CN110317742A - 一株耐铬的石油烃降解菌株Tph3-32及其应用 - Google Patents

一株耐铬的石油烃降解菌株Tph3-32及其应用 Download PDF

Info

Publication number
CN110317742A
CN110317742A CN201910219806.2A CN201910219806A CN110317742A CN 110317742 A CN110317742 A CN 110317742A CN 201910219806 A CN201910219806 A CN 201910219806A CN 110317742 A CN110317742 A CN 110317742A
Authority
CN
China
Prior art keywords
tph3
petroleum hydrocarbon
bacterial strain
terrabacter
hydrocarbon degradation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910219806.2A
Other languages
English (en)
Other versions
CN110317742B (zh
Inventor
赵苒
唐晨
王万鹏
陈小旋
郭东北
范春
张敏
李佳瑶
朱靓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201910219806.2A priority Critical patent/CN110317742B/zh
Publication of CN110317742A publication Critical patent/CN110317742A/zh
Application granted granted Critical
Publication of CN110317742B publication Critical patent/CN110317742B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/02Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by biological methods, i.e. processes using enzymes or microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/20Organic substances
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/43Inorganic substances containing heavy metals, in the bonded or free state
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Soil Sciences (AREA)
  • Emergency Management (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一株耐铬的石油烃降解菌株Tph3‑32及其应用,涉及石油污染。已于2018年11月12日保藏于中国典型培养物保藏中心,保藏中心保藏编号为CCTCC NO:M 2018787。一株耐铬的石油烃降解菌株(Terrabacter sp.)Tph3‑32在处理原油和Cr6+复合污染土壤治理的应用。石油烃降解菌(Terrabacter sp.)Tph3‑32的分离及应用进一步丰富了该领域的菌种资源,有效填补了该方面的研究空白,并为治理污染环境的实践工作提供了一套可行的方案,展现出巨大的研究价值与应用前景。

Description

一株耐铬的石油烃降解菌株Tph3-32及其应用
技术领域
本发明涉及石油污染,尤其是涉及一株耐铬的石油烃降解菌株(Terrabactersp.)Tph3-32及其应用。
背景技术
石油污染是指石油烃及其产品衍生物在勘探、开采、运输、装卸、加工、储存和使用过程中,由于泄漏和排放石油引起的污染。其主要类型包括:土壤污染、海洋污染(H.S.El-Sheshtawy,N.M.Khalil,W.Ahmed,R.I.Abdallah.Monitoring of oil pollution atGemsa Bay and bioremediation capacity of bacterial isolates withbiosurfactants and nanoparticles.Marine Pollution Bulletin 87,191-200(2014))。随着我国社会经济的繁荣发展,石油的需求量日益增加,从而推动了石油相关行业的快速发展,但不可否认的是,这也是造成日趋严重的石油污染问题的最主要成因之一。具体来说,由于技术与管理方面的缺陷,大量的石油产品直接或间接流入土壤,从而污染土壤环境。泄露的石油烃类物质灌注入土壤的空隙中,影响土壤的通透性,破坏土壤的水相、气相和固相结构,不仅影响土壤中微生物的生长,也影响植物根系的呼吸及水分养料的吸收,甚至使植物根系腐烂坏死,严重危害植物的生长,降低该区域的土地耕种价值。土壤中的石油污染物亦常伴随水的流动而发生迁徙,导致污染区域不断扩大。另一方面,石油中的有害物质,尤其是多环芳烃类物质具有致癌、致畸、致突变等作用,可以通过食物链进入人体,直接危害人体健康。
铬(Cr)是一种广泛应用于工业生产的重金属元素,常被广泛应用于电镀、制革、染色、合金生产、木材保藏等行业(Deflora S,Bagnasco M,Serra D,ZanacchiP.Genotoxicity Of Chromium Compounds-A Review.Mutat Res,1990,238(2):99-172.)。据中华人民共和国环境保护部公布的2015年中国环境统计年报显示,本年度工业废水中六价铬(Cr6+)及总铬的排放量分别为70.4吨和188.6吨。由于Cr在环境中长期存在、不易降解,且能够通过食物链的生物聚集和生物放大作用威胁公众健康,并对环境造成严重的污染(Garg SK,Tripathi M,Srinath T.Strategies for Chromium Bioremediation ofTannery Effluent.Rev Environ Contam T,2012,217:75-140.)。具体来说,在自然环境中Cr主要以Cr6+及Cr3+形式稳定存在。Cr3+的性质较稳定,毒性较小;Cr6+由于具有强氧化性和腐蚀性,同时能够穿过生物膜进入细胞内部,因而,对人体有很强的毒性作用且能够造成人类遗传性基因缺陷(Pajor F,Póti P,Bárdos L.Accumulation of some heavy metals(Pd,Cd and Cr)in milk of grazing sheep in north-east Hungary.Food SciBiotechnol,2012,2(1):389-394.)。研究表明,Cr6+的毒性是Cr3+毒性的100倍,致突变性是Cr3+的1000倍(ZHAO Ran#*,WANG Bi,CAI Qing Tao,LI Xiao Xia,LIU Min,HU Dong,GUODong Bei,WANG Juan,FAN Chun*.Bioremediation of Hexavalent Chromium Pollutionby Sporosarcinasaromensis M52 Isolated from Offshore Sediments in Xiamen,China.2016,Biomed Environ Sci,29(2):127-136.)。目前,国际癌症研究机构(IARC)及美国政府工业卫生学家协会(ACGIH)均已经确定Cr6+化合物具有致癌性。因此,研究其处理技术对生态环境保护和人类健康意义重大。
有研究表明:受石油烃污染的土壤,如油田土壤、火力发电厂等,常伴随有重金属类物质污染的现象(Fu,Xiaowen,Zhaojie Cui&Guolong Zang.2014.Migration,speciation and distribution of heavy metals in an oil-polluted soil affectedby crude oil extraction processes.Environmental Science:Processes&Impacts16.1737-44.),而部分重金属污染物对微生物具有致死作用。因此,大部分高效石油烃降解微生物在上述情况下降解效率大大下降(Dong,Zhi-Yong,Wen-Hui Huang,Ding-FengXing&Hong-Feng Zhang.2013.Remediation of soil co-contaminated with petroleumand heavy metals by the integration of electrokinetics andbiostimulation.Journal of Hazardous Materials 260.399-408.)。目前,分别针对石油烃类污染物与Cr6+的物理法、化学法、生物治理技术及不同技术的组合应用已经较为普遍,但关于石油烃类污染物-Cr6+复合污染的研究却鲜见报道。现有的技术路线存在着成本高、周期长、易造成二次污染、风险不可控等诸多弊病。因此,寻求石油烃污染物-Cr6+复合污染的治理方案,对环境污染问题具有极其重要的实践意义。
发明内容
本发明的第一目的在于提供一株耐铬的石油烃降解菌株(Terrabacter sp.)Tph3-32。
本发明的第二目的在于提供一株耐铬的石油烃降解菌株(Terrabacter sp.)Tph3-32在处理原油和Cr6+复合污染土壤治理的应用。
所述石油烃降解菌株(Terrabacter sp.)Tph3-32,筛选自澳门一处发电厂的石油烃污染区域(E113°55′,N22°20′),土壤样品在无菌收集后,经低温运送至实验室进行下一阶段研究工作。
在实验室条件下:取250mL锥形瓶,洗净后加注90mL去离子水并添加5mm直径的玻璃珠25颗,封口后置于高压灭菌锅内,121℃,20min高温高压灭菌。待体系冷却至室温后,在超净工作台中将10.0g前述土壤样品加入锥形瓶内,重新封口后,置于28℃恒温摇床内震荡约30min,使土壤孔隙中的微生物充分析出。该过程所产生的悬浊液即为梯度稀释的原液。该原液以10倍比例进行等比稀释,以10-6为稀释终浓度,均匀涂布于LB固体平板上并倒置于28℃恒温培养箱培养约48h。经反复分离纯化,得到单菌石油烃降解菌株(Terrabactersp.)Tph3-32。提取石油烃降解菌株(Terrabacter sp.)Tph3-32的基因组DNA,并以之为模板扩增Tph3-32的16SrDNA片段,测定序列后上传至Ezbiocloud(https://www.ezbiocloud.net),选取有效命名的高相似度序列,经MEGA5.0计算出序列的系统进化距离,并构建系统发育树。
经鉴定石油烃降解菌株(Terrabacter sp.)Tph3-32,其16srDNA序列与Terrabacter terrae PPLB(T)相似度最高,为99.64%。但其系统发育树显示:Tph3-32形成单独一支,故命名为:石油烃降解菌株(Terrabacter sp.)Tph3-32。石油烃降解菌株(Terrabacter sp.)Tph3-32已于2018年11月12日保藏于中国典型培养物保藏中心,地址:中国武汉武汉大学,邮编:430072,保藏中心保藏编号为CCTCC NO:M2018787。
在LB固体平板上挑取石油烃降解菌株(Terrabacter sp.)Tph3-32的一个单菌落接种于LB液体培养基中,过夜培养,即为Tph3-32种子液。将10g柴油与90mL无机盐液体培养基分别灭菌后,与无菌环境下混合,并加入干燥至恒重的重铬酸钾固体粉末,使该体系中的Cr6+浓度为150mg/L(该数值经预实验确定),按1%的比例(即1mL)加入种子液,150rpm培养15d,培养过程中以3天为时间间隔,动态监测反应体系中Cr6+与原油的含量,并计算其在对应时间点上的降解率。再以50mg/L Cr6+为梯度配制含Cr6+的LB液体培养基,接种石油烃降解菌株(Terrabacter sp.)Tph3-32单菌落,以确定其最高可耐受Cr6+浓度。
经上述实验验证:本发明石油烃降解菌株(Terrabacter sp.)Tph3-32在pH7.6,温度28℃,于含约150mg/L Cr6+及10%原油无机盐液体培养基中,150rpm培养15d,对Cr6+去除率达91.7%,同时可以降解反应体系中88.4%的原油。在Cr6+耐受实验中,石油烃降解菌株(Terrabacter sp.)Tph3-32最高可在含约350mg/L Cr6+的LB液体培养基中生长。
上述LB固体培养基组分为:胰蛋白胨10g,酵母浸粉5g,氯化钠10g,琼脂粉15g/L,去离子水1L,pH6.9~7.1;LB液体培养基组分为:胰蛋白胨10g,酵母浸粉5g,氯化钠10g,去离子水1L,pH6.9~7.1;无机盐液体培养基组分为:氯化钙2.0g,定容至100mL,制成1000×氯化钙溶液;七水合硫酸镁2.0g,定容至100mL,制成100×硫酸镁溶液;硫酸铵0.5g,硝酸钠0.5g,磷酸二氢钾1.0g,水合磷酸二氢钠1.0g,去离子水800mL,调pH至7.0~7.2,高压灭菌后,于无菌环境下按比例加入氯化钙溶液与硫酸镁溶液,并加无菌水补齐至1L。
本发明的石油烃降解菌(Terrabacter sp.)Tph3-32的分离及应用进一步丰富了该领域的菌种资源,有效填补了该方面的研究空白,并为治理污染环境的实践工作提供了一套可行的方案,展现出巨大的研究价值与应用前景。
附图说明
图1为本发明的石油烃降解菌(Terrabacter sp.)Tph3-32的系统发育分析树。在图1中,标尺表示差异精度。
图2为本发明的石油烃降解菌(Terrabacter sp.)Tph3-32不同时间对六价铬及柴油的降解率。在图2中,a为100mg/L Cr(VI),b为石油烃。
具体实施方式
以下实施例将结合附图对本发明作进一步的说明。
实施例1:石油烃降解菌株(Terrabacter sp.)Tph3-32形态特征
将单菌落划线接种至LB固体培养基中,将平板倒置于恒温培养箱内,28℃培养72h。该菌革兰氏染色呈阳性,生物学特性为非发酵型,专性需氧,菌体形态为无芽孢杆菌。呈圆形,米白色半透明,表面光滑湿润,边缘规则,无晕环,中央凸起,直径0.7~1.2mm。
实施例2:石油烃降解菌株(Terrabacter sp.)Tph3-32的筛选和鉴定
(1)现场采集澳门发电厂石油烃污染区域(E113°55′,N22°20′)地表下5cm左右的土壤样品,初步剔除草根、石块等杂质后,低温寄送至实验室,作为下一阶段筛选功能菌株的样品来源。
(2)在实验室条件下:取250mL锥形瓶,洗净后加注90mL去离子水并添加直径为0.5cm玻璃珠25颗,封口后,121℃,20min高压灭菌。待体系降至室温后,在超净工作台中将10.0g前述土壤样品加入锥形瓶中,重新封口后,置于28℃恒温摇床内震荡约30min,以充分释放土壤孔隙中的微生物。该过程所产生的悬浊液即为梯度稀释的原液。该原液以10倍比例进行等比稀释,以10-6为稀释终浓度,均匀涂布于LB固体平板上,后将平板倒置于28℃恒温培养箱培养约48h。经反复分离纯化,最终得到单菌石油烃降解菌株(Terrabacter sp.)Tph3-32。
(3)提取石油烃降解菌株(Terrabacter sp.)Tph3-32的基因组DNA并以此为模板扩增16SrDNA片段,并在Ezbiocloud(https://www.ezbiocloud.net/)上选取有效命名的高相似度序列,经MEGA5.0计算出序列的系统进化距离,并构建系统发育树。见图1。经鉴定石油烃降解菌株(Terrabacter sp.)Tph3-32,其16srDNA序列与Terrabacter terrae PPLB(T)相似度最高,为99.64%。但其系统发育树显示:石油烃降解菌株(Terrabacter sp.)Tph3-32形成单独一支,故命名为:石油烃降解菌株(Terrabacter sp.)Tph3-32。石油烃降解菌株(Terrabacter sp.)Tph3-32已于2018年11月12日保藏于中国典型培养物保藏中心,地址:中国武汉武汉大学,邮编:430072,保藏中心保藏编号为CCTCC NO:M2018787。
实施例3:石油烃降解菌株(Terrabacter sp.)Tph3-32对Cr6+及柴油降解率的测定
(1)配制LB液体培养基,并在LB固体平板上挑取石油烃降解菌株(Terrabactersp.)Tph3-32的一个单菌落接种于LB液体培养基中,过夜培养,即为Tph3-32种子液。将10g原油与90mL无机盐液体培养基分别灭菌后,在无菌条件下混合,并加入干燥至恒重的重铬酸钾粉末使该体系中的Cr6+为150mg/L(该数值由前期预实验确定)。按1%比例接入菌株种子液,在28℃,150rpm条件下培养15d,每3日抽取样品,测定Cr6+及原油的含量,并计算对应时点的降解率。
(2)结果显示:石油烃降解菌株(Terrabacter sp.)Tph3-32对Cr6+还原率总计达91.7%,同时可以降解反应体系中88.4%的原油。见图2。
实施例4:石油烃降解菌株(Terrabacter sp.)Tph3-32对Cr6+的最高耐受浓度检测
(1)配制LB液体培养基,并在LB固体平板上挑取石油烃降解菌株(Terrabactersp.)Tph3-32的一个单菌落接种于LB液体培养基中,过夜培养,即为Tph3-32种子液。
(2)以50mg/L Cr6+为梯度间隔配制含不同浓度Cr6+的LB液体培养基,接入Tph3-32种子液,通过监测一定培养周期后培养基中的吸光度值是否变化并加以LB固体平板涂布验证,以确定菌株最高可耐受的Cr6+浓度。
(3)结果显示:石油烃降解菌株(Terrabacter sp.)Tph3-32最高可耐受350mg/LCr6+
(4)以上,LB固体培养基组分为:胰蛋白胨10g,酵母浸粉5g,氯化钠10g,琼脂粉15g/L,去离子水1L,pH6.9~7.1;无机盐液体培养基组分为:氯化钙2.0g,定容至100mL,制成1000×氯化钙溶液;七水合硫酸镁2.0g,定容至100mL,制成100×硫酸镁溶液;硫酸铵0.5g,硝酸钠0.5g,磷酸二氢钾1.0g,水合磷酸二氢钠1.0g,去离子水800mL,调pH至7.0~7.2,高压灭菌后,于无菌环境下按比例加入氯化钙溶液与硫酸镁溶液,并加无菌水补齐至1L。LB液体培养基组分为:胰蛋白胨10g,酵母浸粉5g,氯化钠10g,去离子水1L,pH6.9~7.1。
序列表
<110> 厦门大学
<120> 一株耐铬的石油烃降解菌株Tph3-32及其应用
<160> 1
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1393
<212> DNA
<213> Terrabacter sp. Tph3-32
<400> 1
gcaagtcgaa cgatgatccc catgcttgct ggggggatta gtggcgaacg ggtgagtaac 60
acgtgagtaa cctgcccttg actctgggat aagcctggga aactgggtct aataccggat 120
atgacttctc atcgcatggt ggggggtgga aagcttttgt ggttttggat ggactcgcgg 180
cctatcagct tgttggtggg gtaatggcct accaaggcga cgacgggtag ccggcctgag 240
agggtgaccg gccacactgg gactgagaca cggcccagac tcctacggga ggcagcagtg 300
gggaatattg cacaatgggc gcaagcctga tgcagcgacg ccgcgtgagg gatgacggcc 360
ttcgggttgt aaacctcttt cagtagggaa gaagcccttt ttgggggtga cggtacttgc 420
agaagaagcg ccggctaact acgtgccagc agccgcggta atacgtaggg cgcaagcgtt 480
atccgggaat tattgggcgt aaagagctcg taggcggttt gtcgcgtctg ctgtgaaaga 540
ccggggctca actccggttc tgcagtgggt acgggcagac tagagtgcag taggggagac 600
tggaattcct ggtgtagcgg tgaaatgcgc agatatcagg aggaacaccg atggcgaagg 660
caggtctctg ggctgtaact gacgctgagg agcgaaagca tggggagcga acaggattag 720
ataccctggt agtccatgcc gtaaacgttg ggcactaggt gtgggggaca ttccacgttt 780
tccgcgccgt agctaacgca ttaagtgccc cgcctgggga gtacggccgc aaggctaaaa 840
ctcaaaggaa ttgacggggg cccgcacaag cggcggagca tgcggattaa ttcgatgcaa 900
cgcgaagaac cttaccaagg cttgacatga accggaaaga cctggaaaca ggtgccccgc 960
ttgcggtcgg tttacaggtg gtgcatggtt gtcgtcagct cgtgtcgtga gatgttgggt 1020
taagtcccgc aacgagcgca accctcgttc tatgttgcca gcggttcggc cggggactca 1080
taggagactg ccggggtcaa ctcggaggaa ggtggggacg acgtcaaatc atcatgcccc 1140
ttatgtcttg ggcttcacgc atgctacaat ggccggtaca aagggttgcg atactgtgag 1200
gtggagctaa tcccaaaaag ccggtctcag ttcggattgg ggtctgcaac tcgaccccat 1260
gaagtcggag tcgctagtaa tcgcagatca gcaacgctgc ggtgaatacg ttcccgggcc 1320
ttgtacacac cgcccgtcaa gtcacgaaag ttggtaacac ccgaagccgg tggcctaacc 1380
cttgtggggg agc 1393

Claims (3)

1.一株耐铬的石油烃降解菌株(Terrabacter sp.)Tph3-32,其特征在于已于2018年11月12日保藏于中国典型培养物保藏中心,保藏中心保藏编号为CCTCC NO:M 2018787。
2.如权利要求1所述一株耐铬的石油烃降解菌株(Terrabacter sp.)Tph3-32在处理原油中应用。
3.如权利要求1所述一株耐铬的石油烃降解菌株(Terrabacter sp.)Tph3-32在Cr6+复合污染土壤治理中应用。
CN201910219806.2A 2019-03-22 2019-03-22 一株耐铬的石油烃降解菌株Tph3-32及其应用 Active CN110317742B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910219806.2A CN110317742B (zh) 2019-03-22 2019-03-22 一株耐铬的石油烃降解菌株Tph3-32及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910219806.2A CN110317742B (zh) 2019-03-22 2019-03-22 一株耐铬的石油烃降解菌株Tph3-32及其应用

Publications (2)

Publication Number Publication Date
CN110317742A true CN110317742A (zh) 2019-10-11
CN110317742B CN110317742B (zh) 2021-01-01

Family

ID=68112838

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910219806.2A Active CN110317742B (zh) 2019-03-22 2019-03-22 一株耐铬的石油烃降解菌株Tph3-32及其应用

Country Status (1)

Country Link
CN (1) CN110317742B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657099A (zh) * 2022-04-01 2022-06-24 福州大学 一种石油烃降解菌株及其筛选和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003106691A1 (en) * 2002-06-14 2003-12-24 Dsm Ip Assets B.V. POLYPEPTIDES HAVING α- H-α-AMINO ACID AMIDE RACEMASE ACTIVITY AND NUCLEIC ACIDS ENCODING THE SAME
JP4162040B2 (ja) * 2002-03-04 2008-10-08 独立行政法人理化学研究所 ジベンゾフランジオキシゲナーゼ遺伝子及びダイオキシン類分解方法
US20100233146A1 (en) * 2002-09-09 2010-09-16 Reactive Surfaces, Ltd. Coatings and Surface Treatments Having Active Enzymes and Peptides
CN102127517A (zh) * 2010-12-20 2011-07-20 中南大学 一株对重金属具有耐受性的菌株及其应用
KR101340079B1 (ko) * 2012-09-03 2014-01-24 한국과학기술원 테라박터 속 유래 β―글루코시다제를 이용한 PPT 타입 진세노사이드의 생물전환

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4162040B2 (ja) * 2002-03-04 2008-10-08 独立行政法人理化学研究所 ジベンゾフランジオキシゲナーゼ遺伝子及びダイオキシン類分解方法
WO2003106691A1 (en) * 2002-06-14 2003-12-24 Dsm Ip Assets B.V. POLYPEPTIDES HAVING α- H-α-AMINO ACID AMIDE RACEMASE ACTIVITY AND NUCLEIC ACIDS ENCODING THE SAME
US20100233146A1 (en) * 2002-09-09 2010-09-16 Reactive Surfaces, Ltd. Coatings and Surface Treatments Having Active Enzymes and Peptides
CN102127517A (zh) * 2010-12-20 2011-07-20 中南大学 一株对重金属具有耐受性的菌株及其应用
KR101340079B1 (ko) * 2012-09-03 2014-01-24 한국과학기술원 테라박터 속 유래 β―글루코시다제를 이용한 PPT 타입 진세노사이드의 생물전환

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KIM,J.: "Paenarthrobacter sp. strain TM-S50 16S ribosomal RNA gene, partial sequence,GenBank: MH698781.1", 《NCBI GENBANK DATABASE》 *
MEI-FANG JIN: "Terrabacter Ginsengisoli Sp. Nov., Isolated From Ginseng Cultivating Soil", 《JOURNAL OF MICROBIOLOGY 》 *
王淑芳: "地下海水池塘六价铬还原菌的多样性研究", 《水产科学》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657099A (zh) * 2022-04-01 2022-06-24 福州大学 一种石油烃降解菌株及其筛选和应用
CN114657099B (zh) * 2022-04-01 2023-02-21 福州大学 一种石油烃降解菌株及其筛选和应用

Also Published As

Publication number Publication date
CN110317742B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
Zamani et al. Experimentation on degradation of petroleum in contaminated soils in the root zone of maize (Zea Mays L.) inoculated with Piriformospora indica
CN100560713C (zh) 净化砷污染的木糖氧化无色杆菌sy8及用途
CN105797969A (zh) 一种土壤重金属铬修复植物的筛选方法
Ezekoye et al. Laboratory–based bioremediation of hydrocarbon polluted Mangrove Swamp soil in the Niger Delta using poultry wastes
CN101972774A (zh) 受油污污染湿地的微生物修复方法
Anusha et al. Eco-friendly bioremediation of pollutants from contaminated sewage wastewater using special reference bacterial strain of Bacillus cereus SDN1 and their genotoxicological assessment in Allium cepa
CN110317741A (zh) 一株耐铬的石油烃降解菌Thp3-45A及其应用
CN110184207B (zh) 一株耐铬的石油烃降解菌m23a及其应用
CN110317742A (zh) 一株耐铬的石油烃降解菌株Tph3-32及其应用
Zhang et al. Ecological effects of crude oil residues on the functional diversity of soil microorganisms in three weed rhizospheres
Williams et al. Bioremediation of hydrocarbon contaminated soil using organic wastes as amendment
Vázquez-Luna Biological indices of toxicity in tropical legumes grown in oil-contaminated soil
CN107164239A (zh) 淡紫紫孢菌及其协同生物质修复污染水体重金属的方法
Taiwo et al. Physicochemical and Bacteriological Analyses of Well Water in Abeokuta Metropolis, Ogun–State, Nigeria
Nedoroda et al. Bioremediation Possibilities of Oil-Contaminated Soil by Biosurfactant Based on Bacillus Strain
Fawole et al. Polluted Alamuyo River: Impacts on surrounding wells, microbial attributes and toxic effects on Allium cepa root cells
Salehi et al. The effect of landfill leachate and Pyrene on sorghum bicolor growth parameters and soil bacterial communities
Wemedo et al. Acute toxicity test of oilfield wastewater on bacterial community of a soil in Nigeria
CN110283736A (zh) 一株耐铬的石油烃降解菌Tph1-14及其应用
Adetitun et al. Hydrocarbon-degrading capability of bacteria isolated from a maize-planted, kerosene-contaminated ilorin alfisol
CN110257270B (zh) 一株耐铬的石油烃降解菌Thp3-30及其应用
Ananthi et al. Potential of rhizobacteria for improving lead phytoextraction in Ricinus communis
CN110184206A (zh) 一株耐铬的石油烃降解菌Tph2-23及其应用
Mazhayskiy et al. Influence of agrochemical rehabilitation on the heavy metal migration to the water
Ahmad et al. Microcosmic study of nickel stress towards soil bacteria and their biochemical characterization

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant