CN110316757A - 一种氧化钒制备方法及其应用 - Google Patents

一种氧化钒制备方法及其应用 Download PDF

Info

Publication number
CN110316757A
CN110316757A CN201910669705.5A CN201910669705A CN110316757A CN 110316757 A CN110316757 A CN 110316757A CN 201910669705 A CN201910669705 A CN 201910669705A CN 110316757 A CN110316757 A CN 110316757A
Authority
CN
China
Prior art keywords
vanadium oxide
preparation
solution
quantum dot
vanadium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910669705.5A
Other languages
English (en)
Other versions
CN110316757B (zh
Inventor
许元红
马伟帅
牛玉生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN201910669705.5A priority Critical patent/CN110316757B/zh
Publication of CN110316757A publication Critical patent/CN110316757A/zh
Application granted granted Critical
Publication of CN110316757B publication Critical patent/CN110316757B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • C01G31/02Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/69Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing vanadium
    • C09K11/691Chalcogenides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于纳米材料的制备和抗菌及检测传感的领域,涉及一种以乙醇和三氯化钒为原料利用乙醇热合成氧化钒量子点而不加入任何表面活性剂或者模板的方法。其具体工艺包括以下步骤:称取三氯化钒溶于乙醇中,搅拌溶解后制得溶液,将制备的溶液转移入聚四氟乙烯密封罐密封并放入高温反应釜中,在180℃的温度下加热10小时,待加热后的溶液降至室温后,将聚四氟乙烯罐取出,取出溶液至离心管中,以大于12000转/分钟的转速离心10分钟,得到无色的上清液即获得氧化钒量子点溶液。所制备出的氧化钒量子点平均尺寸为3.39±0.57nm,并被证明同时具有两种纳米酶活性,可以基于其双酶协同互作反应应用于抗菌消炎,其总体工艺过程简单,制备效率高,市场前景极为广阔。

Description

一种氧化钒制备方法及其应用
技术领域:
本发明属于纳米材料的制备和抗菌及检测传感的领域,涉及一种一步法自下而上的基于乙醇热法制备氧化钒量子点的工艺,特别是涉及一种以乙醇和三氯化钒为原料利用乙醇热合成氧化钒量子点而不加入任何表面活性剂或者模板的方法。同时将氧化钒量子点应用于抗菌消炎及血清葡萄糖检测传感的方法。
背景技术:
目前,氧化钒材料作为一种新型的过渡金属氧化物由于其广泛的应用而引起了世界各地的广泛关注。由于氧化钒独特的晶体结构,因此,氧化钒具有许多优异的性能,并广泛应用于高能金属离子电池,超级电容器,储氢器和纳米酶等许多领域。同时,众所周知的是,材料的性能常常依赖于其聚集态结构,晶态结构,颗粒尺寸。当其尺寸减小到纳米尺寸时(通常<10纳米),由于独特边缘效应和强大的量子限域效应,从而暴露更多的活性中心和催化位点,其催化能力会得到增强,并且细胞毒性会大大降低,可以制备成体内抗菌材料和纳米传感器,进行抗菌消炎和血清葡萄糖检测。
目前氧化钒量子点现有的制备方式一般以氧化钒或者钒酸盐为钒前驱体,以强氧化剂(双氧水或浓硝酸)存在的情况下合成。合成过程有许多安全隐患且强氧化剂的除去会使制备过程变得复杂。除此之外,电化学沉积法和管式炉煅烧法也被用作制备氧化钒量子点。但也有很多弊端,例如合成周期较长,所需温度较高,成本高,需要进行透析等一些复杂的处理。
相对于以上几种方法,溶剂热法制备过程极为简单而应用最为广泛,前期自上而下的溶剂热剥离技术一般需要对大块氧化钒原材料进行超声粉碎等前期处理步骤,步骤繁琐耗时,且材料转化率和产率都相对较低。因此,为了进一步研究氧化钒纳米材料的应用和发展,需要采用一种简单易行的、高效的氧化钒纳米结构的制备方法,如果可以通过一步法制备得到多种价态的氧化钒纳米材料,将会大大提高氧化钒纳米材料的制备和研究效率,但目前尚未见此类研究报道。因此,本发明寻求设计提供一种新型的氧化钒制备方法,该方法制备出的氧化钒是基于级联纳米酶性质进行抑菌的纳米材料。
发明内容:
本发明的目的在于克服现有技术存在的上述缺陷,设计提供一种氧化钒制备方法,该方法制备出的氧化钒基于双酶协同互作进行抑菌的纳米材料,该方法以三氯化钒为钒前驱体合成氧化钒量子点,通过自下而上乙醇热的作用合成氧化钒量子点。能稳定、可靠地制备氧化钒量子点。
为了实现上述目的,本发明涉及的氧化钒制备方法的具体工艺包括以下步骤:
S1、称取三氯化钒溶于乙醇中,搅拌溶解后制得溶液,将制备的溶液转移入聚四氟乙烯密封罐密封并放入高温反应釜中,在180℃的温度下加热10小时,待加热后的溶液降至室温后,将聚四氟乙烯罐取出,取出溶液至离心管中,以大于12000转/分钟的转速离心10分钟,得到无色的上清液即获得氧化钒量子点溶液。
所制备出的氧化钒量子点平均尺寸为3.39±0.57nm,并被证明同时具有两种纳米酶活性,可以基于其双酶协同互作反应应用于抗菌消炎,该材料的抗菌机理是:基于材料本身的氧化酶活性,可以分解氧气产生超氧阴离子和羟基等自由基,这些自由基具有很强的抗菌能力;同时当外部有过氧化氢加入时,基于材料本身的过氧化物酶活性,会分解过氧化氢产生更多的羟基自由基,抗菌性能大大增强;相比于已报道的氧化钒量子点抗菌,本发明的抗菌效果更加显著,抗菌类型更广,实验结果显示,即使在过氧化氢浓度为50μM条件下,氧化钒量子点也具有极强的抗菌性能,显著抑制大肠杆菌和金黄色葡萄球菌,该过氧化氢浓度远低于金掺杂碳化氮(100μM)、石墨烯量子点掺杂银(1mM)、纳米金(1mM)、银掺杂氧化铁(1mM)、石墨烯量子点(1mM)、二硫化钼(100μM)、卟啉金属有机骨架(100μM)、二氧化硅负载金(1mM)和铂掺杂银(200μM)等材料所需浓度。此外,还对一些耐药性细菌(耐甲氧西林金黄色葡萄球菌,产超广谱β-内酰胺酶的大肠杆菌,抗卡那霉素大肠杆菌)也具有很强的抗菌性能。另外,基于所制备的氧化钒量子点显著的过氧化物酶活性,被证明还可以应用于体内血清的葡萄糖检测传感。该传感器对葡萄糖具有更低的检测限和更宽的检测范围,其检测线为1.7μM,远低于五氧化二钒(10μM),二氧化钒(18μM)和氧化钴(5μM)等材料的葡萄糖检测限。其检测范围是0.005-2mM,远宽于三氧化二钒有序介孔碳复合物(0.01-4mM),五氧化二钒(0.01-2mM),铂掺杂氧化钼(0.005-0.5mM)和四氧化三铁(0.01-0.5mM)。
本发明与现有技术相比,只需采用乙醇作为溶剂,无需使用强氧化剂作为模板,是一种新的氧化钒量子点的制备方法,相对于现有技术来说,此制造工艺简单,这有效的提高了氧化钒的比表面积,从而提高其催化能力。其总体工艺过程简单,制备效率高,产品质量好,稳定性能强,具有环境友好的特性,市场前景极为广阔。
附图说明:
图1为本发明涉及的制备的氧化钒量子点的TEM图及高分辨透射电镜(HRTEM)图(A)、粒子尺寸分布图(B)和原子力显微镜图(C)。
图2为本发明涉及地氧化钒量子点与体外不同浓度的过氧化氢线性关系图(A)及不同浓度葡萄糖的的线性关系图(B)。
图3为本发明涉及的氧化钒量子点体外抗菌实验细菌平板计数的实物照片图(A)、不同处理后的细菌扫描电子显微镜(SEM)图(B)。
图4为本发明涉及的氧化钒量子点对不同耐药性细菌的抗菌效果实物图
具体实施方式:
下面通过实例并结合附图对本发明作进一步说明。
实施例1:
S1、称取0.2g的三氯化钒于20mL乙醇中,充分搅拌溶解;
S2、将步骤S1所制备溶液转移入聚四氟乙烯密封罐并放入水热反应釜中,在180℃的温度下水热10h;
S3、待水热后的溶液降至室温后,将聚四氟乙烯罐取出,取出溶液至离心管中,以12000转/分钟的转速离心10分钟,取上层清液即为制得的氧化钒量子点溶液;
S4、在进行抗菌实验时,需要取适量体积的氧化钒量子点溶液,置于恒温干燥箱中并在50℃下加热直至乙醇完全蒸发,之后加入等体积的蒸馏水得到氧化钒量子点水悬液。
实施例2:
本实施例将实施例1制备的氧化钒量子点溶液应用到过氧化氢检测方面,将10μLTMB(20mM),30μLVOxQD(10mg mL-1)和各种浓度的H2O2加入到乙酸盐缓冲液(200mM,pH=3)中以达到混合溶液的总体积为200μL,在40℃条件下反应30分钟后,使用酶标仪测量溶液在652nm处的吸光度,空白对照实验使用PBS(无H2O2)溶液进行,测量结果如图2(A)所示,氧化钒量子点对过氧化氢的检测线性范围为0.5-100μM,回归方程y=0.00713x+0.18125(R2=0.9923)。
本实施例将实施例1制备的氧化钒量子点溶液应用到葡萄糖检测方面,将具有不同终浓度(0.005-4mM)的葡萄糖添加到含有葡萄糖氧化酶(2mg mL-1)的PBS(pH 7.4)中,首先将混合溶液(85μL)在37℃下孵育30分钟,然后通过加入75μL乙酸盐缓冲液(270mM,pH 3)终止反应,随后加入10μLTMB(20mM)和30μLVOxQD(10mgmL-1)以达到最终溶液(200μL),将其在40℃温育30分钟,并准备使用酶标仪测量溶液在652nm处的吸光度,测量结果如图2(B)所示,氧化钒量子点对葡萄糖的检测线性范围为y=1.72622x+0.28117(R2=0.991),,远宽于三氧化二钒有序介孔碳复合物(0.01-4mM),五氧化二钒(0.01-2mM),铂掺杂氧化钼(0.005-0.5mM)和四氧化三铁(0.01-0.5mM)。
实施例3:
本实施例将实施例1制备的氧化钒量子点溶液应用到体外抗菌实验方面,将固体LB培养基上的单菌落非抗药性和抗药性细菌接种到50mL无菌液体LB培养基[含有胰蛋白胨(0.5g),酵母提取物(0.25g)和NaCl(0.5g)]中,然后将非抗药性和抗药性细菌的悬浮液置于旋转振荡器上以180转/分钟在37℃下培养过夜。随后用无菌PBS将细菌稀释至106CFU mL-1,将获得的细菌溶液(200μL)与1mgmL-1VOxQD和50μM H2O2在37℃下温育30分钟,之后将溶液在37℃的固体培养基上培养24小时,用CFU法计数细菌菌落数,使用PBS作为空白对照,细菌单独与H2O2或VOxQD进行平行对照实验,测量结果如图3(A)所示,同时加入H2O2和VOxQD时,平板中只有很少的细菌菌落,对大肠杆菌和金黄色葡萄球菌的抗菌率分别是99.2%和97%,表明VOxQD在过氧化氢条件下,具有极强的抗菌性能。此外,图4为VOxQD对不同耐药性细菌的抗菌效果实物图,可以看出同时经H2O2和VOxQD处理后,平板中的细菌菌落相比于对照组明显减少,对抗卡那霉素大肠杆菌、产超广谱β-内酰胺酶的大肠杆菌和耐甲氧西林金黄色葡萄球菌的抗菌率分别为99.8%、96.5%和94.3%,表明VOxQD对多种耐药性细菌都具有明显的抗菌性能。
本实施例将实施例1制备的氧化钒量子点溶液应用到细菌扫描电子显微镜成像方面,将细菌分别用PBS,H2O2,VOxQD或H2O2/VOxQD处理后,通过8000rpm离心15分钟收集金黄色葡萄球菌和大肠杆菌,然后将细菌细胞用PBS缓冲液洗涤三次,随后与2.5%戊二醛混合在4℃条件下过夜处理,最后,将细菌细胞分别用30,50,70,90和100%乙醇脱水15分钟,并通过扫描电子显微镜表征。测量结果如图3(B)所示,细菌经H2O2和VOxQD处理后,大肠杆菌和金黄色葡萄球菌都展现出严重的生物膜破坏情况,表明VOxQD的抗菌机理是破坏细菌表面的生物膜。

Claims (6)

1.一种氧化钒制备方法及其应用,其特征在于涉及的氧化钒制备方法的具体工艺包括以下步骤:
S1、称取三氯化钒溶于乙醇中,搅拌溶解后制得溶液,将制备的溶液转移入聚四氟乙烯密封罐密封并放入高温反应釜中,在180℃的温度下加热10小时,待加热后的溶液降至室温后,将聚四氟乙烯罐取出,取出溶液至离心管中,以大于12000转/分钟的转速离心10分钟,得到无色的上清液即获得氧化钒量子点溶液;
所制备出的氧化钒量子点平均尺寸为3.39±0.57nm,并同时具有两种纳米酶活性,能够基于其双酶协同互作反应应用于抗菌消炎,该材料的抗菌机理是:基于材料本身的氧化酶活性,能够分解氧气产生包括超氧阴离子和羟基自由基,这些自由基抗菌能力强;同时当外部有过氧化氢加入时,基于材料本身的过氧化物酶活性,能分解过氧化氢产生多的羟基自由基,且抗菌性能强,抗菌效果好,抗菌类型广。
2.根据权利要求1所述的一种氧化钒制备方法及其应用,其特征在于制备的氧化钒量子点溶液能够应用到过氧化氢检测,氧化钒量子点对过氧化氢的检测线性范围为0.5-100μM,回归方程y=0.00713x+0.18125,其中R2=0.9923。
3.根据权利要求2所述的一种氧化钒制备方法及其应用,其特征在于在过氧化氢浓度为50μM条件下,氧化钒量子点也具有强的抗菌性能,能够抑制大肠杆菌和金黄色葡萄球菌,其中对大肠杆菌和金黄色葡萄球菌的抗菌率能够达到99.2%和97%。
4.根据权利要求1所述的一种氧化钒制备方法及其应用,其特征在于制备的氧化钒量子点对一些耐药性细菌,包括但不限于耐甲氧西林金黄色葡萄球菌、产超广谱β-内酰胺酶的大肠杆菌、抗卡那霉素大肠杆菌具有抗菌性能,其中对抗卡那霉素大肠杆菌、产超广谱β-内酰胺酶的大肠杆菌和耐甲氧西林金黄色葡萄球菌的抗菌率分别能够达到99.8%、96.5%和94.3%,抗菌效果好。
5.根据权利要求1所述的一种氧化钒制备方法及其应用,其特征在于制备的氧化钒量子点能够应用于体内血清的葡萄糖检测传感,并且检测限低,检测范围宽。
6.根据权利要求5所述的一种氧化钒制备方法及其应用,其特征在于对葡萄糖的对葡萄糖的检测线性范围为y=1.72622x+0.28117其中R2=0.991,其中检测线为1.7μM,检测范围能够达到0.005-2mM。
CN201910669705.5A 2019-07-24 2019-07-24 一种氧化钒制备方法及其应用 Active CN110316757B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910669705.5A CN110316757B (zh) 2019-07-24 2019-07-24 一种氧化钒制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910669705.5A CN110316757B (zh) 2019-07-24 2019-07-24 一种氧化钒制备方法及其应用

Publications (2)

Publication Number Publication Date
CN110316757A true CN110316757A (zh) 2019-10-11
CN110316757B CN110316757B (zh) 2021-08-24

Family

ID=68124381

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910669705.5A Active CN110316757B (zh) 2019-07-24 2019-07-24 一种氧化钒制备方法及其应用

Country Status (1)

Country Link
CN (1) CN110316757B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115790A (zh) * 2019-12-09 2020-05-08 青岛大学 一种磁性纳米球吸附氧化钒量子点降解罗丹明b的方法
CN112209445A (zh) * 2020-10-15 2021-01-12 青岛大学 一种三氧化钼纳米点抑菌材料的制备方法及其应用
CN113499474A (zh) * 2021-05-31 2021-10-15 浙江大学 Zif-67修饰的中空二氧化钒壳核结构微纳米复合物及其制备方法和应用
CN114381757A (zh) * 2022-01-30 2022-04-22 中国华能集团清洁能源技术研究院有限公司 一种碳包覆的镍钼钒析氢电极及其制备方法和应用
CN114917894A (zh) * 2022-05-30 2022-08-19 青岛大学 强酸条件下降解有机物的活性白土复合材料的制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987074A (en) * 1973-08-25 1976-10-19 Dynamit Nobel Aktiengesellschaft Process for the manufacture of vanadyl alcoholates
JP2013071859A (ja) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd 二酸化バナジウム粒子の製造方法
CN108147458A (zh) * 2017-12-11 2018-06-12 青岛大学 一种一步法制备氧化钒量子点的方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3987074A (en) * 1973-08-25 1976-10-19 Dynamit Nobel Aktiengesellschaft Process for the manufacture of vanadyl alcoholates
JP2013071859A (ja) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd 二酸化バナジウム粒子の製造方法
CN108147458A (zh) * 2017-12-11 2018-06-12 青岛大学 一种一步法制备氧化钒量子点的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIAHENG SUN ET AL.: "Optimizing Colorimetric Assay Based on V2O5 Nanozymes for Sensitive Detection of H2O2 and Glucose"", 《SENSORS》 *
LEI HUANG ET AL.: ""VOx Quantum Dots with Multienzyme-Mimic Activities and the Application in Constructing a Three-Dimensional (3D) Coordinate System for Accurate Discrimination of the Hydrogen Peroxide over a Broad Concentration Range"", 《ANALYTICAL CHEMISTRY 》 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111115790A (zh) * 2019-12-09 2020-05-08 青岛大学 一种磁性纳米球吸附氧化钒量子点降解罗丹明b的方法
CN111115790B (zh) * 2019-12-09 2022-04-01 青岛大学 一种磁性纳米球吸附氧化钒量子点降解罗丹明b的方法
CN112209445A (zh) * 2020-10-15 2021-01-12 青岛大学 一种三氧化钼纳米点抑菌材料的制备方法及其应用
CN113499474A (zh) * 2021-05-31 2021-10-15 浙江大学 Zif-67修饰的中空二氧化钒壳核结构微纳米复合物及其制备方法和应用
CN113499474B (zh) * 2021-05-31 2022-04-12 浙江大学 Zif-67修饰的中空二氧化钒壳核结构微纳米复合物及其制备方法和应用
CN114381757A (zh) * 2022-01-30 2022-04-22 中国华能集团清洁能源技术研究院有限公司 一种碳包覆的镍钼钒析氢电极及其制备方法和应用
CN114381757B (zh) * 2022-01-30 2023-08-25 中国华能集团清洁能源技术研究院有限公司 一种碳包覆的镍钼钒析氢电极及其制备方法和应用
CN114917894A (zh) * 2022-05-30 2022-08-19 青岛大学 强酸条件下降解有机物的活性白土复合材料的制备方法和应用
CN114917894B (zh) * 2022-05-30 2024-01-23 青岛大学 强酸条件下降解有机物的活性白土复合材料的制备方法和应用

Also Published As

Publication number Publication date
CN110316757B (zh) 2021-08-24

Similar Documents

Publication Publication Date Title
CN110316757A (zh) 一种氧化钒制备方法及其应用
Qiao et al. As a new peroxidase mimetics: The synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine
Durán et al. Metallic oxide nanoparticles: state of the art in biogenic syntheses and their mechanisms
Ramyadevi et al. Synthesis and antimicrobial activity of copper nanoparticles
CN103283781B (zh) 一种氧化石墨烯负载纳米氧化锌抗菌剂及制备方法和应用
Iqbal et al. Facile synthesis and antimicrobial activity of CdS-Ag2S nanocomposites
Prakash et al. Green synthesis of bismuth based nanoparticles and its applications-A review
Khodair et al. Synthesis and characterization of nickel oxide (NiO) nanoparticles using an environmentally friendly method, and their biomedical applications
CN103785852B (zh) 一种纳米银-纳米微晶纤维素复合物及其制备方法与应用
Konishi et al. Microbial preparation of gold nanoparticles by anaerobic bacterium
CN103250739A (zh) 氧化石墨烯/银颗粒纳米复合物的制备方法及应用
CN106311220B (zh) 一种Bi2MoO6/TiO2/RGO复合光催化剂及其制备方法
Xia et al. Photocatalytic performance and antibacterial mechanism of Cu/Ag-molybdate powder material
Shi et al. Preparation of nano‐ZnO using sonication method and its antibacterial characteristics
Moon et al. Manufacturing demonstration of microbially mediated zinc sulfide nanoparticles in pilot-plant scale reactors
CN113244393B (zh) 一种二氧化钛纳米管/二硫化钼纳米花复合物及其制备方法和应用
Dighore et al. Molybdenum oxide nanoparticles as antimicrobial agents
Hou et al. Construction of an all-solid-state Z-scheme Ag@ Ag3PO4/TiO2-(F2) heterostructure with enhanced photocatalytic activity, photocorrosion resistance and mechanism insight
Xu et al. Biohybrid magnetic microrobots for enhanced photocatalytic RhB degradation and E. coli inactivation under visible light irradiation
Saleem et al. Direct growth of m-BiVO4@ carbon fibers for highly efficient and recyclable photocatalytic and antibacterial applications
CN106047939A (zh) 一种基于生物法制备碳纳米管基复合材料的方法
Hassan et al. Controlled synthesis of Mn 2 O 3 nanowires by hydrothermal method and their bactericidal and cytotoxic impact: a promising future material
Yadav et al. Synergistic effect of photocatalytic, antibacterial and electrochemical activities on biosynthesized zirconium oxide nanoparticles
CN105838740B (zh) 一种茶树内生草螺菌制备纳米红色元素硒的方法
CN113877632B (zh) 一种贵金属纳米粒子负载的2d钒酸铋@pda核壳结构复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant