启动子的实例是RNA聚合酶III H1启动子。
在本发明的优选实施方式中,CDK9特异性核酸是shRNA。shRNA是一种小发夹RNA或短发夹RNA,其是一种RNA序列,其可以形成紧密发夹茎环,可用于通过RNA干扰来沉默基因表达。shRNA发夹结构被细胞机构切割成siRNA,然后siRNA与RNA诱导的沉默复合物(RISC)结合。该复合物结合并切割与其结合的siRNA匹配的mRNA。
在本发明的另一特别优选的实施方式中,CDK9特异性核酸,例如shRNA,具有至少15个核苷酸的长度。在特别优选的实施方式中,CDK9序列含有序列ID:XM_017014184.1的nt235-253。在另一优选的实施方式中,CDK9序列含有序列ID:XM_017014184.1的nt594-614。由于较短的序列(nt 235-253)显示出比较长序列更好的感染性(图3B),因此较短的序列是稍微优选的。在这方面,还参考实施例4和图8,其示出了较短的序列对癌细胞显示出比较长序列更高的细胞毒性。
本发明还涉及如上表征的啮齿动物细小病毒,用于治疗癌症中的用途。
在优选的实施方式中,所述细小病毒可用于治疗肿瘤,特别是(但不限于)前列腺癌、胰腺癌、脑癌(优选神经胶质瘤)、宫颈癌、肺癌、头颈癌、乳腺癌或结肠癌。
在其它优选的实施方式中,所述细小病毒可用于治疗肿瘤,其特征在于所述肿瘤的细胞对化学疗法和/或放射疗法具有抗性。
可通过根据本发明的细小病毒治疗的患者包括人类以及非人类动物。后者的实例包括但不限于动物,诸如牛、绵羊、猪、马、狗和猫。
本发明还提供了包含如上所述的细小病毒的动物、真菌或原生生物的细胞。在实施方式中,细胞是体外的。细胞优选为动物细胞、分离的人细胞、体外人细胞、非人脊椎动物细胞、非人哺乳动物细胞、鱼细胞、牛细胞、山羊细胞、猪细胞、绵羊细胞、啮齿动物细胞、仓鼠细胞、小鼠细胞、大鼠细胞、豚鼠细胞、兔细胞、非人灵长类细胞、线虫细胞、贝类细胞、对虾细胞、蟹细胞、龙虾细胞、昆虫细胞、果蝇细胞、鞘翅目昆虫细胞、双翅目昆虫细胞、鳞翅目昆虫细胞或同翅目昆虫细胞。
最后,本发明还提供了包含如上所述的细小病毒的转基因非人动物、真菌或原生生物。可以通过将细小病毒注射到受精卵母细胞的原核中,通过将细胞优选未分化的细胞移植到发育中的胚胎中以产生嵌合胚胎,将细胞核从重组细胞移植到去核胚胎或活化的卵母细胞中等来产生转基因动物。用于产生转基因动物的方法在本领域中已经很好地建立,并且例如美国专利4,873,191中所描述的。
总之,该新病毒基于ΔH-1PV沉默子平台,该平台由原细小病毒H-1PV组成,其特征为NS区域内的框内缺失(ΔH-1PV)并且携带RNA表达盒,优选shRNA表达盒,在该表达盒中shRNA的表达受H1聚合酶III启动子控制。ΔH-1PV沉默子在基因沉默方面是有效的,同时保持其复制和完全感染的能力。在本发明中,ΔH-1PV沉默子用于沉默CDK9基因,该基因的活性通常在癌细胞中失调并且已知有助于肿瘤发生。设计靶向CDK9基因的不同区域的两种不同shRNA序列并将其插入pΔH-1PV沉默子载体中,从而构建pΔH-1PVsh-CDK9a和pΔH-1PVsh-CDK9b质粒。质粒在HEK293T细胞中的转染产生完全感染性病毒颗粒,其可以在经典细小病毒产生方案后通过NB324K细胞中的感染进一步扩增。值得注意的是,与来自前列腺癌(PC3)或胰腺癌(AsPC-1)的两种细胞系中的亲本ΔH-1PV和野生型H-1PV相比,表达靶向CDK9的shRNA的病毒表现出优异的溶瘤活性(图9、10)。增强的细胞杀伤与病毒介导的CDK9基因下调有关。在人胰腺癌和人前列腺癌的异种移植物大鼠模型中验证这些结果证实了表达靶向CDK9的shRNA的细小病毒的抗癌活性有所改善。
以下实施例更详细地解释了本发明。
实施例1
材料和方法
质粒构建和病毒
先前已经描述了pΔH-1PV沉默子、pΔH-1PVshSCR(含有乱序(scramble)shRNA)、pΔH-1PVshEGFP(具有靶向EGFP的shRNA)载体[19]。pΔH-1PV沉默子含有H-1PV病毒基因组,其特点是:
(i)NS编码区内114个核苷酸(根据NCBI基因库参考序列X01457.1从核苷酸2022延伸至2135)的框内缺失[18];
(ii)插入H-1PV基因组的独特HpaI(GTTAAC)限制性酶切位点(对应于野生型病毒的4686-4691位)的shRNA表达盒,其允许病毒表达高水平的shRNA,同时保持其自主复制和繁殖的能力(图1)。shRNA表达盒含有BamHI和NotI限制性酶切位点,用于使用直接连接到先前BamHI/NotI消化的质粒中的重叠寡核苷酸容易地克隆shRNA序列。在该研究中用于产生pΔH-1PVshCDK9a和pΔH-1PVshCDK9b的寡核苷酸是(下划线为shRNA茎环序列):
Cdk9a正义(匹配序列ID:XM_017014184.1的CDK9序列235-253)5′-GATCCGTGAGATTTGTCGAACCAAATTTCAAGAGAATTTGGTTCGACAAATCTCATTTTTTGGAAGC-3′
Cdk9a反义:
5′-GGCCGCTTCCAAAAAATGAGATTTGTCGAACCAAATTCTCTTGAAATTTGGTTCGACAAATCTCACG-3′
Cdk9b正义(匹配序列ID:XM_017014184.1的CDK9序列594-614)5′-GATCCGCTACTACATCCACAGAAACAATTCAAGAGATTGTTTCTGTGGATGTAGTAGTTTTTTGGAAGC-3′
Cdk9b反义:
5′-GGCCGCTTCCAAAAAACTACTACATCCACAGAAACAATCTCTTGAATTGTTTCTGTGGATGTAGTAGCG-3′
病毒生产
将HEK293T细胞以5.5×105个细胞/皿的密度接种在22cm2皿中的10ml培养基(TPP,Trasadingen,Switzerland)中。第二天,根据制造商的说明书,使用转染试剂X-tremeGeneTM(Roche Diagnostics,Mannheim,Germany),用携带病毒基因组的15μg质粒(pΔH-1PV、pΔH-1PVshSCR、pΔH-1PVshEGFP、pΔH-1PVshCDK9-a或pΔH-1PVshCDK9-b)以1:2的比例(μgDNA:μl试剂)瞬时转染细胞。转染后3天收获细胞,并通过三次冻融循环将细胞相关病毒颗粒在VTE缓冲液(50mM Tris pH 8.7,0.5mM EDTA)中释放。通过以5,000rpm离心10分钟除去细胞碎片,并用50U/ml全能核酸酶(Sigma-Aldrich Chemie GmbH,Steinheim,Germany-超纯级)在37℃下消化粗病毒提取物,持续30分钟以除去未衣壳化的病毒基因组。
NB324K细胞用于病毒原种(stock)扩增。将细胞以3×106个细胞/皿的密度接种于148cm2皿(TPP,Trasadingen,Switzerland)的40ml培养基中。第二天,细胞用不同的病毒批次(先前通过HEK293T细胞中的质粒转染产生)以0.1蚀斑形成单位(PFU/细胞)的低感染复数(MOI)感染,或者在一些实验中以100个病毒基因组(Vg)/细胞感染。感染4天后,当细胞病变效应(CPE)达到细胞单层的80%时,收获细胞并如上所述制备粗病毒提取物。
病毒颗粒的纯化
根据Leuchs等人的方法纯化病毒[26]。将纯化的病毒体等分并储存在-80℃。
滴定病毒原种
a)蚀斑测定
将NB324K细胞以5×105个细胞/皿的密度接种在22cm2培养皿中。第二天,取出生长培养基,并用400μl连续10倍稀释的病毒原种在37℃下感染细胞1小时。取出接种物,并用由0.65%Bacto琼脂(Becton,Dickinson GmbH,Heidelberg,Germany)、MEM(2x MEM-Gibco,Invitrogen)、5%FBS、2mM L-谷氨酰胺、100U/ml青霉素和100μg/ml链霉素组成的半固体培养基覆盖细胞。将细胞在37℃、5%CO2下温育4天。将活细胞用中性红染色溶液染色18小时,所述中性红染色溶液由在磷酸盐缓冲盐水(PBS)中的0.2mg/ml中性红、0.85%Bacto琼脂组成。计数蚀斑,并将滴度表示为每个接种的细胞的蚀斑形成单位(PFU)。
b)通过qPCR定量病毒基因组
使用QiaAmp MinElute病毒试剂盒(Qiagen,Hilden,Germany)根据制造商的说明书提取病毒DNA。通过靶向H-1PV的NS1基因的定量实时PCR(qPCR)进行衣壳化病毒DNA的定量。用正向引物:5'-GCGCGGCAGAATTCAAACT-3'和反向引物:5'-CCACCTGGTTGAGCCATCAT-3'扩增141个核苷酸的片段,并用NS1特异性TaqMan探针:5'-6-FAM-ATGCAGCCAGACAGTTA-MGB-3'(Applied Biosystems,Darmstadt,Germany)检测。将含有NS1序列的质粒用作标准品,在101-108个拷贝范围内连续10倍稀释,用于反应。使含有TaqMan Universal Master Mix(Applied Biosystems,Darmstadt,Germany)、10pmol/μl的每种引物和探针以及6.7μl的病毒DNA稀释液的反应混合物在标准条件下运行,并且使用Mastercycler EP realplex系统(Eppendorf,Hamburg,Germany)通过实时PCR确定每个样品的荧光阈值循环(ct)[26]。计算病毒产量的绝对定量并表示为每个接种的细胞的病毒基因组(Vg)。
电子显微镜
采用电子显微镜照片对病毒制剂定性分析。为此,将5μl的0.05%BSA溶液加入到即用型碳包覆的铜格栅(Plano GmbH,Wetzlar,Germany)中并温育1分钟。然后用Whatman50滤纸除去BSA,并将格栅与5μl病毒悬浮液一起温育2分钟,然后与0.1%戊二醛一起温育5分钟。然后用5μl Bidest水洗涤格栅三次,并用2%乙酸双氧铀包覆30秒。用Whatman 50滤纸从格栅吸收液滴,并将格栅干燥约1分钟。用Zeiss EM 900透射电子显微镜(Carl ZeissMicroscopy GmbH,Jena,Germany)以85,000×放大倍数获得图像。
细胞系
选择两种人癌细胞系,即源自胰腺癌的AsPC-1和源自前列腺癌的PC3,来测试表达针对CDK9的shRNA的细小病毒的优异抗癌活性。选择这些细胞系的原因如下:(i)它们对野生型H-1PV细胞毒性是半允许的(仅在高浓度病毒存在下被杀死),以及(ii)我们的试验性转染实验表明siRNA介导的CDK9的沉默在诱导细胞死亡方面是有效的(数据未显示)。所有细胞系均获自ATCC(LGC Standards GmBH,Wesel,Germany),并在补充有10%胎牛血清(FBS)(Sigma-Aldrich Chemie GmbH,Steinheim,Germany)、100U/ml青霉素、100μg/ml链霉素和2mM L-谷氨酰胺(Gibco,Invitrogen,Karlsruhe,Germany)的杜氏(Dulbecco)改良的伊戈尔(Eagle)培养基(DMEM)中生长。细胞在37℃、5%CO2和92%湿度下生长。通过基因组和蛋白质组DKFZ核心设施(Genomic and Proteomics DKFZ core facility)定期检查细胞的支原体污染以及认证。
定量CDK9 mRNA实时PCR
使用RNeasy试剂盒(Qiagen,Hilden,Germany)根据制造商的说明分离RNA。使用Perkin Elmer GeneAmp RNA PCR试剂盒(Foster City,CA,USA)逆转录1μg总RNA。使用ABIPrism 7500qRT-PCR循环仪(软件:7500 2.0.3)检测荧光DNA嵌入报告染料SYBR Green的掺入。根据以下制备用于重复测量的主混合物:
引物序列如下:
CDK9P42-F 5′-GCCAAGATCGGCCAAGGCAC-3′
CDK9P42-R 5′-CAGCCCAGCAAGGTCATGCTC-3′
CDK9P55-F 5′-CCTCTGCAGCTCCGGCTCCC-3′
CDK9P55-R 5′-CACTCCAGGCCCCTCCGCGG-3′
在96孔板中一式两份进行反应,每次反应的终体积为25μl。PowerGreenPCR Master Mix含有300μl的10×SYBR Green缓冲液、360μl的25mM的MgCl2、240μl的dNTP(各10mM)、15μl U/μl Hot Gold Star Taq聚合酶和30μl U/μl的尿嘧啶-N糖苷酶。
通过循环阈值(Ct),通过相对于作为参考基因的管家基因甘油醛-3磷酸(GAPDH)的归一化来确定相对基因表达水平。结果表示为与非感染的细胞(模拟)的转录水平(其设定为1)相比的倍数表达。使用ΔΔCt方法(Pfaffl,2001)根据下式计算倍数表达:相对mRNA表达=2-(目的基因的Ct-GAPDH的Ct)。
细胞裂解和蛋白质定量
通过离心沉淀细胞,并用冰冷的PBS洗涤一次。随后,将沉淀重悬于每1×106个细胞20μl冰冷的裂解缓冲液(10×缓冲液;20mM Tris-HCl(pH 7.5)、150mM NaCl,1mMNa2EDTA、1mM EGTA、1%Triton X100、2.5mM焦磷酸钠、1mM的β甘油磷酸、1mMNa3VO4、1μg/ml亮肽素)中。将裂解物在冰上温育至少20分钟。通过在台式离心机中在4℃下以10,000rpm离心15分钟,从不溶性细胞内容物中清除全细胞裂解物。使用Bradford测定法(Carl Roth GmbH,Karlsruhe Germany)根据制造商的说明书测定全细胞裂解物的蛋白质浓度。将裂解缓冲液中0至2μg/ml牛血清白蛋白的稀释液用作标准品。将1μl样品与1mlBradford试剂混合,并在黑暗中温育5分钟。温育后,在光度计中测量595nm处的吸光度,并根据标准曲线测定浓度。
SDS-PAGE和免疫印迹分析
对于聚丙烯酰胺凝胶电泳(PAGE),将裂解物(调整至相等的蛋白质水平)与适量的2×或5×还原SDS样品缓冲液[27]混合并加热至95℃,保持5分钟。为了分离蛋白质,使用8-12%聚丙烯酰胺分离凝胶和5%聚丙烯酰胺浓缩胶。电泳分离在25-30mA的恒定电流下进行1.5至2h。SDS-PAGE后,通过电泳转移到硝酸纤维素膜(Amersham Biosciences,LittleChalfon,UK),通过在冷却条件下以100V(~300mA)Wetblotting 1.5至2h,对聚丙烯酰胺凝胶进行免疫印迹蛋白质。然后,在室温下在旋转振荡器上用TBS-T或BSA中的5%(w/v)脱脂奶粉将膜封闭1小时。温育后,将膜用TBS-T洗涤3次,每次10分钟。为了检测CDK9蛋白,将膜与来自Cell Signaling Technology(Danvers,MA,USA)的CDK9抗体以1:1000稀释度在4℃下温育过夜。对于标准对照,在室温下使用抗微管蛋白抗体(Sigma-Aldrich)以1:10,000的稀释度进行1小时。然后,在旋转振荡器上在室温下用TBS-T洗涤膜6次,每次10分钟。接下来,将膜与所需的第二HRP-缀合的抗体在室温下温育1小时。随后,用TBS-T将膜洗涤3次,持续10分钟。最后,在Vilber Lourmat化学发光检测系统(软件,Chemi-Capt 5000)中用ECL底物溶液检测蛋白质条带。
细胞凋亡的测定
根据Nicoletti的方法通过DNA片段化检查凋亡细胞死亡[28]。通过以1,500rpm离心5分钟收集感染和模拟细胞,用200μl PBS洗涤并再次以1,500rpm离心5分钟。然后,将细胞在200μl Nicoletti裂解缓冲液(pH 7.4 0.1%(w/v)柠檬酸钠、0.1%(v/v)Triton X-100、50μg/ml碘化丙啶)中裂解并在4℃下在黑暗中储存过夜。通过流式细胞术(FACS CantoII,Becton Dickinson)定量碘化丙啶染色的DNA片段。结果表示为根据下式的%特异性DNA片段化:
(%实验性DNA片段化-%自发性DNA片段化)/(100-%自发性DNA片段化)×100。
细胞毒性测定
使用ApoTox-GloTM三重测定试剂盒(Promega,Mannheim,Germany)测定细胞毒性。活细胞蛋白酶活性限于完整的活细胞,并使用产荧光的不渗透细胞的肽底物(双-丙氨酰丙氨酰-苯丙氨酰-罗丹明110;bis-AAF-R110)测量死细胞蛋白酶活性,其从失去膜完整性的细胞中释放。根据制造商的说明进行测定,并进行以下改变:
在含有100μl培养基的96孔测定板(NuncTMMicroWellTM96-孔-Platte)中的每孔中接种不同量(1250、2500、5000)的PC3细胞。第二天,将细胞用特异性病毒在100μl培养基中感染1小时。将感染的细胞再培养72、96和120小时。通过向所有孔中加入每孔20μl的含有GF-AFC底物和bis-AAF-R110底物两者的试剂,在所选时间点测量活力和细胞毒性,并通过轨道振荡(300-500rpm,~30秒)简单混合。将板在37℃下温育30分钟,并在以下两个波长组测量荧光:400Ex/505Em(活力)和485Ex/520Em(细胞毒性)。
在相同的测定中,通过向所有孔中加入每孔100μl的半胱天冬酶-3/7试剂来检测半胱天冬酶活性(数据未显示),并通过轨道振荡(300-500rpm,~30秒)简单混合。在室温下温育1至2小时后,测量发光(积分时间0.5-1秒)。
细胞活力测定(*ATP水平)
还使用发光细胞活力测定试剂盒(Promega,Mannheim,Germany)以96孔方式评估细胞活力。该测定通过测量ATP的细胞内含量来确定活细胞的数量。ATP的量与代谢活性细胞的量相关。根据制造商的说明进行测定,并进行以下改变:
在含有100μl培养基的96孔测定板(不透明壁NuncTMMicroWellTM96-孔-Platte)中的每孔中接种不同量(1250、2500和5000)的PC3细胞。第二天,用选择的病毒以100μl感染细胞1小时。将感染的细胞再培养72、96和120小时。通过小心地除去培养基并加入100μl试剂(用培养基1:1稀释)在所选时间点测量活力。然后,将板在室温下在轨道振荡器上在黑暗中温育5分钟以诱导细胞裂解。使用Orion L微孔板光度计(BertholdDetection Systems)(积分时间1.0秒)测量发光。
细胞增殖和活力的实时检测
将细胞以3×103个细胞/孔的密度接种在96孔-E板(ACEA Biosciences,SanDiego,United States)的补充有5%FBS的DMEM中。第二天,用MOI增加的PV或用病毒稀释缓冲液(模拟)感染细胞。使用xCELLigence系统(ACEA Biosciences,San Diego,UnitedStates)实时监测模拟处理细胞和病毒感染细胞的生长5-7天。实时细胞生长表示为归一化的细胞指数(CI),该参数与每孔附着细胞的数量直接成比例,并因此与细胞增殖率严格相关。每30分钟实时监测细胞增殖。显示的生长曲线代表具有相对标准偏差的三次重复的结果的平均值。
动物模型的实验
使用人胰腺癌的AsPC-1异种移植物大鼠模型的实验如Li等人所述进行[29],区别在于用1×108PFU/动物(除了在MOI为1.25×108PFU/动物时使用的野生型H-1PV)进行病毒处理,再分为在第0、7、14和21天瘤内注射的4个等剂量。
实施例2
产生ΔH-1PVshCDK9
本发明人通过将两个shRNA DNA序列插入pΔH-1PV沉默子载体构建了pΔH-1PVshCDK9-a和pΔH-1PVshCDK9-b(图1)[19]。通过进行小规模siRNA筛选以鉴定有效沉默CDK9基因的siRNA(数据未显示)来选择这些序列。然后将选择的siRNA转化为shRNA。发明人首先检查了CDK9 shRNA在ΔH-1PV沉默子中的插入是否与病毒生命周期相容以及一轮生产中的适应性。通常,细小病毒生产的第一步是通过在HEK293T细胞中瞬时转染携带病毒基因组的质粒DNA进行的。在转染后三天,收获细胞,裂解并从裂解物中纯化新组装的子代病毒颗粒,并通过实时qPCR和/或蚀斑测定滴定。对于病毒扩增,NB324K细胞用作包装细胞系。这些细胞被先前通过HEK293T细胞中的DNA转染产生的低MOI(范围从0.01至1蚀斑形成单位/ml)的病毒感染。当在80%的细胞中检测到细胞病变效应、病毒复制和外出(egress)的指标时,收获细胞并如上所述纯化和滴定病毒颗粒。
在HEK-293T细胞中瞬时转染pΔH-1PVshCDK9-a、pΔH-1PVshCDK9-b质粒。作为对照,发明人使用pSR19(携带野生型H-1PV基因组[30])、pΔH-1PV(携带以NS区中2022-2135框内缺失为特征的ΔH-1PV基因组)和pΔH-1PVshEGFP(含有包括靶向EGFP的shRNA序列的ΔH-1PV沉默基因组)。在转染后三天,在所有转染的细胞培养物中观察到明显的细胞病变效应(CPE)迹象,表明正在发生病毒产生(数据未显示)。如上地,从细胞裂解物中成功地纯化了病毒。通过电子显微镜观察到各种病毒的形态没有明显差异(图2A)。获得的蚀斑的大小也非常相似(图2B)。通过q-PCR和蚀斑测定确定病毒产率。根据以前的结果,在HEK293T细胞中产生的ΔH-1PV和ΔH-1PVshEGFP水平高于野生型H-1PV[18,19](图3A)。有趣的是,还注意到ΔH-1PVshCDK9-a和ΔH-1PVshCDK9-b之间的产量差异,ΔH-1PVshCDK9-a以高于ΔH-1PVshCDK9-b的产率产生(图3A)。根据通过qPCR进行的定量,在NB324K细胞中,所有病毒以相似的滴度产生(图3B浅灰色柱)。然而,这些结果并未通过蚀斑测定完全证实,其中野生型H-1PV和ΔH-1PV以高于ΔH-1PVshEGFP和ΔH-1PVshCDK9-a的水平产生(大约1个对数差异)。对于ΔH-1PVshCDK9-b,观察到产量甚至更显著的减少(与ΔH-1PV相比约为2个对数)(图3B深灰色柱),表明该特定盒的插入损害了病毒感染性。然而,这些结果表明可以产生表达针对CDK9基因的shRNA的感染性PV。
实施例3
ΔH-1PVshCDK9在基因沉默方面是有效的
为了评估ΔH-1PVshCDK9-a的沉默效率,以MOI 1和5PFU/细胞的ΔH-1PV、ΔH-1PVshEGFP或ΔH-1PVshSCR或ΔH-1PVshCDK9-a感染PC3细胞。感染后48和72小时后,收获细胞,分别用于总RNA和蛋白质提取。进行qRT-PCR以分析CDK9 mRNA的稳态水平。当用ΔH-1PVshCDK9病毒感染细胞时,观察到CDK9 mRNA水平的强烈降低(图4A,且数据未显示)。与这些结果一致,对总细胞裂解物的蛋白质印记(Western blot)分析显示ΔH-1PVshCDK9感染细胞中CDK9蛋白水平降低,证实ΔH-1PVshCDK9具有沉默CDK9基因表达的能力(图4B)。
实施例4
ΔH-1PVshCDK9病毒具有增强的瘤毒性
作为概念验证,PC3前列腺癌细胞系用于评估ΔH-1PVshCDK9-a的瘤毒性活性。为此,用浓度增加的(MOI 1和5PFU/细胞)的ΔH-1PV、ΔH-1PVshSCR、ΔH-1PVshEGFP或ΔH-1PVshCDK9-a感染PC3细胞或用病毒稀释缓冲液(模拟)处理。在感染后三天,通过使用ApoTox-GloTM三重测定试剂盒分析细胞膜完整性(病毒诱导的细胞裂解)来确定病毒诱导的细胞毒性。如图5所示,在用ΔH-1PVshCDK9-a处理的细胞中观察到增加的细胞毒性。通过由流式细胞术分析细胞以检测含有片段化DNA的亚G1期凋亡细胞群,还证实了ΔH-1PVshCDK9-a的增强的瘤毒性(图6)。通过细胞活力(发光细胞活力测定)和病毒诱导的细胞裂解(LDH测定)分析进一步证实了这些结果(数据未显示)。相反,ΔH-1PVshCDK9-a不影响能够使病毒进入的来自健康供体的外周血核细胞,提供表达针对CDK9的shRNA的能力,而不改变病毒安全性证据(数据未显示)。
最后,发明人使用xCELLigence技术来证实表达针对CDK9的shRNA的PV的细胞毒性的改善。除了ΔH-1PVshCDK9a之外,我们还测试了ΔH-1PVshCDK9-b的细胞毒性,其shRNA靶向CDK9基因的不同区域。如图7所示,表达针对CDK9基因的shRNA的病毒在杀死细胞方面比在相同浓度下使用的ΔH-1PV和ΔH-1PVshEGFP更有效。使用来自胰腺癌的另一种癌细胞系即As-PC1也获得了类似的结果(图8)。总之,这些结果证明了ΔH-1PVshCDK9病毒的优异的溶瘤活性。
实施例5
ΔH-1PVshCDK9具有改善的抑瘤活性
体外获得的阳性结果促使我们评估ΔH-1PVshCDK9在人癌症动物模型中的抑瘤活性。为此,我们使用了先前在我们实验室中使用的人胰腺癌的AsPC-1异种移植物裸大鼠模型[29]。将荷瘤动物用PBS(模拟)、野生型H-1PV、ΔH-1PV或ΔH-1PVshGFP或ΔH-1PVshCDK9-a处理,以1×108pfu/动物的浓度,除了野生型H-1PV,其以1.25×108pfu/动物的MOI使用(图9A)。我们发现ΔH-1PV在延迟肿瘤生长方面比野生型H-1PV更有效,证实了该组的先前结果。ΔH-1PV-shCDK9-a实现了抑瘤的能力进一步提高,其在测试浓度下在延迟肿瘤生长方面比ΔH-1PV和ΔH-1PV-shGFP显著更有效(P<0.01)(图9B)。与其他组相比,ΔH-1PV-shCDK9-a处理的动物的总存活率显著改善也反映了瘤毒性的增加(图9C)。在病毒处理的动物中未观察到体重减轻或其他明显的细胞毒性副作用。总之,这些结果提供了概念验证,即ΔH-1PVshCDK9-a具有比野生型H-1PV或其ΔH-1PV天然变体更优异的抗癌活性,保证了该病毒在癌症患者中的临床转化。
实施例6
H1-PV shCDK9在人前列腺癌的异种移植物大鼠模型中具有增强的抑瘤能力
为了进一步验证ΔH-1PVsh-CDK9的增强的抗癌活性,发明人使用了第二种动物模型,即人前列腺癌的PC3异种移植物大鼠模型。他们将ΔH-1PVsh-CDK9-a的抑瘤潜能与野生型H-1PV(临床试验中测试的病毒)、特征是上述NS1区域中缺失的亲本ΔH-1PV以及表达抗EGFP基因的shRNA的ΔH-1PVsh-GFP的抑瘤潜能进行比较。将5×106个源自前列腺癌的PC3细胞皮下注射到5周龄雌性裸大鼠的右侧腹中。1周后(当肿瘤体积达到200-400mm3时),将荷瘤动物随机分成四组。用指定的病毒或用稀释缓冲液(对照)处理组(每周4次瘤内0.25×108pfu/动物的剂量)。如图9图例中所述测量肿瘤。在其他病毒仅具有轻微治疗效果的条件下,表达针对CDK9的shRNA的病毒也在该前列腺癌模型中证实了其增强的抑瘤活性(图10A)。所有ΔH-1PVsh-CDK9处理的动物具有改善的总存活率,其中9只动物中的2只通过ΔH-1PVsh-CDK9处理被完全治愈(图10B)。这种抗癌作用是长期存在的,且与任何明显的毒副作用无关。
参考文献列表
1Fire,A.,Xu,S.,Montgomery,M.K.,Kostas,S.A.,Driver,S.E.and Mello,C.C.(1998)Potent and specific genetic interference by double-stranded RNA inCaenorhabditis elegans.Nature.391,806-811
2Davidson,B.L.and McCray,P.B.,Jr.(2011)Current prospects for RNAinterference-based therapies.Nat Rev Genet.12,329-340
3Dorsett,Y.and Tuschl,T.(2004)siRNAs:applications in functionalgenomics and potential as therapeutics.Nat Rev Drug Discov.3,318-329
4Rettig,G.R.and Behlke,M.A.(2012)Progress toward in vivo use ofsiRNAs-II.Molecular therapy:the journal of the American Society of GeneTherapy.20,483-512
5Bobbin,M.L.and Rossi,J.J.(2016)RNA Interference(RNAi)-BasedTherapeutics:Delivering on the Promise?Annual review of pharmacology andtoxicology.56,103-122
6Snove,O.,Jr.and Rossi,J.J.(2006)Expressing short hairpin RNAs invivo.Nat Methods.3,689-695
7Brummelkamp,T.R.,Bernards,R.and Agami,R.(2002)A system for stableexpression of short interfering RNAs in mammalian cells.Science.296,550-553
8 Yoo,J.Y.,Kim,J.H.,Kwon,Y.G.,Kim,E.C.,Kim,N.K.,Choi,H.J.and Yun,C.O.(2007)VEGF-specific short hairpin RNA-expressing oncolytic adenovirus elicitspotent inhibition of angiogenesis and tumor growth.Mol Ther.15,295-302
9 Mao,L.J.,Zhang,J.,Liu,N.,Fan,L.,Yang,D.R.,Xue,B.X.,Shan,Y.X.andZheng,J.N.(2015)Oncolytic virus carrying shRNA targeting SATB1 inhibitsprostate cancer growth and metastasis.Tumour biology:the journal of theInternational Society for Oncodevelopmental Biology and Medicine.36,9073-9081
10 Jung,S.H.,Choi,J.W.,Yun,C.O.,Yhee,J.Y.,Price,R.,Kim,S.H.,Kwon,I.C.and Ghandehari,H.(2014)Sustained local delivery of oncolytic shorthairpin RNA adenoviruses for treatment of head and neck cancer.J Gene Med.16,143-152
11 Fang,L.,Cheng,Q.,Li,W.,Liu,J.,Li,L.,Xu,K.and Zheng,J.(2014)Antitumor activities of an oncolytic adenovirus equipped with a double siRNAtargeting Ki67 and hTERT in renal cancer cells.Virus Res.181,61-71
12 Li,Y.,Zhang,B.,Zhang,H.,Zhu,X.,Feng,D.,Zhang,D.,Zhuo,B.,Li,L.andZheng,J.(2013)Oncolytic adenovirus armed with shRNA targeting MYCN geneinhibits neuroblastoma cell proliferation and in vivo xenograft tumorgrowth.Journal of cancer research and clinical oncology.139,933-941
13 Kim,J.,Nam,H.Y.,Kim,T.I.,Kim,P.H.,Ryu,J.,Yun,C.O.and Kim,S.W.(2011)Active targeting of RGD-conjugated bioreducible polymer for delivery ofoncolytic adenovirus expressing shRNA against IL-8 mRNA.Biomaterials.32,5158-5166
14 Gao,Y.,Zhu,Y.,Huang,X.,Ai,K.,Zheng,Q.and Yuan,Z.(2015)Gene therapytargeting hepatocellular carcinoma by a dual-regulated oncolytic adenovirusharboring the focal adhesion kinase shRNA.International journal ofoncology.47,668-678
15 Zheng,J.N.,Pei,D.S.,Mao,L.J.,Liu,X.Y.,Mei,D.D.,Zhang,B.F.,Shi,Z.,Wen,R.M.and Sun,X.Q.(2009)Inhibition of renal cancer cell growth in vitro andin vivo with oncolytic adenovirus armed short hairpin RNA targeting Ki-67encoding mRNA.Cancer Gene Ther.16,20-32
16 Anesti,A.M.,Simpson,G.R.,Price,T.,Pandha,H.S.and Coffin,R.S.(2010)Expression of RNA interference triggers from an oncolytic herpes simplexvirus results in specific silencing in tumour cells in vitro and tumours invivo.BMC cancer.10,486
17 Marchini,A.,Bonifati,S.,Scott,E.M.,Angelova,A.L.and Rommelaere,J.(2015)Oncolytic parvoviruses:from basic virology to clinicalapplications.Virol J.12,6
18 Weiss,N.,Stroh-Dege,A.,Rommelaere,J.,Dinsart,C.and Salome,N.(2012)An in-frame deletion in the NS protein-coding sequence of parvovirus H-1PVefficiently stimulates export and infectivity of progeny virions.J Virol.86,7554-7564
19 Illarionova,A.,Rommelaere,J.,Leuchs,B.and Marchini,A.(2012)Modified parvovirus useful for gene silencing.EP2620503
20 Morales,F.and Giordano,A.(2016)Overview of CDK9 as a target incancer research.Cell Cycle.15,519-527
21 Wang,S.and Fischer,P.M.(2008)Cyclin-dependent kinase 9:a keytranscriptional regulator and potential drug target in oncology,virology andcardiology.Trends Pharmacol Sci.29,302-313
22 Sims,R.J.,3rd,Belotserkovskaya,R.and Reinberg,D.(2004)Elongationby RNA polymerase II:the short and long of it.Genes Dev.18,2437-2468
23 Shapiro,G.I.(2006)Cyclin-dependent kinase pathways as targets forcancer treatment.J Clin Oncol.24,1770-1783
24 Romano,G.and Giordano,A.(2008)Role of the cyclin-dependent kinase9-related pathway in mammalian gene expression and human diseases.CellCycle.7,3664-3668
25 Krystof,V.,Baumli,S.and Furst,R.(2012)Perspective of cyclin-dependent kinase 9(CDK9)as a drug target.Curr Pharm Des.18,2883-2890
26 Leuchs,B.,Roscher,M.,Muller,M.,Kurschner,K.and Rommelaere,J.(2016)Standardized large-scale H-1PV production process with efficient quality andquantity monitoring.J Virol Methods.229,48-59
27 Laemmli,U.K.(1970)Cleavage of structural proteins during theassembly of the head of bacteriophage T4.Nature.227,680-685
28 Nicoletti,I.,Migliorati,G.,Pagliacci,M.C.,Grignani,F.and Riccardi,C.(1991)A rapid and simple method for measuring thymocyte apoptosis bypropidium iodide staining and flow cytometry.J Immunol Methods.139,271-279
29 Li,J.,Bonifati,S.,Hristov,G.,Marttila,T.,Valmary-Degano,S.,Stanzel,S.,Schnolzer,M.,Mougin,C.,Aprahamian,M.,Grekova,S.P.,Raykov,Z.,Rommelaere,J.and Marchini,A.(2013)Synergistic combination of valproic acidand oncolytic parvovirus H-1PV as a potential therapy against cervical andpancreatic carcinomas.EMBO Mol Med.5,1537-1555
30 Kestler,J.,Neeb,B.,Struyf,S.,Van Damme,J.,Cotmore,S.F.,D'Abramo,A.,Tattersall,P.,Rommelaere,J.,Dinsart,C.and Cornelis,J.J.(1999)cisrequirements for the efficient production of recombinant DNA vectors based onautonomous parvoviruses.Hum Gene Ther.10,1619-1632。

Claims (7)

1.用于下调细胞中细胞周期蛋白依赖性激酶9(CDK9)表达的细小病毒,其特征在于,其以核苷酸2022-2135的缺失的细小病毒H-1缺失变体作为出发载体,将CDK9特异性核酸插入细小病毒H-1缺失变体VP基因下游的非翻译区,并且可在RNA聚合酶可识别的启动子或启动子区的控制下在所述细胞中表达,其中所述CDK9特异性核酸可在细胞中转录,并且其中所述细小病毒能够在所述细胞中复制和繁殖,
所述CDK9特异性核酸是shRNA;
所述CDK9特异性核酸与序列ID:XM_017014184.1的CDK9序列235-253互补,
其中,所述CDK9特异性核酸在细小病毒H-1缺失变体基因组的核苷酸4683处插入。
2.根据权利要求1所述的细小病毒,其中,所述细胞的所述RNA聚合酶可识别的启动子或启动子区是RNA聚合酶II(Pol II)或III(Pol III)启动子。
3.根据权利要求2所述的细小病毒,其中,所述RNA聚合酶III(Pol III)启动子是RNA聚合酶III H1启动子。
4.根据权利要求1至3中任一项所述的细小病毒用于制备治疗肿瘤的药物组合物的用途,所述肿瘤为胰腺癌或前列腺癌。
5.根据权利要求4所述的用途,其特征在于,所述肿瘤的细胞对化学疗法和/或放射疗法具有抗性。
6.根据权利要求4或5所述的用途,其特征在于,所述细小病毒通过静脉内(i.v.)、瘤内或支气管内给药来施用。
7.包含根据权利要求1至3中任一项所述的细小病毒的细胞。
CN201780083500.8A 2016-11-28 2017-11-27 表达靶向CDK9的RNAi效应子的H-1 PV Active CN110337494B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16200978.1 2016-11-28
EP16200978.1A EP3327124A1 (en) 2016-11-28 2016-11-28 H-1 pv expressing rnai effectors targeting cdk9
PCT/EP2017/080534 WO2018096148A1 (en) 2016-11-28 2017-11-27 H-1 pv expressing rnai effectors targeting cdk9

Publications (2)

Publication Number Publication Date
CN110337494A CN110337494A (zh) 2019-10-15
CN110337494B true CN110337494B (zh) 2023-11-24

Family

ID=57460325

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780083500.8A Active CN110337494B (zh) 2016-11-28 2017-11-27 表达靶向CDK9的RNAi效应子的H-1 PV

Country Status (7)

Country Link
US (1) US20200385738A1 (zh)
EP (2) EP3327124A1 (zh)
JP (1) JP6857730B2 (zh)
CN (1) CN110337494B (zh)
AU (1) AU2017364265B2 (zh)
CA (1) CA3045180A1 (zh)
WO (1) WO2018096148A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4074835A1 (en) 2021-04-15 2022-10-19 Deutsches Krebsforschungszentrum - Stiftung des öffentlichen Rechts / Universität Heidelberg H-1 pv expressing rnai effectors
US20230379149A1 (en) * 2022-05-23 2023-11-23 Bank Of America Corporation System and method of assigning geospatial data to tokenized resources via a bridge protocol

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873191A (en) 1981-06-12 1989-10-10 Ohio University Genetic transformation of zygotes
US20040110140A1 (en) * 2002-12-09 2004-06-10 Isis Pharmaceuticals Inc. Modulation of CDK9 expression
WO2004042002A2 (en) * 2002-08-05 2004-05-21 University Of Massachusetts Compounds for modulating rna interference
JP2008503236A (ja) * 2004-06-21 2008-02-07 エクセリクシス, インク. Igf経路のモディファイヤーとしてのcdk9および使用方法
ES2461147T3 (es) * 2010-03-26 2014-05-16 Deutsches Krebsforschungszentrum Virus cooperador obtenido a partir de adenovirus para mejorar la producción de parvovirus recombinantes
EP2397542A1 (en) * 2010-06-17 2011-12-21 Deutsches Krebsforschungszentrum Modified parvovirus having enhanced anti-tumour efficacy
EP2620503B1 (en) 2012-01-27 2014-10-22 Deutsches Krebsforschungszentrum Modified parvovirus useful for gene silencing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CDK9-mediated transcription elongation is required for MYC addiction in hepatocellular carcinoma;Chun-Hao Huang等;《GENES & DEVELOPMENT》;20140815;第28卷(第16期);摘要 *

Also Published As

Publication number Publication date
CA3045180A1 (en) 2018-05-31
JP2019535297A (ja) 2019-12-12
WO2018096148A1 (en) 2018-05-31
US20200385738A1 (en) 2020-12-10
EP3327124A1 (en) 2018-05-30
EP3545092A1 (en) 2019-10-02
CN110337494A (zh) 2019-10-15
JP6857730B2 (ja) 2021-04-14
AU2017364265A1 (en) 2019-06-06
AU2017364265B2 (en) 2021-07-15

Similar Documents

Publication Publication Date Title
Kelly et al. Attenuation of vesicular stomatitis virus encephalitis through microRNA targeting
Ruiz et al. MicroRNA-detargeted mengovirus for oncolytic virotherapy
JPWO2011125469A1 (ja) マイクロrna制御組換えワクシニアウイルス及びその使用
WO2014171526A1 (ja) 遺伝子改変コクサッキーウイルス
Varas‐Godoy et al. In vivo knockdown of antisense non‐coding mitochondrial RNA s by a lentiviral‐encoded sh RNA inhibits melanoma tumor growth and lung colonization
CN110337494B (zh) 表达靶向CDK9的RNAi效应子的H-1 PV
CN110520526B (zh) 基因改造柯萨奇病毒和药物组合物
EP2807259B1 (en) Modified parvovirus useful for gene silencing
US20240318147A1 (en) Recombinant oncolytic virus, and construction method therefor and use thereof
Novaes et al. Genetically modified ZIKA virus as a microRNA-sensitive oncolytic virus against central nervous system tumors
EP4074835A1 (en) H-1 pv expressing rnai effectors
KR20220097382A (ko) 유전자 변형된 엔테로바이러스 벡터
Lee et al. Brain-targeted delivery of neuroprotective survival gene minimizing hematopoietic cell contamination: implications for Parkinson’s disease treatment
Rohmer et al. 458. Deletion of the E1B19K Gene of Oncolytic Adenoviruses Does Not Interfere with the Expression of Transgenes, but Decreases Lytic Activity in Some Tumor Cells
Cook Protection of healthy tissues from infection with systemically administered vaccinia virus strains
WO2015118056A1 (en) Conditionally replicating adenovirus and use thereof in the treatment of cancer

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 40013353

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant