CN110323288A - 一种基于亚波长光栅的量子阱红外光探测器及其制备方法 - Google Patents

一种基于亚波长光栅的量子阱红外光探测器及其制备方法 Download PDF

Info

Publication number
CN110323288A
CN110323288A CN201910602641.7A CN201910602641A CN110323288A CN 110323288 A CN110323288 A CN 110323288A CN 201910602641 A CN201910602641 A CN 201910602641A CN 110323288 A CN110323288 A CN 110323288A
Authority
CN
China
Prior art keywords
sub
wave length
layer
gaas
length grating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910602641.7A
Other languages
English (en)
Inventor
王宝勇
范鑫烨
方照詒
张鲁健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific (liaocheng) Photoelectric Technology Co Ltd
Original Assignee
Pacific (liaocheng) Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific (liaocheng) Photoelectric Technology Co Ltd filed Critical Pacific (liaocheng) Photoelectric Technology Co Ltd
Priority to CN201910602641.7A priority Critical patent/CN110323288A/zh
Publication of CN110323288A publication Critical patent/CN110323288A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种基于亚波长光栅的量子阱红外光探测器,由下向上依次包括有衬底、外延GaAs缓冲层、GaAs spacer隔离层、吸收腔、InGaAs缓冲层、GaAs spacer隔离层、GaAs窗口层;所述外延GaAs缓冲层上设有n型接触电极和p型接触电极;所述的衬底为硅衬底;所述的吸收腔由下向上依次为InGaAs、InAs量子点、InGaAs、InAs量子点;所述的GaAs窗口层刻蚀形成亚波长光栅层。本发明还提供了上述基于亚波长光栅的量子阱红外光探测器的制备方法。本发明具有低暗电流,多光谱响应,高分辨率,高工作温度,红外成像,量子效率高,抗辐射,成本低等优点;可广泛用于红外光探测技术领域。

Description

一种基于亚波长光栅的量子阱红外光探测器及其制备方法
技术领域
本发明属于红外光探测技术领域,具体涉及一种基于亚波长光栅的量子阱红外光探测器及其制备方法。
背景技术
量子阱红外探测器是在半导体物理和分子束外延的基础上实现的,在军事和民用领域有着广泛深入的应用,诸如红外夜视、侦察、制导、红外对抗等,是发展我国国防装备、空间探索及互联网等技术能力的重要基石,事关国家安全、国计民生和经济增长等重大战略方向。目前国际上对国防需求的材料与器件执行严格的禁运,极大限制了我国在该领域的研发及装备进步。传统的红外光电探测器采用的是碲镉汞(MCT)材料,但是存在Te-Hg成键作用弱,材料位错密度和不均匀性大,可重复性差,良品率低,不适合做大面阵和产业化。而GaAs基量子阱红外探测器材料化学稳定性高,可耐受空天装备的高能离子辐射,相应波长3.5至5微米连续可调,适合制备大面阵和多色器件。
系统对量子阱红外探测器的响应度要求越来越高,并且希望在中红外波段(3.5um-5um)低损耗窗口的宽光谱范围内,都能实现较高的量子效率。对于传统的量子阱红外探测器,一般情况下通过增加器件的吸收层可以增大器件的量子效率,但载流子的传输时间变长,故响应速率会降低。具有光束会聚功能的非周期的HCG反射镜可以拓展和提升光通信器件光学特性,可以作为顶部反射镜与光探测器集成,并对入射光进行会聚,由于谐振腔的增强效应,使得器件在较薄吸收层下获得较高的量子效率,并且减少了光生载流子在吸收层的渡越时间,因此同时获得高的量子效率和较高的响应速度。
发明内容
本发明所提供的基于亚波长光栅的量子阱红外光探测器,能够进一步减小暗电流,提高量子效率,具有低暗电流,多光谱响应,高分辨率的优点。
同时,本发明还提供了上述基于亚波长光栅的量子阱红外光探测器的制备方法。
一种基于亚波长光栅的量子阱红外光探测器,其特征在于,由下向上依次包括有衬底、外延GaAs缓冲层、GaAs spacer隔离层、吸收腔、InGaAs缓冲层、GaAs spacer隔离层、GaAs窗口层;所述外延GaAs缓冲层上设有n型接触电极和p型接触电极;
所述的衬底为硅衬底;所述的吸收腔由下向上依次为InGaAs、InAs量子点、InGaAs、InAs量子点;所述的GaAs窗口层刻蚀形成亚波长光栅层。
优选地,所述的吸收腔中InGaAs的厚度均为2nm,InAs量子点的掺杂浓度为Si(2e/dot)。
优选地,所述的亚波长光栅层的光栅图案为周期性或非周期性图案。
优选地,所述的光栅图案为周期高折射率差亚波长光栅、二维块状亚波长光栅以及非周期条形光栅,实现宽光谱的高反射率(3.5-5μm)。
优选地,所述的亚波长光栅层的光栅周期为100nm~2um,反射镜的数值孔径为0.7~1.2,反射率大于70%,电场强度分布半高宽为1~2μm。
优选地,所述的外延GaAs缓冲层厚度为500nm;所述的GaAs spacer隔离层厚度为80nm;所述的InGaAs缓冲层厚度为6nm、所述的GaAs窗口层厚度为650nm。
本发明还提供了上述基于亚波长光栅的量子阱红外光探测器的制备方法,其特征在于,包括如下步骤:
S1.在硅基衬底上异质外延GaAs缓冲层;
S2.在外延GaAs缓冲层制作p型接触电极和n型接触电极;
S3.在外延GaAs缓冲层上生长GaAs spacer隔离层,在GaAs spacer隔离层之上制备吸收腔;
S4.在吸收腔之上,制备InGaAs缓冲层、GaAs spacer隔离层、GaAs窗口层;并在GaAs窗口层刻蚀形成亚波长光栅层,在光栅沟槽内旋涂乙烯树脂;量子阱红外光探测器的入光面位于光探测器窗口层,由此制备量子阱红外光探测器。
优选地,所述的外延GaAs缓冲层生长阶段分为低温与高温两阶段;利用MOCVD生长,低温生长温度为600~620℃,高温生长温度为700~750℃。
优选地,所述的亚波长光栅层由光刻机、ICP刻蚀、电子束蒸发或溅射方法刻蚀在GaAs窗口层。
优选地,所述的亚波长光栅层中用旋涂机旋涂厚度为200nm的乙烯树脂,用丙酮洗除亚波长光栅表面的乙烯树脂,使乙烯树脂仅在光栅沟槽内填充。
本发明的有益效果:
本发明中,通过增加垒高、降低阱中掺杂浓度及降低工作温度,实现了本发明具有低暗电流;通过利用量子阱与量子点交叠结构加强了量子点与隧穿二极管的量子结构复合,形成了对光生载流子的有效量子放大,实现本发明的高量子效率。综上所述,本发明具有低暗电流,多光谱响应,高分辨率,高工作温度,红外成像,量子效率高,抗辐射,成本低等优点;可广泛用于红外光探测技术领域。
附图说明
图1为本发明实施例中的量子阱红外光探测器结构示意图;
具体实施方式
实施例1
参见附图,一种基于亚波长光栅的量子阱红外光探测器,其特征在于,由下向上依次包括有衬底、外延GaAs缓冲层、GaAs spacer隔离层、吸收腔、InGaAs缓冲层、GaAs spacer隔离层、GaAs窗口层;所述外延GaAs缓冲层上设有n型接触电极和p型接触电极;
所述的衬底为硅衬底;所述的吸收腔由下向上依次为InGaAs、InAs量子点、InGaAs、InAs量子点;所述的吸收腔中InGaAs的厚度均为2nm,InAs量子点的掺杂浓度为Si(2e/dot);所述的GaAs窗口层刻蚀形成亚波长光栅层;所述的亚波长光栅层的光栅图案为周期性或非周期性图案;所述的光栅图案为周期高折射率差亚波长光栅、二维块状亚波长光栅以及非周期条形光栅,实现宽光谱的高反射率(3.5-5μm);所述的亚波长光栅层的光栅周期为100nm~2um,反射镜的数值孔径为0.7~1.2,反射率大于70%,电场强度分布半高宽为1~2μm。
所述的外延GaAs缓冲层厚度为500nm;所述的GaAs spacer隔离层厚度为80nm;所述的InGaAs缓冲层厚度为6nm、所述的GaAs窗口层厚度为650nm。
实施例2
本发明还提供了上述上述基于亚波长光栅的量子阱红外光探测器的制备方法,其特征在于,包括如下步骤:
S1.在硅基衬底上异质外延GaAs缓冲层;所述的外延GaAs缓冲层生长阶段分为低温与高温两阶段;外延GaAs缓冲层利用MOCVD生长,低温生长温度为600℃开始,进入高温生长温度700摄氏度后,随着温度的升高,表面原子的迁移能力变大扩散长度增加引起的。低温时,原子的扩散长度较短,导致表面原子聚积在一起形成颗粒状;高温生长阶段温度为700~750℃。
S2.在外延GaAs缓冲层制作p型接触电极和n型接触电极;
S3.在外延GaAs缓冲层上生长GaAs spacer隔离层,在GaAs spacer隔离层之上制备吸收腔;
S4.在吸收腔之上,制备InGaAs缓冲层、GaAs spacer隔离层、GaAs窗口层;并在GaAs窗口层刻蚀形成亚波长光栅层,在光栅沟槽内旋涂乙烯树脂;所述的亚波长光栅层由光刻机、ICP刻蚀、电子束蒸发或溅射方法刻蚀在GaAs窗口层;所述的亚波长光栅层中用旋涂机旋涂厚度为200nm的乙烯树脂,用丙酮洗除亚波长光栅表面的乙烯树脂,使乙烯树脂仅在光栅沟槽内填充;
量子阱红外光探测器的入光面位于光探测器窗口层,由此制备量子阱红外光探测器。

Claims (10)

1.一种基于亚波长光栅的量子阱红外光探测器,其特征在于,由下向上依次包括有衬底、外延GaAs缓冲层、GaAs spacer隔离层、吸收腔、InGaAs缓冲层、GaAs spacer隔离层、GaAs窗口层;所述外延GaAs缓冲层上设有n型接触电极和p型接触电极;
所述的衬底为硅衬底;所述的吸收腔由下向上依次为InGaAs、InAs量子点、InGaAs、InAs量子点;所述的GaAs窗口层刻蚀形成亚波长光栅层。
2.根据权利要求1所述的基于亚波长光栅的量子阱红外光探测器,其特征在于,所述的吸收腔中InGaAs的厚度均为2nm,InAs量子点的掺杂浓度为Si(2e/dot)。
3.根据权利要求1所述的基于亚波长光栅的量子阱红外光探测器,其特征在于,所述的亚波长光栅层的光栅图案为周期性或非周期性图案。
4.根据权利要求3所述的基于亚波长光栅的量子阱红外光探测器,其特征在于,所述的光栅图案为周期高折射率差亚波长光栅、二维块状亚波长光栅以及非周期条形光栅,实现宽光谱的高反射率(3.5-5μm)。
5.根据权利要求4所述的基于亚波长光栅的量子阱红外光探测器,其特征在于,所述的亚波长光栅层的光栅周期为100nm~2um,反射镜的数值孔径为0.7~1.2,反射率大于70%,电场强度分布半高宽为1~2μm。
6.根据权利要求1所述的基于亚波长光栅的量子阱红外光探测器,其特征在于,所述的外延GaAs缓冲层厚度为500nm;所述的GaAs spacer隔离层厚度为80nm;所述的InGaAs缓冲层厚度为6nm;所述的GaAs窗口层厚度为650nm。
7.一种根据权利要求1所述的基于亚波长光栅的量子阱红外光探测器的制备方法,其特征在于,包括如下步骤:
S1.在硅衬底上异质外延GaAs缓冲层;
S2.在外延GaAs缓冲层制作p型接触电极和n型接触电极;
S3.在外延GaAs缓冲层上生长GaAs spacer隔离层,在GaAs spacer隔离层之上制备吸收腔;
S4.在吸收腔之上,制备InGaAs缓冲层、GaAs spacer隔离层、GaAs窗口层;并在GaAs窗口层刻蚀形成亚波长光栅层,在光栅沟槽内旋涂乙烯树脂;量子阱红外光探测器的入光面位于光探测器窗口层,由此制备量子阱红外光探测器。
8.根据权利要求7所述的基于亚波长光栅的量子阱红外光探测器的制备方法,其特征在于,所述的外延GaAs缓冲层生长阶段分为低温与高温两阶段;利用MOCVD生长,低温生长温度为600~620℃,高温生长温度为700~750℃。
9.根据权利要求7所述的基于亚波长光栅的量子阱红外光探测器的制备方法,其特征在于,所述的亚波长光栅层由光刻机、ICP刻蚀、电子束蒸发或溅射方法刻蚀在GaAs窗口层。
10.根据权利要求7所述的基于亚波长光栅的量子阱红外光探测器的制备方法,其特征在于,所述的亚波长光栅层中用旋涂机旋涂厚度为200nm的乙烯树脂,用丙酮洗除亚波长光栅表面的乙烯树脂,使乙烯树脂仅在光栅沟槽内填充。
CN201910602641.7A 2019-07-05 2019-07-05 一种基于亚波长光栅的量子阱红外光探测器及其制备方法 Pending CN110323288A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910602641.7A CN110323288A (zh) 2019-07-05 2019-07-05 一种基于亚波长光栅的量子阱红外光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910602641.7A CN110323288A (zh) 2019-07-05 2019-07-05 一种基于亚波长光栅的量子阱红外光探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN110323288A true CN110323288A (zh) 2019-10-11

Family

ID=68122806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910602641.7A Pending CN110323288A (zh) 2019-07-05 2019-07-05 一种基于亚波长光栅的量子阱红外光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110323288A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816717A (zh) * 2020-06-30 2020-10-23 聊城大学 一种谐振增强型光探测器及其制备方法
CN111969072A (zh) * 2020-08-17 2020-11-20 南方科技大学 一种基于量子点光栅增强的光电探测器及其制备方法和探测光的调整方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266541A (ja) * 2006-03-30 2007-10-11 Fujitsu Ltd 多波長量子井戸型赤外線検知器
CN101271933A (zh) * 2007-03-21 2008-09-24 中国科学院半导体研究所 量子点-阱红外探测器的结构及其制备方法
CN102221406A (zh) * 2011-05-24 2011-10-19 中国科学院上海技术物理研究所 单片集成亚波长微偏振光栅的铟镓砷近红外探测器
CN102790100A (zh) * 2012-08-15 2012-11-21 中国科学院物理研究所 一种基于中间能带的InSb量子点多色红外探测器
JP2014017403A (ja) * 2012-07-10 2014-01-30 Fujitsu Ltd 光検出器およびその製造方法
CN103762220A (zh) * 2014-01-17 2014-04-30 中国科学院上海技术物理研究所 等离激元微腔耦合结构的高线性偏振度量子阱红外探测器
CN106684198A (zh) * 2016-11-28 2017-05-17 聊城大学 基于亚波长光栅的谐振增强型紫外光探测器及制备方法
CN107665931A (zh) * 2017-08-30 2018-02-06 中国科学院上海技术物理研究所 一种导模共振集成增强量子阱红外探测器及设计方法
CN107910403A (zh) * 2017-06-28 2018-04-13 超晶科技(北京)有限公司 一种量子阱红外探测器件材料的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007266541A (ja) * 2006-03-30 2007-10-11 Fujitsu Ltd 多波長量子井戸型赤外線検知器
CN101271933A (zh) * 2007-03-21 2008-09-24 中国科学院半导体研究所 量子点-阱红外探测器的结构及其制备方法
CN102221406A (zh) * 2011-05-24 2011-10-19 中国科学院上海技术物理研究所 单片集成亚波长微偏振光栅的铟镓砷近红外探测器
JP2014017403A (ja) * 2012-07-10 2014-01-30 Fujitsu Ltd 光検出器およびその製造方法
CN102790100A (zh) * 2012-08-15 2012-11-21 中国科学院物理研究所 一种基于中间能带的InSb量子点多色红外探测器
CN103762220A (zh) * 2014-01-17 2014-04-30 中国科学院上海技术物理研究所 等离激元微腔耦合结构的高线性偏振度量子阱红外探测器
CN106684198A (zh) * 2016-11-28 2017-05-17 聊城大学 基于亚波长光栅的谐振增强型紫外光探测器及制备方法
CN107910403A (zh) * 2017-06-28 2018-04-13 超晶科技(北京)有限公司 一种量子阱红外探测器件材料的制备方法
CN107665931A (zh) * 2017-08-30 2018-02-06 中国科学院上海技术物理研究所 一种导模共振集成增强量子阱红外探测器及设计方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816717A (zh) * 2020-06-30 2020-10-23 聊城大学 一种谐振增强型光探测器及其制备方法
CN111816717B (zh) * 2020-06-30 2021-12-03 聊城大学 一种谐振增强型光探测器及其制备方法
CN111969072A (zh) * 2020-08-17 2020-11-20 南方科技大学 一种基于量子点光栅增强的光电探测器及其制备方法和探测光的调整方法

Similar Documents

Publication Publication Date Title
LaPierre et al. A review of III–V nanowire infrared photodetectors and sensors
Razeghi Short-wavelength solar-blind detectors-status, prospects, and markets
CN110911507B (zh) 一种基于介质超表面的垂直入射型硅基锗光电探测器
CN101714591A (zh) 一种硅光电二极管的制作方法
CN109686809B (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN100495742C (zh) 铟镓砷/铟铝砷耦合量子点红外探测器及其制备方法
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN110323288A (zh) 一种基于亚波长光栅的量子阱红外光探测器及其制备方法
CN101271933A (zh) 量子点-阱红外探测器的结构及其制备方法
TW201519455A (zh) 具有表面週期性光柵結構之光電元件裝置及其製造方法
CN110047955A (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
CN106384755A (zh) InP基量子阱远红外探测器及其制作方法
CN109273561A (zh) 一种msm光电探测器的制备方法
CN104538481B (zh) InGaAs/QWIP双色红外探测器及其制备方法
Xu et al. High performance InAs/GaAsSb superlattice long wavelength infrared photo-detectors grown on InAs substrates
CN104319307A (zh) PNIN型InGaAs红外探测器
CN112204756A (zh) 在缓冲器上方形成的光电子器件
CN103077979A (zh) 一种GaAs衬底上扩展波长InGaAs探测器结构
CN108470793B (zh) 紫外-红外双波段集成p-i-n型光电探测器
CN103617999B (zh) 基于硅上液晶的短波长红外成像器件
Li et al. Molecular beam epitaxial growth, characterization and performance of high-detectivity GaInAsSb/GaSb PIN detectors operating at 2.0 to 2.6 μm
Cui et al. Investigation of active-region doping on InAs/GaSb long wave infrared detectors
CN112420876B (zh) 一种从日盲紫外到近红外的宽波段探测器的制备方法
CN217544629U (zh) 一种完全嵌入式光栅结构的窄带近红外热电子光电探测器
Andreev et al. High-efficiency AlGaAs-GaAs solar cells with internal Bragg reflector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20191011