CN110329249B - 一种循环神经网络的汽车前向碰撞预警控制系统及方法 - Google Patents

一种循环神经网络的汽车前向碰撞预警控制系统及方法 Download PDF

Info

Publication number
CN110329249B
CN110329249B CN201910587792.XA CN201910587792A CN110329249B CN 110329249 B CN110329249 B CN 110329249B CN 201910587792 A CN201910587792 A CN 201910587792A CN 110329249 B CN110329249 B CN 110329249B
Authority
CN
China
Prior art keywords
vehicle
driver
danger
remote control
control terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910587792.XA
Other languages
English (en)
Other versions
CN110329249A (zh
Inventor
吴超仲
熊盛光
贺宜
郭柏晗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201910587792.XA priority Critical patent/CN110329249B/zh
Publication of CN110329249A publication Critical patent/CN110329249A/zh
Application granted granted Critical
Publication of CN110329249B publication Critical patent/CN110329249B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0953Predicting travel path or likelihood of collision the prediction being responsive to vehicle dynamic parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • GPHYSICS
    • G08SIGNALLING
    • G08CTRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
    • G08C17/00Arrangements for transmitting signals characterised by the use of a wireless electrical link
    • G08C17/02Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/80Spatial relation or speed relative to objects
    • B60W2554/801Lateral distance

Abstract

本发明公开了一种循环神经网络的汽车前向碰撞预警控制系统及方法,本发明系统包括:速度传感器、加速度传感器、测距传感器、主控制器、制动模块、预警提示器、GPS模块、无线传输模块、远程控制终端。本发明远程控制终端判断自车与前车保持行车状态是否存在前向碰撞危险;若存在前向碰撞风险,远程控制终端通过循环神经网络对驾驶员预期制动强度进行预测;远程控制终端计算警报时刻;当存在前向碰撞危险时,驾驶员在警报时刻前没有进行避险操作,预警提示器发出警报;若驾驶员在警报时刻前进行了避险操作,远程控制终端进一步判断是否存在前向碰撞危险;补偿制动强度计算;并进行制动强度的补偿。本发明有效减少前向碰撞发生率。

Description

一种循环神经网络的汽车前向碰撞预警控制系统及方法
技术领域
本发明涉及智能网联汽车安全领域,尤其涉及一种循环神经网络的汽车前向碰撞预警控制系统及方法。
背景技术
交通事故已成为现代社会面临的严峻挑战。据统计,发生在我国各类交通事故中,约60%为碰撞事故,汽车前向碰撞是最常见的事故形态。造成车辆前向碰撞的交通事故发生的原因主要有两个方面:一方面是客观环境条件的影响,比如在风沙、雪、雨、雾等能见度较差的恶劣天气下,驾驶员对前方车辆存在识别障碍,难以准确估计车辆制动过程,造成前向碰撞交通事故发生;另一方面是由于驾驶员主观因素的影响,主要有疲劳驾驶、粗心驾驶、误操作等。如今的汽车前向碰撞避险方法主要集中于设置路标进行车距保持提醒、通过自车的传感器计算前车的行车信息并以汽车动力学为基础进行危险计算等方面。
现有的汽车前向碰撞计算参数获取方式,如申请号CN201310503550,一种前向碰撞报警的错报检测方法及装置,通过装载在车前的摄像头,采集前方车辆图像信号形成视频数据,获取前车车速等信息。如申请号CN201610402224,一种汽车防追尾预警方法和系统,采用在车辆上加装GPS传感器、加速度传感器等外接传感器,通过无线通信设备与蓝牙功能实现车路、车车信息交互,建立前向碰撞模型。如申请号CN201510420512,一种追尾预警方法及系统,通过在车辆上加装GPS传感器对前车与自车的经纬度信息进行实时分析,进而推算出前向碰撞计算相关参数。
现有的汽车前向碰撞参数获取和模型建立大都基于自车传感器获取的信息推测前车信息,通过分析车距和相对车速,设置统一的阈值进行前向碰撞危险判断。但在实际情况下,不同驾驶员对前向碰撞危险感知与应急操作存在差异,而且自车传感器推算的前车信息也存在较大误差,造成获取信息不够准确、延迟性高。随着智能网联汽车技术的发展,高效的数据交互不仅能够避免环境障碍对前向车辆有一定“预见性”,还能将前车和自车信息进行耦合分析,准确获取前向碰撞相关计算参数,从而给予驾驶员预警,必要时进行控制干预,以避免前向碰撞的发生。
发明内容
本发明要解决的问题是:如何避免自车传感器对计算前车数据存在误差的局限性以及实现对驾驶员前向避险操作的自学习,建立一种循环神经网络的汽车前向碰撞预警控制系统及方法。
本发明系统的技术方案为:一种循环神经网络的汽车前向碰撞预警控制系统,其特征在于,包括:速度传感器、加速度传感器、测距传感器、主控制器、制动模块、预警提示器、GPS模块、无线传输模块、远程控制终端;
所述主控制器分别与所述的速度传感器、加速度传感器、测距传感器、制动模块、预警提示器、无线传输模块通过导线依次连接;所述无线传输模块与所述远程控制终端通过无线通信方式连接。
作为优选,所述速度传感器安装于车辆上,用于采集车辆速度;
作为优选,所述加速度传感器安装于车辆上,用于采集车辆加速度;
作为优选,所述测距传感器安装于车辆前端,用于采集自车与前车之间的距离;
作为优选,所述预警提示器安装于车辆上驾驶员附近,包括预警指示灯与蜂鸣器,用于提示驾驶员进行制动操作;
作为优选,所述制动模块安装于车辆上,用于避免前向碰撞对整车制动强度进行补偿;
作为优选,所述的GPS模块安装于车辆上,用于采集车辆位置信息;
作为优选,所述主控制器安装于车辆上,用于收集速度传感器采集的车辆速度、加速度传感器采集的车辆加速度、GPS模块采集的车辆位置信息与测距传感器采集的自车与前车之间的距离,根据远程控制终端反馈结果决定所述预警提示器以及所述制动模块是否工作;
作为优选,所述无线传输模块安装于车辆上,用于将所述主控制器采集的车辆信息传输至所述的远程控制终端和从所述的远程控制终端反馈信息传输至主控制器;
作为优选,所述远程控制终端用于分析接收车辆信息,根据GPS位置信息判断前车位置,完成对驾驶员预期制动强度的自学习,判断是否存在前向碰撞风险。
本发明的方法为一种循环神经网络的汽车前向碰撞预警控制方法,包括以下步骤:
步骤1:远程控制终端根据当前时刻自车车速,自车加速度,前车车速,前车加速度,自车与前车之间的距离,判断自车与前车保持行车状态是否存在前向碰撞危险;
步骤2:若存在前向碰撞风险,远程控制终端通过循环神经网络对驾驶员预期制动强度ae进行预测;
步骤3:远程控制终端计算警报时刻;
步骤4:当存在前向碰撞危险时,驾驶员在警报时刻Ta前没有进行避险操作,远程控制终端通过无线传输模块将危险信号传输至预警提示器,主控制器令预警提示器工作,发出警报。
步骤5:若驾驶员在警报时刻前进行了避险操作,远程控制终端进一步判断是否存在前向碰撞危险;
步骤6:补偿制动强度计算;
步骤7:当需要进行制动强度补偿时,远程控制终端通过无线传输模块将最小补偿制动强度传输至主控制器,主控制器发送命令给制动模块,制动模块通过对主制动器、辅助制动装置的调控,完成制动强度的补偿。
作为优选,步骤1中远程控制端根据智能网联内车辆GPS信息确认前车;
步骤1中所述自车车速为vr,所述自车加速度为ar,所述前车车速为vf,所述前车加速度为af,所述自车与前车之间的距离为D0
主控制器接收速度传感器采集的vr,并通过无线传输模块发送至远程控制终端;
主控制器接收加速度传感器采集的ar,并通过无线传输模块发送至远程控制终端;
主控制器接收测距传感器采集的D0,并通过无线传输模块发送至远程控制终端;
步骤1中所述判断自车与前车保持行车状态是否存在前向碰撞危险为:
若ar>af,自车车速逐渐快于前车车速,则存在前向碰撞危险;
若ar<af且vr<vf,自车与前车之间的距离将会拉大,不存在前向碰撞危险;
若ar<af且vr>vf,若D>0则不存在前向碰撞危险,若D≤0则存在前向碰撞危险;
D具体计算如下:
Figure BDA0002115055340000041
其中,D为当vr=vf时的自车与前车之间的距离;
作为优选,步骤2中所述对驾驶员预期制动强度ae进行预测具体过程为:
步骤2.1:构建循环神经网络的训练集;
步骤2.1构建循环神经网络的训练集为:
远程控制终端提取自车最近n次前向避险过程中制动时刻相关参数作为训练集,其中m为提取的第1次前向避险过程,训练集为:
xi=({v'r,i,v'f,i,a'r,i,a'f,i,D'0,i},0<m≤i≤n+m,m,n,i∈Z)
其中,v'r,i为第i次前向避险过程中制动时刻的自车车速,v'f,i为第i次前向避险过程中制动时刻的前车车速,a'r,i为第i次前向避险过程中制动时刻的自车加速度,a'f,i为第i次前向避险过程中制动时刻的前车加速度,D'0,i为第i次前向避险过程中制动时刻的自车与前车之间的距离;
记录最近n次前向避险过程中制动时刻的制动强度集yi
yi=({ad,i},m≤i≤n+m,m,n,i∈Z)
其中,ad,i为第i次前向避险过程中制动时刻的真实制动强度;
步骤2.2:根据训练集对循环神经网络进行训练得到训练后循环神经网络;
步骤2.2中所述根据训练集对循环神经网络进行训练具体过程为:
确定循环神经模型具体结构,构建循环神经网络模型;构建的循环神经模型采用具有1个输入层,5个隐含层和1个输出层。
模型初始化:对模型参数中权重矩阵U、W、V和偏置矩阵b、c进行随机初始化;第i次前向避险过程中制动时刻的循环神经网络模型隐藏状态记作hi,模型的预测值记作
Figure BDA0002115055340000042
激活函数f(x)一般为tanh,b为线性关系的偏倚,激活函数g(x)一般是Softmax函数;循环神经网络一般可以写作如下形式:
Figure BDA0002115055340000051
Figure BDA0002115055340000052
正向传播训练:将训练样本数据输入循环神经模型,通过正向传播,得出初始模型参数下循环神经模型的预测值,通过不断减少预测值
Figure BDA0002115055340000053
与真实值yi的差值来调整模型参数;
反向传播训练:选取模型的损失函数作为优化目标,模型参数权重矩阵U、W、V和偏置矩阵b、c作为优化对象;根据误差使用梯度下降法迭代对于模型参数进;
选取交叉熵函数Loss作为损失函数,记作L,其表达如下:
Figure BDA0002115055340000054
计算权值矩阵V和偏置矩阵c的梯度:
Figure BDA0002115055340000055
Figure BDA0002115055340000056
计算i时刻隐藏状态梯度δi,在反向传播时,i的梯度损失由当前前向碰撞避险对应的梯度损失和下次前向碰撞避险i+1的梯度损失两部分共同决定,参考深度神经网络δi+1递推δi,函数diag表示取矩阵对角元素:
Figure BDA0002115055340000057
计算权值矩阵W,U和偏置矩阵b的梯度:
Figure BDA0002115055340000058
Figure BDA0002115055340000059
Figure BDA00021150553400000510
经过反复迭代:
步骤2.3:确定训练后的循环神经网络模型;
步骤2.3中所述根据训练集对循环神经网络进行训练具体过程为:
使用相同训练集xi重新输入优化后的循环神经网络模型;
综合正向传播训练与反向传播训练,对比预测值
Figure BDA0002115055340000061
与真实值yi之间的误差,预测制动强度
Figure BDA0002115055340000062
与真实制动强度yi平均误差应小于一定阈值。若误差满足要求,则确定模型参数;若误差不满足要求,则重复步骤2.2对参数进行调整,直到误差满足要求;
步骤2.4:远程控制终端将当前时刻的自车车速vr、前车车速vf、自车加速度ar、前车加速度af、自车与前车之间的距离D0代入优化后的循环神经网络模型不断对驾驶员期望制动强度进行预测ae
作为优选,步骤3中所述远程控制终端计算驾驶员允许避险操作时间具体为:
当前时刻为T0,驾驶员预期制动强度为ae
在驾驶员允许避险最晚操作时刻Te,自车车速为ve,r,前车车速为ve,f,驾驶员在允许避险最晚操作时刻制动后的两车之间距离D(t)计算公式如下:
ve,r=(Te-T0)·ar+vr
ve,f=(Te-T0)·af+vf
Figure BDA0002115055340000063
若要保证与前车不发生碰撞,那么在驾驶员允许避险最晚操作时刻Te应使D(t)≥0,即要求其判别式Δ≥0,临界条件为Δ=0,Te-T0为驾驶员允许避险操作时间,D(t)判别式Δ计算如下:
Figure BDA0002115055340000064
其中,T0为当前时刻,Te驾驶员允许避险最晚操作时刻,ve,r为驶员允许避险最晚操作时刻自车车速,ve,f为驶员允许避险最晚操作时刻前车车速,vr为当前时刻自车车速,ar为当前时刻自车加速度,vf为当前时刻自车车速,af为当前时刻自车加速度,D0为当前时刻自车与前车之间的距离,D(t)为驾驶员在允许避险最晚操作时刻制动后的两车之间距离函数,t为允许避险最晚操作时刻制动后时间;
通过上式即可计算出驾驶员允许避险最晚操作时刻Te
但在实际情况下,警报时刻Ta应早于驾驶员允许避险最晚操作时刻Te,一方面由于警报发出后应给予驾驶员应急反应时间td,另一方面是汽车加速度变化是一个连续的过程,需要一定的响应时间tv,则警报时刻Ta可以表示如下:
Ta=Te-td-tv
作为优选,步骤5中所述远程控制终端进一步判断是否存在前向碰撞危险为:
远程控制终端将驾驶员真实制动时刻Td与真实制动强度ad计算驾驶员在允许避险最晚操作时刻制动后的两车之间距离D(t):
ve,r=(Te-Td)·a'r+v'r
ve,f=(Te-Td)·a'f+v'f
Figure BDA0002115055340000071
远程控制终端根据驾驶员真实制动时刻Td与真实制动强度ad计算D(t)判别式Δ:
Figure BDA0002115055340000072
其中,Td为真实制动时刻,Te驾驶员允许避险最晚操作时刻,ve,r为驶员允许避险最晚操作时刻自车车速,ve,f为驶员允许避险最晚操作时刻前车车速,v'r为驾驶员真实制动时刻自车车速,a'r为驾驶员真实制动时刻自车加速度,v'f为驾驶员真实制动时刻自车车速,a'f为驾驶员真实制动时刻前车加速度,D'0为驾驶员真实制动时刻自车与前车之间的距离,D(t)为驾驶员在允许避险最晚操作时刻制动后的两车之间距离函数,t为允许避险最晚操作时刻制动后时间;
若Δ<0,则存在前向碰撞危险,远程控制终端通过无线传输模块将危险信号传输至主控制器,主控制器令预警控制器工作,发出警报;
作为优选,步骤6中所述补偿制动强度计算为:
当警报发出后,驾驶员在应急反应时间td内应作出相应的操作,在车辆响应时刻Tv前完成避险操作,则远程控制终端通过无线传输模块将解除危险信号传输至主控制器,主控制器令预警控制器停止工作,解除警报;否则远程控制终端将通过安全距离计算是否需要补偿制动强度;在车辆响应时刻Tv远程控制终端提取自车车速vv,r,前车车速vv,f,自车加速度av,r,前车加速度av,f,自车与前车的距离Dv,当vv,r=vv,f时,车距为D1
Figure BDA0002115055340000081
Tv=Te-tv
当D1≥0时,远程控制终端通过无线传输模块将解除危险信号传输至主控制器,主控制器令预警控制器停止工作,解除警报。当D1<0时,远程控制终端传输信息让主控制器令制动模块进行制动强度补偿,补偿值为ac,在补偿控制后,应满足D1≥0:
Figure BDA0002115055340000082
由上式可以推导出补偿制动强度最小值acmin为:
Figure BDA0002115055340000083
其中,Tv为车辆响应时刻,Te驾驶员允许避险最晚操作时刻,td驾驶员应急反应时间,vv,r车辆响应时刻自车车速,vv,f为车辆响应时刻前车车速,av,r为车辆响应时刻自车加速度,av,f为车辆响应时刻前车加速度,ac为补偿制动强度,Dv为车辆响应时刻自车与前车的距离,D1为当vv,r=vv,f时自车与前车的距离。
本发明的优点在于通过智能网联准确获取车辆信息,通过循环神经网络自学习能够适应不同驾驶员的驾驶习惯,有效预测并减少前向碰撞发生。
附图说明
图1:为智能网联汽车前向碰撞控制系统图;
图2:是本发明方法的流程图;
图3:为循环神经网络自学习算法框图;
图4:为前向碰撞时间线示意图。
具体实施方式
为了便于本领域普通技术人员理解和实施本发明,下面结合附图及实施例对本发明作进一步的详细述,应当理解,此处所述的实施示例仅用于说明和解释本发明,并不用于限定本发明。
如图1所示,本发明具体实施方式中系统的技术方案为:一种循环神经网络的汽车前向碰撞预警控制系统,其特征在于,包括:速度传感器、加速度传感器、测距传感器、主控制器、制动模块、预警提示器、GPS模块、无线传输模块、远程控制终端;
所述主控制器分别与所述的速度传感器、加速度传感器、测距传感器、制动模块、预警提示器、无线传输模块通过导线依次连接;所述无线传输模块与所述远程控制终端通过无线通信方式连接。
所述速度传感器安装于车辆上,用于采集车辆速度;
所述加速度传感器安装于车辆上,用于采集车辆加速度;
所述测距传感器安装于车辆前端,用于采集自车与前车之间的距离;
所述预警提示器安装于车辆上驾驶员附近,包括预警指示灯与蜂鸣器,用于提示驾驶员进行制动操作;
所述制动模块安装于车辆上,用于避免前向碰撞对整车制动强度进行补偿;
所述的GPS模块安装于车辆上,用于采集车辆位置信息;
所述主控制器安装于车辆上,用于收集速度传感器采集的车辆速度、加速度传感器采集的车辆加速度、GPS模块采集的车辆位置信息与测距传感器采集的自车与前车之间的距离,根据远程控制终端反馈结果决定所述预警提示器以及所述制动模块是否工作;
所述无线传输模块安装于车辆上,用于将所述主控制器采集的车辆信息传输至所述的远程控制终端和从所述的远程控制终端反馈信息传输至主控制器;
所述远程控制终端用于分析接收车辆信息,根据GPS位置信息判断前车位置,完成对驾驶员预期制动强度的自学习,判断是否存在前向碰撞风险。
所述速度传感器选型为光电式传感器;所述加速度传感器选型为压阻式加速度传感器;所述测距传感器选型为激光雷达;所述制动模块包含主制动器盘式制动器与辅助制动装置液力缓速器;所述的主控制器包括输入回路、微控制器、输出回路;所述预警提示器选型为蜂鸣器与提示灯;所述GPS模块选型为组合惯导系统;所述无线传输模块通过5G网络进行信号传输;所述远程控制终端选择为智能网联汽车管理平台服务器。
下面结合图1至图4介绍本发明的具体实施方式为:
步骤1:远程控制终端根据当前时刻自车车速,自车加速度,前车车速,前车加速度,自车与前车之间的距离,判断自车与前车保持行车状态是否存在前向碰撞危险;
步骤1中远程控制端根据智能网联内车辆GPS信息确认前车;
步骤1中所述自车车速为vr,所述自车加速度为ar,所述前车车速为vf,所述前车加速度为af,所述自车与前车之间的距离为D0
主控制器接收速度传感器采集的vr,并通过无线传输模块发送至远程控制终端;
主控制器接收加速度传感器采集的ar,并通过无线传输模块发送至远程控制终端;
主控制器接收测距传感器采集的D0,并通过无线传输模块发送至远程控制终端;
步骤1中所述判断自车与前车保持行车状态是否存在前向碰撞危险为:
若ar>af,自车车速逐渐快于前车车速,则存在前向碰撞危险;
若ar<af且vr<vf,自车与前车之间的距离将会拉大,不存在前向碰撞危险;
若ar<af且vr>vf,若D>0则不存在前向碰撞危险,若D≤0则存在前向碰撞危险;
D具体计算如下:
Figure BDA0002115055340000101
其中,D为当vr=vf时的自车与前车之间的距离;
步骤2:若存在前向碰撞风险,远程控制终端通过循环神经网络对驾驶员预期制动强度ae进行预测,循环神经网络自学习算法如图3所示;
步骤2中所述对驾驶员预期制动强度ae进行预测具体过程为:
步骤2.1:构建循环神经网络的训练集;
步骤2.1构建循环神经网络的训练集为:
远程控制终端提取自车最近n次前向避险过程中制动时刻相关参数作为训练集,其中m为提取的第1次前向避险过程,训练集为:
xi=({v'r,i,v'f,i,a'r,i,a'f,i,D'0,i},0<m≤i≤n+m,m,n,i∈Z)
其中,v'r,i为第i次前向避险过程中制动时刻的自车车速,v'f,i为第i次前向避险过程中制动时刻的前车车速,a'r,i为第i次前向避险过程中制动时刻的自车加速度,a'f,i为第i次前向避险过程中制动时刻的前车加速度,D'0,i为第i次前向避险过程中制动时刻的自车与前车之间的距离;
记录最近n次前向避险过程中制动时刻的制动强度集yi
yi=({ad,i},m≤i≤n+m,m,n,i∈Z)
其中,ad,i为第i次前向避险过程中制动时刻的真实制动强度;
步骤2.2:根据训练集对循环神经网络进行训练得到训练后循环神经网络;
步骤2.2中所述根据训练集对循环神经网络进行训练具体过程为:
确定循环神经模型具体结构,构建循环神经网络模型;构建的循环神经模型采用具有1个输入层,5个隐含层和1个输出层。
模型初始化:对模型参数中权重矩阵U、W、V和偏置矩阵b、c进行随机初始化;第i次前向避险过程中制动时刻的循环神经网络模型隐藏状态记作hi,模型的预测值记作
Figure BDA0002115055340000111
激活函数f(x)一般为tanh,b为线性关系的偏倚,激活函数g(x)一般是Softmax函数;循环神经网络一般可以写作如下形式:
Figure BDA0002115055340000112
Figure BDA0002115055340000113
正向传播训练:将训练样本数据输入循环神经模型,通过正向传播,得出初始模型参数下循环神经模型的预测值,通过不断减少预测值
Figure BDA0002115055340000114
与真实值yi的差值来调整模型参数;
反向传播训练:选取模型的损失函数作为优化目标,模型参数权重矩阵U、W、V和偏置矩阵b、c作为优化对象;根据误差使用梯度下降法迭代对于模型参数进;
选取交叉熵函数Loss作为损失函数,记作L,其表达如下:
Figure BDA0002115055340000121
计算权值矩阵V和偏置矩阵c的梯度:
Figure BDA0002115055340000122
Figure BDA0002115055340000123
计算i时刻隐藏状态梯度δi,在反向传播时,i的梯度损失由当前前向碰撞避险对应的梯度损失和下次前向碰撞避险i+1的梯度损失两部分共同决定,参考深度神经网络δi+1递推δi,函数diag表示取矩阵对角元素:
Figure BDA0002115055340000124
计算权值矩阵W,U和偏置矩阵b的梯度:
Figure BDA0002115055340000125
Figure BDA0002115055340000126
Figure BDA0002115055340000127
经过反复迭代:
步骤2.3:确定训练后的循环神经网络模型;
步骤2.3中所述根据训练集对循环神经网络进行训练具体过程为:
使用相同训练集xi重新输入优化后的循环神经网络模型;
综合正向传播训练与反向传播训练,对比预测值
Figure BDA0002115055340000128
与真实值yi之间的误差,预测制动强度
Figure BDA0002115055340000129
与真实制动强度yi平均误差应小于一定阈值。若误差满足要求,则确定模型参数;若误差不满足要求,则重复步骤2.2对参数进行调整,直到误差满足要求;
步骤2.4:远程控制终端将当前时刻的自车车速vr、前车车速vf、自车加速度ar、前车加速度af、自车与前车之间的距离D0代入优化后的循环神经网络模型不断对驾驶员期望制动强度进行预测ae
步骤3:远程控制终端计算警报时刻;
步骤3中所述远程控制终端计算驾驶员允许避险操作时间具体为:
当前时刻为T0,驾驶员预期制动强度为ae
在驾驶员允许避险最晚操作时刻Te,自车车速为ve,r,前车车速为ve,f,驾驶员在允许避险最晚操作时刻制动后的两车之间距离D(t)计算公式如下:
ve,r=(Te-T0)·ar+vr
ve,f=(Te-T0)·af+vf
Figure BDA0002115055340000131
若要保证与前车不发生碰撞,那么在驾驶员允许避险最晚操作时刻Te应使D(t)≥0,即要求其判别式Δ≥0,临界条件为Δ=0,Te-T0为驾驶员允许避险操作时间,D(t)判别式Δ计算如下:
Figure BDA0002115055340000132
其中,T0为当前时刻,Te驾驶员允许避险最晚操作时刻,ve,r为驶员允许避险最晚操作时刻自车车速,ve,f为驶员允许避险最晚操作时刻前车车速,vr为当前时刻自车车速,ar为当前时刻自车加速度,vf为当前时刻自车车速,af为当前时刻自车加速度,D0为当前时刻自车与前车之间的距离,D(t)为驾驶员在允许避险最晚操作时刻制动后的两车之间距离函数,t为允许避险最晚操作时刻制动后时间;
通过上式即可计算出驾驶员允许避险最晚操作时刻Te
如图4所示,但在实际情况下,警报时刻Ta应早于驾驶员允许避险最晚操作时刻Te,一方面由于警报发出后应给予驾驶员应急反应时间td,另一方面是汽车加速度变化是一个连续的过程,需要一定的响应时间tv,则警报时刻Ta可以表示如下:
Ta=Te-td-tv
步骤4:当存在前向碰撞危险时,驾驶员在警报时刻Ta前没有进行避险操作,远程控制终端通过无线传输模块将危险信号传输至预警提示器,主控制器令预警提示器工作,发出警报。
步骤5:若驾驶员在警报时刻前进行了避险操作,远程控制终端进一步判断是否存在前向碰撞危险;
步骤5中所述远程控制终端进一步判断是否存在前向碰撞危险为:
远程控制终端将驾驶员真实制动时刻Td与真实制动强度ad计算驾驶员在允许避险最晚操作时刻制动后的两车之间距离D(t):
ve,r=(Te-Td)·a'r+v'r
ve,f=(Te-Td)·a'f+v'f
Figure BDA0002115055340000141
远程控制终端根据驾驶员真实制动时刻Td与真实制动强度ad计算D(t)判别式Δ:
Figure BDA0002115055340000142
其中,Td为真实制动时刻,Te驾驶员允许避险最晚操作时刻,ve,r为驶员允许避险最晚操作时刻自车车速,ve,f为驶员允许避险最晚操作时刻前车车速,v'r为驾驶员真实制动时刻自车车速,a'r为驾驶员真实制动时刻自车加速度,v'f为驾驶员真实制动时刻自车车速,a'f为驾驶员真实制动时刻前车加速度,D'0为驾驶员真实制动时刻自车与前车之间的距离,D(t)为驾驶员在允许避险最晚操作时刻制动后的两车之间距离函数,t为允许避险最晚操作时刻制动后时间;
若Δ<0,则存在前向碰撞危险,远程控制终端通过无线传输模块将危险信号传输至主控制器,主控制器令预警控制器工作,发出警报;
步骤6:补偿制动强度计算;
步骤6中所述补偿制动强度计算为:
当警报发出后,驾驶员在应急反应时间td内应作出相应的操作,在车辆响应时刻Tv前完成避险操作,则远程控制终端通过无线传输模块将解除危险信号传输至主控制器,主控制器令预警控制器停止工作,解除警报;否则远程控制终端将通过安全距离计算是否需要补偿制动强度;在车辆响应时刻Tv远程控制终端提取自车车速vv,r,前车车速vv,f,自车加速度av,r,前车加速度av,f,自车与前车的距离Dv,当vv,r=vv,f时,车距为D1
Figure BDA0002115055340000151
Tv=Te-tv
当D1≥0时,远程控制终端通过无线传输模块将解除危险信号传输至主控制器,主控制器令预警控制器停止工作,解除警报。当D1<0时,远程控制终端传输信息让主控制器令制动模块进行制动强度补偿,补偿值为ac,在补偿控制后,应满足D1≥0:
Figure BDA0002115055340000152
由上式可以推导出补偿制动强度最小值acmin为:
Figure BDA0002115055340000153
其中,Tv为车辆响应时刻,Te驾驶员允许避险最晚操作时刻,td驾驶员应急反应时间,vv,r车辆响应时刻自车车速,vv,f为车辆响应时刻前车车速,av,r为车辆响应时刻自车加速度,av,f为车辆响应时刻前车加速度,ac为补偿制动强度,Dv为车辆响应时刻自车与前车的距离,D1为当vv,r=vv,f时自车与前车的距离;
步骤7:当需要进行制动强度补偿时,远程控制终端通过无线传输模块将最小补偿制动强度传输至主控制器,主控制器发送命令给制动模块,制动模块通过对主制动器、辅助制动装置的调控,完成制动强度的补偿。
应当理解的是,本说明书未详细阐述的部分均属于现有技术。
应当理解的是,上述针对较佳实施例的述较为详细,并不能因此而认为是对本发明专利保护范围的限制,本领域的普通技术人员在本发明的启示下,在不脱离本发明权利要求所保护的范围情况下,还可以做出替换或变形,均落入本发明的保护范围之内,本发明的请求保护范围应以所附权利要求为准。

Claims (4)

1.一种循环神经网络的汽车前向碰撞预警控制方法,其特征在于,包括:
速度传感器、加速度传感器、测距传感器、主控制器、制动模块、预警提示器、GPS模块、无线传输模块、远程控制终端;
所述主控制器分别与所述的速度传感器、加速度传感器、测距传感器、制动模块、预警提示器、无线传输模块通过导线依次连接;所述无线传输模块与所述远程控制终端通过无线通信方式连接;
所述速度传感器安装于车辆上,用于采集车辆速度;
所述加速度传感器安装于车辆上,用于采集车辆加速度;
所述测距传感器安装于车辆前端,用于采集自车与前车之间的距离;
所述预警提示器安装于车辆上驾驶员附近,包括预警指示灯与蜂鸣器,用于提示驾驶员进行制动操作;
所述制动模块安装于车辆上,用于避免前向碰撞对整车制动强度进行补偿;
所述的GPS模块安装于车辆上,用于采集车辆位置信息;
所述主控制器安装于车辆上,用于收集速度传感器采集的车辆速度、加速度传感器采集的车辆加速度、GPS模块采集的车辆位置信息与测距传感器采集的自车与前车之间的距离,根据远程控制终端反馈结果决定所述预警提示器以及所述制动模块是否工作;
所述无线传输模块安装于车辆上,用于将所述主控制器采集的车辆信息传输至所述的远程控制终端和从所述的远程控制终端反馈信息传输至主控制器;
所述远程控制终端用于分析接收车辆信息,根据GPS位置信息判断前车位置,完成对驾驶员预期制动强度的自学习,判断是否存在前向碰撞风险;
所述循环神经网络的汽车前向碰撞预警控制方法包括:
步骤1:远程控制终端根据当前时刻自车车速,自车加速度,前车车速,前车加速度,自车与前车之间的距离,判断自车与前车保持行车状态是否存在前向碰撞危险;
步骤2:若存在前向碰撞风险,远程控制终端通过循环神经网络对驾驶员预期制动强度ae进行预测;
步骤3:远程控制终端计算警报时刻;
步骤4:当存在前向碰撞危险时,驾驶员在警报时刻Ta前没有进行避险操作,远程控制终端通过无线传输模块将危险信号传输至预警提示器,主控制器令预警提示器工作,发出警报;
步骤5:若驾驶员在警报时刻前进行了避险操作,远程控制终端进一步判断是否存在前向碰撞危险;
步骤6:补偿制动强度计算;
步骤7:当需要进行制动强度补偿时,远程控制终端通过无线传输模块将最小补偿制动强度传输至主控制器,主控制器发送命令给制动模块,制动模块通过对主制动器、辅助制动装置的调控,完成制动强度的补偿;
步骤1中远程控制端根据智能网联内车辆GPS信息确认前车;
步骤1中所述自车车速为vr,所述自车加速度为ar,所述前车车速为vf,所述前车加速度为af,所述自车与前车之间的距离为D0
主控制器接收速度传感器采集的vr,并通过无线传输模块发送至远程控制终端;
主控制器接收加速度传感器采集的ar,并通过无线传输模块发送至远程控制终端;
主控制器接收测距传感器采集的D0,并通过无线传输模块发送至远程控制终端;
步骤1中所述判断自车与前车保持行车状态是否存在前向碰撞危险为:
若ar>af,自车车速逐渐快于前车车速,则存在前向碰撞危险;
若ar<af且vr<vf,自车与前车之间的距离将会拉大,不存在前向碰撞危险;
若ar<af且vr>vf,若D>0则不存在前向碰撞危险,若D≤0则存在前向碰撞危险;
D具体计算如下:
Figure FDA0002512944070000021
其中,D为当vr=vf时的自车与前车之间的距离;
步骤2中所述对驾驶员预期制动强度ae进行预测具体过程为:
步骤2.1:构建循环神经网络的训练集;
步骤2.1构建循环神经网络的训练集为:
远程控制终端提取自车最近n次前向避险过程中制动时刻相关参数作为训练集,其中m为提取的第1次前向避险过程,训练集为:
xi=({v'r,i,v'f,i,a'r,i,a'f,i,D'0,i},0<m≤i≤n+m,m,n,i∈Z)
其中,v'r,i为第i次前向避险过程中制动时刻的自车车速,v'f,i为第i次前向避险过程中制动时刻的前车车速,a'r,i为第i次前向避险过程中制动时刻的自车加速度,a'f,i为第i次前向避险过程中制动时刻的前车加速度,D'0,i为第i次前向避险过程中制动时刻的自车与前车之间的距离;
记录最近n次前向避险过程中制动时刻的制动强度集yi
yi=({ad,i},m≤i≤n+m,m,n,i∈Z)
其中,ad,i为第i次前向避险过程中制动时刻的真实制动强度;
步骤2.2:根据训练集对循环神经网络进行训练得到训练后循环神经网络;
步骤2.2中所述根据训练集对循环神经网络进行训练具体过程为:
确定循环神经模型具体结构,构建循环神经网络模型;构建的循环神经模型采用具有1个输入层,5个隐含层和1个输出层;
模型初始化:对模型参数中权重矩阵U、W、V和偏置矩阵b、c进行随机初始化;第i次前向避险过程中制动时刻的循环神经网络模型隐藏状态记作hi,模型的预测值记作
Figure FDA0002512944070000031
激活函数f(x)一般为tanh,b为线性关系的偏倚,激活函数g(x)一般是Softmax函数;循环神经网络一般可以写作如下形式:
Figure FDA0002512944070000032
Figure FDA0002512944070000033
正向传播训练:将训练样本数据输入循环神经模型,通过正向传播,得出初始模型参数下循环神经模型的预测值,通过不断减少预测值
Figure FDA0002512944070000034
与真实值yi的差值来调整模型参数;
反向传播训练:选取模型的损失函数作为优化目标,模型参数权重矩阵U、W、V和偏置矩阵b、c作为优化对象;根据误差使用梯度下降法迭代对于模型参数进;
选取交叉熵函数Loss作为损失函数,记作L,其表达如下:
Figure FDA0002512944070000041
计算权值矩阵V和偏置矩阵c的梯度:
Figure FDA0002512944070000042
Figure FDA0002512944070000043
计算i时刻隐藏状态梯度δi,在反向传播时,i的梯度损失由当前前向碰撞避险对应的梯度损失和下次前向碰撞避险i+1的梯度损失两部分共同决定,参考深度神经网络δi+1递推δi,函数diag表示取矩阵对角元素:
Figure FDA0002512944070000044
计算权值矩阵W,U和偏置矩阵b的梯度:
Figure FDA0002512944070000045
Figure FDA0002512944070000046
Figure FDA0002512944070000047
经过反复迭代:
步骤2.3:确定训练后的循环神经网络模型;
步骤2.3中所述根据训练集对循环神经网络进行训练具体过程为:
使用相同训练集xi重新输入优化后的循环神经网络模型;
综合正向传播训练与反向传播训练,对比预测值
Figure FDA0002512944070000048
与真实值yi之间的误差,预测制动强度
Figure FDA0002512944070000049
与真实制动强度yi平均误差应小于一定阈值;若误差满足要求,则确定模型参数;若误差不满足要求,则重复步骤2.2对参数进行调整,直到误差满足要求;
步骤2.4:远程控制终端将当前时刻的自车车速vr、前车车速vf、自车加速度ar、前车加速度af、自车与前车之间的距离D0代入优化后的循环神经网络模型不断对驾驶员期望制动强度进行预测ae
2.根据权利要求1所述的循环神经网络的汽车前向碰撞预警控制方法,其特征在于,步骤3中所述远程控制终端计算驾驶员允许避险操作时间具体为:
当前时刻为T0,驾驶员预期制动强度为ae
在驾驶员允许避险最晚操作时刻Te,自车车速为ve,r,前车车速为ve,f,驾驶员在允许避险最晚操作时刻制动后的两车之间距离D(t)计算公式如下:
ve,r=(Te-T0)·ar+vr
ve,f=(Te-T0)·af+vf
Figure FDA0002512944070000051
若要保证与前车不发生碰撞,那么在驾驶员允许避险最晚操作时刻Te应使D(t)≥0,即要求其判别式Δ≥0,临界条件为Δ=0,Te-T0为驾驶员允许避险操作时间,D(t)判别式Δ计算如下:
Figure FDA0002512944070000052
其中,T0为当前时刻,Te驾驶员允许避险最晚操作时刻,ve,r为驶员允许避险最晚操作时刻自车车速,ve,f为驶员允许避险最晚操作时刻前车车速,vr为当前时刻自车车速,ar为当前时刻自车加速度,vf为当前时刻自车车速,af为当前时刻自车加速度,D0为当前时刻自车与前车之间的距离,D(t)为驾驶员在允许避险最晚操作时刻制动后的两车之间距离函数,t为允许避险最晚操作时刻制动后时间;
通过上式即可计算出驾驶员允许避险最晚操作时刻Te
但在实际情况下,警报时刻Ta应早于驾驶员允许避险最晚操作时刻Te,一方面由于警报发出后应给予驾驶员应急反应时间td,另一方面是汽车加速度变化是一个连续的过程,需要一定的响应时间tv,则警报时刻Ta可以表示如下:
Ta=Te-td-tv
3.根据权利要求1所述的循环神经网络的汽车前向碰撞预警控制方法,其特征在于,步骤5中所述远程控制终端进一步判断是否存在前向碰撞危险为:
远程控制终端将驾驶员真实制动时刻Td与真实制动强度ad计算驾驶员在允许避险最晚操作时刻制动后的两车之间距离D(t):
ve,r=(Te-Td)·a'r+v'r
ve,f=(Te-Td)·a'f+v'f
Figure FDA0002512944070000061
远程控制终端根据驾驶员真实制动时刻Td与真实制动强度ad计算D(t)判别式Δ:
Figure FDA0002512944070000062
其中,Td为真实制动时刻,Te驾驶员允许避险最晚操作时刻,ve,r为驶员允许避险最晚操作时刻自车车速,ve,f为驶员允许避险最晚操作时刻前车车速,v'r为驾驶员真实制动时刻自车车速,a'r为驾驶员真实制动时刻自车加速度,v'f为驾驶员真实制动时刻自车车速,a'f为驾驶员真实制动时刻前车加速度,D'0为驾驶员真实制动时刻自车与前车之间的距离,D(t)为驾驶员在允许避险最晚操作时刻制动后的两车之间距离函数,t为允许避险最晚操作时刻制动后时间;
若Δ<0,则存在前向碰撞危险,远程控制终端通过无线传输模块将危险信号传输至主控制器,主控制器令预警控制器工作,发出警报。
4.根据权利要求1所述的循环神经网络的汽车前向碰撞预警控制方法,其特征在于,步骤6中所述补偿制动强度计算为:
当警报发出后,驾驶员在应急反应时间td内应作出相应的操作,在车辆响应时刻Tv前完成避险操作,则远程控制终端通过无线传输模块将解除危险信号传输至主控制器,主控制器令预警控制器停止工作,解除警报;否则远程控制终端将通过安全距离计算是否需要补偿制动强度;在车辆响应时刻Tv远程控制终端提取自车车速vv,r,前车车速vv,f,自车加速度av,r,前车加速度av,f,自车与前车的距离Dv,当vv,r=vv,f时,车距为D1
Figure FDA0002512944070000071
Tv=Te-tv
当D1≥0时,远程控制终端通过无线传输模块将解除危险信号传输至主控制器,主控制器令预警控制器停止工作,解除警报;当D1<0时,远程控制终端传输信息让主控制器令制动模块进行制动强度补偿,补偿值为ac,在补偿控制后,应满足D1≥0:
Figure FDA0002512944070000072
由上式可以推导出补偿制动强度最小值acmin为:
Figure FDA0002512944070000073
其中,Tv为车辆响应时刻,Te驾驶员允许避险最晚操作时刻,td驾驶员应急反应时间,vv,r车辆响应时刻自车车速,vv,f为车辆响应时刻前车车速,av,r为车辆响应时刻自车加速度,av,f为车辆响应时刻前车加速度,ac为补偿制动强度,Dv为车辆响应时刻自车与前车的距离,D1为当vv,r=vv,f时自车与前车的距离。
CN201910587792.XA 2019-07-02 2019-07-02 一种循环神经网络的汽车前向碰撞预警控制系统及方法 Active CN110329249B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910587792.XA CN110329249B (zh) 2019-07-02 2019-07-02 一种循环神经网络的汽车前向碰撞预警控制系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910587792.XA CN110329249B (zh) 2019-07-02 2019-07-02 一种循环神经网络的汽车前向碰撞预警控制系统及方法

Publications (2)

Publication Number Publication Date
CN110329249A CN110329249A (zh) 2019-10-15
CN110329249B true CN110329249B (zh) 2020-08-07

Family

ID=68143859

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910587792.XA Active CN110329249B (zh) 2019-07-02 2019-07-02 一种循环神经网络的汽车前向碰撞预警控制系统及方法

Country Status (1)

Country Link
CN (1) CN110329249B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111090747A (zh) * 2019-12-03 2020-05-01 国家电网有限公司 一种基于神经网络分类的电力通信故障应急处置方法
CN111081067B (zh) * 2019-12-27 2021-07-20 武汉大学 车联网环境下基于iga-bp神经网络的车辆碰撞预警系统及方法
CN113092127A (zh) * 2021-03-11 2021-07-09 东风柳州汽车有限公司 前碰撞预警的测试方法、设备、存储介质及装置
CN113165615A (zh) * 2021-03-16 2021-07-23 华为技术有限公司 车辆控制方法及装置
CN113516862A (zh) * 2021-07-22 2021-10-19 中国第一汽车股份有限公司 一种预警方法、装置、电子设备以及存储介质
CN113920780B (zh) * 2021-09-01 2022-12-16 同济大学 基于联邦学习的云雾协同个性化前向碰撞风险预警方法
CN113895453A (zh) * 2021-10-22 2022-01-07 青岛海尔智能技术研发有限公司 车辆控制方法、装置、车辆和存储介质
US11851068B2 (en) 2021-10-25 2023-12-26 Ford Global Technologies, Llc Enhanced target detection
CN114454876B (zh) * 2022-04-13 2022-07-26 所托(杭州)汽车智能设备有限公司 车辆碰撞确定方法、检测装置及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102109821B (zh) * 2010-12-30 2013-08-07 中国科学院自动化研究所 车辆自适应巡航控制系统及方法
CN102745194B (zh) * 2012-06-19 2015-02-25 东南大学 一种高速公路汽车防追尾前车的自适应报警方法
CN104691535A (zh) * 2013-12-09 2015-06-10 青岛盛嘉信息科技有限公司 一种刹车助力系统
JP6237580B2 (ja) * 2014-11-13 2017-11-29 株式会社デンソー モータ制御装置
CN104494550B (zh) * 2014-12-15 2017-09-26 江苏大学 一种用于车辆主动避撞距离的计算方法
CN105137970B (zh) * 2015-07-31 2018-03-16 奇瑞汽车股份有限公司 车辆避障方法及装置
CN105151024A (zh) * 2015-08-20 2015-12-16 奇瑞汽车股份有限公司 车辆的制动控制方法和装置
CN105835854B (zh) * 2016-03-17 2018-11-16 奇瑞汽车股份有限公司 一种紧急制动控制系统及其控制方法
CN107697045A (zh) * 2017-09-07 2018-02-16 厦门大学 一种无人驾驶汽车自动刹车控制装置及方法
CN109591811B (zh) * 2017-09-28 2020-08-14 华为技术有限公司 车辆制动方法、装置及存储介质

Also Published As

Publication number Publication date
CN110329249A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
CN110329249B (zh) 一种循环神经网络的汽车前向碰撞预警控制系统及方法
CN109421742B (zh) 用于监测自主车辆的方法和设备
EP3156298B1 (en) Driving aid arrangement, a vehicle and a method of controlling a longitudinal velocity of a vehicle
US11104333B2 (en) Emergency braking system, emergency braking method and semitrailer
US9845109B2 (en) Continuous estimation of surface friction coefficient based on EPS and vehicle models
CN109910879B (zh) 一种结合安全距离与碰撞时间的车辆安全防撞控制方法
CN108428343A (zh) 一种多车驾驶行为分析和危险预警方法及系统
CN107264527B (zh) 智能车防别车的控制方法及装置
US9200898B2 (en) Estimation of road inclination
KR101509693B1 (ko) 운전자의 단기 운전 성향을 판단하는 장치 및 방법
CN111201173B (zh) 用于确定车辆轮胎与车道之间的接触的摩擦值的方法以及用于控制车辆的车辆功能的方法
CN110435647B (zh) 一种基于滚动优化参数的ttc的车辆安全防撞控制方法
US20210325896A1 (en) Braking control behaviors for autonomous vehicles
EP3666612A1 (en) Vehicle control device
CN110588623A (zh) 一种基于神经网络的大型汽车安全驾驶方法及系统
CN114148321B (zh) 一种考虑碰撞风险的自动紧急制动及安全评价方法
CN108327691A (zh) 获得长期的制动组件比扭矩变化的方法
CN112298136A (zh) 自动驾驶车辆的行车控制方法、装置、设备及可读介质
CN114222987A (zh) 用于量化车辆路径跟随性能的方法
CN113165615A (zh) 车辆控制方法及装置
JP2012059058A (ja) 危険推定装置及びプログラム
EP2862157B1 (en) System and method pertaining to vehicle trains
CN114734966A (zh) 基于摄像头和云端实时地图的自动紧急制动系统及方法
CN111856510A (zh) 一种基于激光雷达的车辆前碰撞预测方法
CN114222689A (zh) 用于量化极端交通行为的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant