CN110311684B - An Automatic Tuning Bandpass Sigma-Delta Interface Circuit Based on MEMS Gyroscope - Google Patents
An Automatic Tuning Bandpass Sigma-Delta Interface Circuit Based on MEMS Gyroscope Download PDFInfo
- Publication number
- CN110311684B CN110311684B CN201910619492.5A CN201910619492A CN110311684B CN 110311684 B CN110311684 B CN 110311684B CN 201910619492 A CN201910619492 A CN 201910619492A CN 110311684 B CN110311684 B CN 110311684B
- Authority
- CN
- China
- Prior art keywords
- module
- nmos transistor
- operational amplifier
- mos
- resistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000006243 chemical reaction Methods 0.000 claims abstract description 18
- 238000001514 detection method Methods 0.000 claims abstract description 4
- 239000003990 capacitor Substances 0.000 claims description 20
- 238000007493 shaping process Methods 0.000 claims description 4
- 238000001914 filtration Methods 0.000 claims 1
- 230000008859 change Effects 0.000 abstract description 5
- 230000007613 environmental effect Effects 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000013139 quantization Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/322—Continuously compensating for, or preventing, undesired influence of physical parameters
- H03M3/324—Continuously compensating for, or preventing, undesired influence of physical parameters characterised by means or methods for compensating or preventing more than one type of error at a time, e.g. by synchronisation or using a ratiometric arrangement
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03M—CODING; DECODING; CODE CONVERSION IN GENERAL
- H03M3/00—Conversion of analogue values to or from differential modulation
- H03M3/30—Delta-sigma modulation
- H03M3/39—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
- H03M3/436—Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Compression, Expansion, Code Conversion, And Decoders (AREA)
Abstract
本发明涉及一种基于微机电陀螺的自动调谐带通Σ‑Δ接口电路,其包括C/V转换模块、环路滤波模块、观测器、量化器和DAC反馈模块;所述环路滤波模块的输出端经所述量化器与所述DAC反馈模块输入端连接,所述DAC反馈模块输出端与所述环路滤波模块的输入端连接构成闭环结构,形成Sigma‑delta调制器;现有检测模块将检测到的电容信号经过所述C/V转换模块转换成比例的电压信号,该电压信号与所述DAC反馈模块输出的反馈模拟信号进行逻辑运算后输入所述Sigma‑delta调制器,实现噪声整形和量化输出;所述观测器产生控制电压作用在所述环路滤波模块上,实现自动调谐。本发明可以实时进行中心频点的调整,跟踪MEMS陀螺仪的谐振频率变化,显著提高MEMS陀螺仪的环境适应性,提高整体精度。
The invention relates to an automatic tuning band-pass Σ-Δ interface circuit based on a microelectromechanical gyroscope, which comprises a C/V conversion module, a loop filter module, an observer, a quantizer and a DAC feedback module; The output end is connected to the input end of the DAC feedback module through the quantizer, and the output end of the DAC feedback module is connected to the input end of the loop filter module to form a closed-loop structure, forming a Sigma-delta modulator; the existing detection module The detected capacitance signal is converted into a proportional voltage signal by the C/V conversion module, and the voltage signal and the feedback analog signal output by the DAC feedback module are input into the Sigma-delta modulator after logical operation to realize noise Shape and quantize the output; the observer generates a control voltage and acts on the loop filter module to realize automatic tuning. The invention can adjust the center frequency point in real time, track the change of the resonance frequency of the MEMS gyroscope, significantly improve the environmental adaptability of the MEMS gyroscope, and improve the overall accuracy.
Description
技术领域technical field
本发明涉及一种集成电路技术领域,特别是关于一种在惯性传感器领域中用于微机电(MEMS)陀螺仪的自动调谐带通Σ-Δ(Sigma-delta)接口电路。The invention relates to the technical field of integrated circuits, in particular to an automatic tuning band-pass sigma-delta (Sigma-delta) interface circuit used in the field of inertial sensors for micro-electromechanical (MEMS) gyroscopes.
背景技术Background technique
与常规惯性传感器相比,MEMS惯性传感器具有体积小、重量轻、功耗低和可批量生产等优点。近几年,MEMS惯性传感器发展迅速,在测量精度和稳定性方面性能都不断提升,在军事领域和民用领域上有着广泛应用,如导弹、车载导航和智能移动设备等。同时,高性能的MEMS惯性传感器的接口电路设计也向着高精度、低功耗、小面积的方向发展。Compared with conventional inertial sensors, MEMS inertial sensors have the advantages of small size, light weight, low power consumption and mass production. In recent years, MEMS inertial sensors have developed rapidly, and their performance has been continuously improved in terms of measurement accuracy and stability. They are widely used in military and civilian fields, such as missiles, vehicle navigation, and smart mobile devices. At the same time, the interface circuit design of high-performance MEMS inertial sensors is also developing towards the direction of high precision, low power consumption and small area.
由于MEMS工艺在加工时存在偏差,同一批次的不同元件不完全一致,谐振频率会有偏差;同时受到外界环境、温度等影响,MEMS陀螺仪的谐振频率也会发生变化。另外,采用连续时间技术的电路功耗低,相位误差小,不会引入折叠噪声,但是会受到ASIC加工误差的不确定性和温度等因素的影响,使得Sigma-Delta调制器噪声整形中心频点会出现偏差。上述因素均会降低MEMS陀螺整体的精度。Due to the deviation of the MEMS process during processing, the different components of the same batch are not completely consistent, and the resonant frequency will deviate; at the same time, affected by the external environment, temperature, etc., the resonant frequency of the MEMS gyroscope will also change. In addition, the circuit using continuous-time technology has low power consumption, small phase error, and will not introduce folding noise, but it will be affected by factors such as the uncertainty of ASIC processing errors and temperature, which makes the Sigma-Delta modulator noise-shaping center frequency point. Deviations will occur. All of the above factors will reduce the overall accuracy of the MEMS gyroscope.
发明内容SUMMARY OF THE INVENTION
针对上述问题,本发明的目的是提供一种基于微机电陀螺的自动调谐带通Σ-Δ接口电路,其能克服连续时间带通Sigma-delta ADC的噪声整形频点会受到温度以及加工误差影响的问题,提高在不同环境下的信噪比,提升陀螺整体精度。In view of the above problems, the purpose of the present invention is to provide an automatic tuning band-pass sigma-delta interface circuit based on a micro-electromechanical gyroscope, which can overcome the influence of temperature and processing errors on the noise shaping frequency of continuous-time band-pass sigma-delta ADC. problems, improve the signal-to-noise ratio in different environments, and improve the overall accuracy of the gyro.
为实现上述目的,本发明采取以下技术方案:一种基于微机电陀螺的自动调谐带通Σ-Δ接口电路,其特征在于:包括C/V转换模块、环路滤波模块、观测器、量化器和DAC反馈模块;所述环路滤波模块的输出端经所述量化器与所述DAC反馈模块输入端连接,所述DAC反馈模块输出端与所述环路滤波模块的输入端连接构成闭环结构,形成Sigma-delta调制器;现有检测模块将检测到的电容信号经过所述C/V转换模块转换成比例的电压信号,该电压信号与所述DAC反馈模块输出的反馈模拟信号进行逻辑运算后输入所述Sigma-delta调制器,实现噪声整形和量化输出;所述观测器产生控制电压作用在所述环路滤波模块上,实现自动调谐。In order to achieve the above object, the present invention adopts the following technical solutions: a kind of automatic tuning band-pass Σ-Δ interface circuit based on micro-electromechanical gyroscope, it is characterized in that: comprise C/V conversion module, loop filter module, observer, quantizer and the DAC feedback module; the output end of the loop filter module is connected to the input end of the DAC feedback module through the quantizer, and the output end of the DAC feedback module is connected to the input end of the loop filter module to form a closed-loop structure , forming a sigma-delta modulator; the existing detection module converts the detected capacitance signal into a proportional voltage signal through the C/V conversion module, and the voltage signal and the feedback analog signal output by the DAC feedback module perform logical operations Then, it is input to the sigma-delta modulator to realize noise shaping and quantized output; the observer generates a control voltage and acts on the loop filter module to realize automatic tuning.
进一步,所述C/V转换模块包括OTA运算放大器、反馈电容、反馈电阻和开关解调模块;所述电容信号输入所述OTA运算放大器,所述OTA运算放大器的正向端与输出端之间并联所述反馈电容和反馈电阻,所述OTA运算放大器的输出端经所述开关解调模块与所述Sigma-delta调制器中的所述环路滤波模块连接。Further, the C/V conversion module includes an OTA operational amplifier, a feedback capacitor, a feedback resistor and a switch demodulation module; the capacitance signal is input to the OTA operational amplifier, and the connection between the forward end and the output end of the OTA operational amplifier is The feedback capacitor and the feedback resistor are connected in parallel, and the output end of the OTA operational amplifier is connected to the loop filter module in the sigma-delta modulator through the switch demodulation module.
进一步,所述包括第一MOS可调电阻、第一运算放大器、第二MOS可调电阻、第二运算放大器、第一电容和第二电容;所述C/V转换模块的输出与所述第一MOS可调电阻一端连接,所述第一MOS可调电阻另一端与所述第一运算放大器的正向端连接,所述第一运算放大器的输出端经所述第二MOS可调电阻与所述第二运算放大器的正向端连接,所述第二运算放大器的输出端与所述量化器连接;在所述第一运算放大器的正向端和输出端之间并联所述第一电容,在所述第二运算放大器的正向端和输出端之间并联所述第二电容;MOS可调电阻的阻值由所述观测器输出的控制电压确定。Further, it includes a first MOS adjustable resistor, a first operational amplifier, a second MOS adjustable resistor, a second operational amplifier, a first capacitor and a second capacitor; the output of the C/V conversion module is the same as the first One end of a MOS adjustable resistor is connected to one end, the other end of the first MOS adjustable resistor is connected to the forward end of the first operational amplifier, and the output end of the first operational amplifier is connected to the second MOS adjustable resistor through the second MOS adjustable resistor. The forward end of the second operational amplifier is connected, and the output end of the second operational amplifier is connected to the quantizer; the first capacitor is connected in parallel between the forward end and the output end of the first operational amplifier , the second capacitor is connected in parallel between the forward end and the output end of the second operational amplifier; the resistance of the MOS adjustable resistor is determined by the control voltage output by the observer.
进一步,所述环路滤波模块采用二阶MOS-C滤波器结构,所述MOS可调电阻采用全差分MOS电阻,时间常数由全差分MOS电阻和电容决定。Further, the loop filter module adopts a second-order MOS-C filter structure, the MOS adjustable resistor adopts a fully differential MOS resistor, and the time constant is determined by the fully differential MOS resistor and the capacitor.
进一步,所述全差分MOS电阻由四个工作在线性区的NMOS管构成,其中NMOS管M1和NMOS管M4的源极短接,NMOS管M1和NMOS管M3的漏极短接,NMOS管M2和NMOS管M3的源极短接,NMOS管M2和NMOS管M4的漏极短接,NMOS管M1和NMOS管M2的栅极连接至由所述观测器提供的控制电压,NMOS管M3和NMOS管M4的栅极连接至由外部电压源提供的控制电压,NMOS管M1和NMOS管M2的源极为全差分电阻的输入端,NMOS管M3和NMOS管M4的漏极为全差分电阻的输出端。Further, the fully differential MOS resistor is composed of four NMOS transistors operating in the linear region, wherein the sources of the NMOS transistor M1 and the NMOS transistor M4 are short-circuited, the drains of the NMOS transistor M1 and the NMOS transistor M3 are short-circuited, and the NMOS transistor M2 It is short-circuited with the source of the NMOS transistor M3, the drain of the NMOS transistor M2 and the NMOS transistor M4 is short-circuited, the gates of the NMOS transistor M1 and the NMOS transistor M2 are connected to the control voltage provided by the observer, the NMOS transistor M3 and the NMOS transistor The gate of the transistor M4 is connected to the control voltage provided by the external voltage source, the sources of the NMOS transistors M1 and M2 are the input terminals of the fully differential resistor, and the drains of the NMOS transistor M3 and the NMOS transistor M4 are the output terminals of the fully differential resistor.
进一步,所述观测器包括一个滤波器、两个比较器、一个异或门和一个积分器;所述观测器具有两路输入信号,第一路输入信号由所述C/V转换模块的输出信号提供,与输入给所述Sigma-delta调制器信号的幅值、频率都相同,该路输入信号依次经过所述滤波器和一所述比较器;第二路输入信号由现有外部信号发生器提供,为标准信号,与所述第一路输入信号频率相同,直接经过另一所述比较器;经两个所述比较器输出的信号依次输入所述异或门和积分器,形成控制电压,作用在所述环路滤波器模块中的MOS可调电阻上,控制电阻阻值的大小。Further, the observer includes a filter, two comparators, an XOR gate and an integrator; the observer has two input signals, and the first input signal is output by the C/V conversion module The signal is provided with the same amplitude and frequency as the signal input to the sigma-delta modulator. This input signal passes through the filter and a comparator in turn; the second input signal is generated by an existing external signal. It is a standard signal with the same frequency as the first input signal, and directly passes through the other comparator; the signals output by the two comparators are sequentially input to the XOR gate and the integrator to form a control The voltage acts on the MOS adjustable resistor in the loop filter module to control the resistance value of the resistor.
进一步,所述量化器采用N bit的Flash ADC结构。Further, the quantizer adopts an N-bit Flash ADC structure.
进一步,所述DAC反馈模块包含2N个电阻和2N个开关,N为所述量化器的位数,将数字信号反馈至所述Sigma-delta调制器的输入端。Further, the DAC feedback module includes 2 N resistors and 2 N switches, where N is the number of bits of the quantizer, and feeds back a digital signal to the input end of the sigma-delta modulator.
本发明由于采取以上技术方案,其具有以下优点:1、本发明基于连续时间带通Sigma-delta调制器,采用闭环结构,更适合陀螺窄带信号的高精度数字量化处理。2、本发明采用与环路滤波器相似的结构观测器,产生电压控制信号,能够自动对Sigma-Delta调制器的中心频点进行调整,实时跟踪MEMS陀螺的谐振频率,提高信噪比,显著提高MEMS陀螺的环境适应性。The present invention has the following advantages due to the adoption of the above technical solutions: 1. The present invention is based on a continuous-time band-pass Sigma-delta modulator, adopts a closed-loop structure, and is more suitable for high-precision digital quantization processing of gyro narrow-band signals. 2. The present invention uses a structure observer similar to the loop filter to generate a voltage control signal, which can automatically adjust the center frequency of the Sigma-Delta modulator, track the resonant frequency of the MEMS gyroscope in real time, and improve the signal-to-noise ratio. Improve the environmental adaptability of MEMS gyroscopes.
附图说明Description of drawings
图1是本发明的整体结构系统框图;Fig. 1 is the overall structure system block diagram of the present invention;
图2是本发明的实施例原理图;2 is a schematic diagram of an embodiment of the present invention;
图3是本发明的C/V转换模块结构示意图;3 is a schematic structural diagram of a C/V conversion module of the present invention;
图4是本发明的二阶MOS-C滤波器结构框图;Fig. 4 is the second-order MOS-C filter structural block diagram of the present invention;
图5是本发明的MOS可调电阻原理图;Fig. 5 is the MOS adjustable resistance principle diagram of the present invention;
图6a是在温度为25℃下量化器输出码流频谱图;Figure 6a is a spectrogram of the output code stream of the quantizer at a temperature of 25°C;
图6b是在温度为60℃下量化器输出码流频谱图。Figure 6b is a spectrogram of the output code stream of the quantizer at a temperature of 60°C.
具体实施方式Detailed ways
下面结合附图和实施例对本发明进行详细的描述。The present invention will be described in detail below with reference to the accompanying drawings and embodiments.
针对MEMS陀螺仪输出信号为窄带谐振频率的特点,如图1、图2所示,本发明提供一种基于微机电陀螺的自动调谐带通Σ-Δ接口电路,该电路用于对陀螺的微小电容变化进行转化及数字化输出,其包括C/V转换模块1、环路滤波模块2、观测器3、量化器4和DAC反馈模块5;其中,环路滤波模块2的输出端经量化器4与DAC反馈模块5输入端连接,DAC反馈模块5输出端与环路滤波模块2的输入端连接构成闭环结构,形成Sigma-delta调制器。现有检测模块将检测到的电容信号经过C/V转换模块1转换成比例的电压信号,该电压信号与DAC反馈模块5输出的反馈模拟信号进行逻辑运算后输入Sigma-delta调制器,实现噪声整形和量化输出的功能。观测器3产生控制电压作用在Sigma-delta调制器中的环路滤波模块2上,实现自动调谐功能,实时跟踪MEMS陀螺仪频率。Aiming at the characteristic that the output signal of the MEMS gyroscope is a narrow-band resonant frequency, as shown in Figures 1 and 2, the present invention provides an automatic tuning band-pass Σ-Δ interface circuit based on a microelectromechanical Capacitance changes are converted and digitally output, which includes a C/
上述实施例中,如图3所示,C/V转换模块1包括OTA运算放大器、反馈电容Cf、反馈电阻Rf和开关解调模块。电容信号输入OTA运算放大器,OTA运算放大器的正向端与输出端之间并联有反馈电容Cf和反馈电阻Rf,OTA运算放大器的输出端经开关解调模块与Sigma-delta调制器中的环路滤波模块2连接。其中,开关解调模块采用高频载波开关解调技术,输出与输入成比例的电压信号。In the above embodiment, as shown in FIG. 3 , the C/
上述各实施例中,如图4所示,环路滤波模块2包括第一MOS可调电阻、第一运算放大器OP1、第二MOS可调电阻、第二运算放大器OP2、第一电容C1和第二电容C2。C/V转换模块1的输出与第一MOS可调电阻一端连接,第一MOS可调电阻另一端与第一运算放大器OP1的正向端连接,第一运算放大器OP1的输出端经第二MOS可调电阻与第二运算放大器OP2的正向端连接,第二运算放大器OP2的输出端与量化器4连接。其中,在第一运算放大器OP1的正向端和输出端之间并联第一电容C1,在第二运算放大器OP2的正向端和输出端之间并联第二电容C2。在本实施例中,MOS可调电阻采用全差分MOS电阻,环路滤波模块2的时间常数由全差分MOS电阻和电容决定。MOS可调电阻的阻值由观测器3输出的控制电压确定,进而实现环路滤波时间常数的改变影响Sigma-delta调制器噪声整形的中心频点。In the above-mentioned embodiments, as shown in FIG. 4 , the
在一个优选的实施例中,环路滤波模块2采用二阶MOS-C滤波器结构,时间常数由全差分MOS电阻和电容决定。由电压控制的全差分MOS电阻的阻值由控制电压V1和V2确定,如图5所示。控制电压V1由观测器3提供,控制电压V2为恒定电压,由外部电压源提供。全差分MOS电阻由四个工作在线性区的NMOS管构成,其中NMOS管M1和NMOS管M4的源极短接,NMOS管M1和NMOS管M3的漏极短接,NMOS管M2和NMOS管M3的源极短接,NMOS管M2和NMOS管M4的漏极短接,NMOS管M1和NMOS管M2的栅极接控制电压V1,NMOS管M3和NMOS管M4的栅极接控制电压V2,NMOS管M1和NMOS管M2的源极为全差分电阻的输入端,NMOS管M3和NMOS管M4的漏极为全差分电阻的输出端。观测器3的输出电压V1会随温度、工艺偏差等发生改变,从而改变全差分MOS电阻的阻值,即改变滤波器的时间常数,进一步地,改变Sigma-delta调制器的噪声整形中心频点。In a preferred embodiment, the
上述各实施例中,如图2所示,观测器3与环路滤波模块2结构及参数相同,当同样的信号经过观测器3和Sigma-delta调制器时,受到工艺误差或者温度的影响相同。观测器3包括一个滤波器H(s)、两个比较器、一个异或门和一个积分器。观测器3具有两路输入信号,第一路输入信号AC1由C/V转换模块1的输出信号提供,与输入给Sigma-delta调制器信号的幅值、频率都相同,该路输入信号依次经过滤波器H(s)和第一个比较器;第二路输入信号AC2由现有外部信号发生器提供,为标准信号,与第一路输入信号AC1频率相同,直接经过第二个比较器。经两个比较器输出的信号依次输入异或门和积分器,形成控制电压V1,作用在环路滤波器模块2中的MOS可调电阻上,控制电阻阻值的大小,以改变滤波器的时间常数。In the above-mentioned embodiments, as shown in FIG. 2 , the structure and parameters of the
上述各实施例中,量化器4采用N bit的Flash ADC结构,对信号进行并行处理,做数字化输出。In the above-mentioned embodiments, the quantizer 4 adopts an N-bit Flash ADC structure, performs parallel processing on the signals, and performs digital output.
上述各实施例中,DAC反馈模块5包含2N个电阻和2N个开关,N为量化器4的位数,将数字信号反馈至Sigma-delta调制器的输入端。In the above embodiments, the
上述各实施例中,各模块均为单电源供电,电源为VDD,通过参考电压Vref实现差分测量。在本实施例中,Vref=VDD/2。In the above-mentioned embodiments, each module is powered by a single power supply, and the power supply is VDD, and the differential measurement is realized by the reference voltage Vref. In this embodiment, Vref=VDD/2.
综上所述,本发明使用时,在不同温度下能够实现噪声中心频点的调整,如图6a和图6b所示,是不同温度下量化器输出码流频谱图,25℃和60℃温度下,信号经过Sigma-delta调制器后,谐振频率位置均能在噪底最低附近。To sum up, when the present invention is used, the adjustment of the noise center frequency point can be realized at different temperatures. As shown in Fig. 6a and Fig. 6b, it is the spectrogram of the output code stream of the quantizer under different temperatures. The temperature is 25°C and 60°C. , after the signal passes through the sigma-delta modulator, the position of the resonant frequency can be near the lowest noise floor.
上述各实施例仅用于说明本发明,各部件的结构、尺寸、设置位置及形状都是可以有所变化的,在本发明技术方案的基础上,凡根据本发明原理对个别部件进行的改进和等同变换,均不应排除在本发明的保护范围之外。The above-mentioned embodiments are only used to illustrate the present invention, and the structure, size, setting position and shape of each component can be changed to some extent. and equivalent transformations shall not be excluded from the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910619492.5A CN110311684B (en) | 2019-07-10 | 2019-07-10 | An Automatic Tuning Bandpass Sigma-Delta Interface Circuit Based on MEMS Gyroscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910619492.5A CN110311684B (en) | 2019-07-10 | 2019-07-10 | An Automatic Tuning Bandpass Sigma-Delta Interface Circuit Based on MEMS Gyroscope |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110311684A CN110311684A (en) | 2019-10-08 |
CN110311684B true CN110311684B (en) | 2020-11-27 |
Family
ID=68080681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910619492.5A Active CN110311684B (en) | 2019-07-10 | 2019-07-10 | An Automatic Tuning Bandpass Sigma-Delta Interface Circuit Based on MEMS Gyroscope |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110311684B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111130341B (en) * | 2020-01-15 | 2020-12-01 | 清华大学 | A Digital Closed-loop Controlled Charge Pump Based on MEMS Capacitor |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388671A (en) * | 2007-09-04 | 2009-03-18 | 英飞凌科技股份公司 | Tuning method for loop filter of continuous-time sigma-delta modulator |
CN106017449A (en) * | 2016-05-31 | 2016-10-12 | 东南大学 | System for improving zero bias performance of normal pressure packaged silicon micro-gyroscope |
CN106323263A (en) * | 2016-08-24 | 2017-01-11 | 南京理工大学 | Bandpass sigma-delta closed-loop detection circuit of silicon micro gyroscope |
CN106899303A (en) * | 2015-12-18 | 2017-06-27 | 亚德诺半导体集团 | Flash memory ADC calibration |
US9762259B1 (en) * | 2017-01-09 | 2017-09-12 | Texas Instruments Incorporated | Sigma-delta analog-to-digital converter with auto tunable loop filter |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8462030B2 (en) * | 2004-04-27 | 2013-06-11 | Texas Instruments Incorporated | Programmable loop filter for use with a sigma delta analog-to-digital converter and method of programming the same |
US7443257B2 (en) * | 2005-04-26 | 2008-10-28 | Honeywell International Inc. | Mechanical oscillator control electronics |
US20140167995A1 (en) * | 2011-04-11 | 2014-06-19 | Agency For Science, Technology And Research | Analog-to-digital converter |
US9506757B2 (en) * | 2013-03-14 | 2016-11-29 | Invensense, Inc. | Duty-cycled gyroscope |
US9537493B2 (en) * | 2014-05-21 | 2017-01-03 | Robert Bosch Gmbh | Phase lock loop circuit having a wide bandwidth |
CN105758402B (en) * | 2016-03-31 | 2019-03-15 | 苏州大学 | A closed-loop detection system of a silicon micro-gyroscope |
-
2019
- 2019-07-10 CN CN201910619492.5A patent/CN110311684B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101388671A (en) * | 2007-09-04 | 2009-03-18 | 英飞凌科技股份公司 | Tuning method for loop filter of continuous-time sigma-delta modulator |
CN106899303A (en) * | 2015-12-18 | 2017-06-27 | 亚德诺半导体集团 | Flash memory ADC calibration |
CN106017449A (en) * | 2016-05-31 | 2016-10-12 | 东南大学 | System for improving zero bias performance of normal pressure packaged silicon micro-gyroscope |
CN106323263A (en) * | 2016-08-24 | 2017-01-11 | 南京理工大学 | Bandpass sigma-delta closed-loop detection circuit of silicon micro gyroscope |
US9762259B1 (en) * | 2017-01-09 | 2017-09-12 | Texas Instruments Incorporated | Sigma-delta analog-to-digital converter with auto tunable loop filter |
Non-Patent Citations (1)
Title |
---|
电容式微机械陀螺仪读出电路研究与设计;张云福;《中国优秀硕士学位论文全文数据库 信息科技辑》;20160315(第3期);第I136-2701页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110311684A (en) | 2019-10-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101473540B (en) | A/D converter and A/D conversion method | |
US7358801B2 (en) | Reducing noise and/or power consumption in a switched capacitor amplifier sampling a reference voltage | |
US9804190B2 (en) | Apparatus and method for calibration of capacitance mismatch and temperature variations in a MEMS device | |
CN111130341B (en) | A Digital Closed-loop Controlled Charge Pump Based on MEMS Capacitor | |
GB2501010A (en) | A sigma-delta analogue-to-digital converter with a wide linear input range | |
CN104660216B (en) | High-precision frequency calibration circuit for Gm-C filter | |
CN110311684B (en) | An Automatic Tuning Bandpass Sigma-Delta Interface Circuit Based on MEMS Gyroscope | |
Sanjurjo et al. | An energy-efficient 17-bit noise-shaping Dual-Slope Capacitance-to-Digital Converter for MEMS sensors | |
TWI416070B (en) | Reading circuit of gyroscope | |
US8643518B2 (en) | Calibration of time constants in a continuous-time delta-sigma converter | |
US10833698B1 (en) | Low-power high-precision sensing circuit | |
CN109029437B (en) | Three-freedom closed-loop gyro digital interface circuit | |
CN110113028B (en) | Voltage divider and integral time constant calibration circuit of on-chip active RC filter | |
Ismail et al. | A high performance MEMS based digital-output gyroscope | |
CN113726328B (en) | Sensor interface circuit based on closed-loop oscillator | |
CN109168116B (en) | Angular rate closed-loop method for improving static and linear indexes of MEMS gyroscope | |
Tan et al. | A dual-axis MEMS vibratory gyroscope ASIC with 0.0061/s/VHz noise floor over 480 Hz bandwidth | |
CN106323263A (en) | Bandpass sigma-delta closed-loop detection circuit of silicon micro gyroscope | |
CN106370170A (en) | Silicon micro-machined gyroscope mechanical-electrical combined band-pass sigma-delta closed-loop detection loop parameter acquisition method | |
Saukoski et al. | Integrated readout and control electronics for a microelectromechanical angular velocity sensor | |
JP4541060B2 (en) | Semiconductor integrated circuit having built-in A / D conversion circuit and communication semiconductor integrated circuit | |
Chiu et al. | Active thermal compensation of MEMS based gyroscope | |
CN113126687A (en) | Bandgap reference voltage generating circuit | |
Basha et al. | Accurate Data Acquisition Circuit for MEMS Accelerometer | |
Saukoski et al. | Readout electronics with bandpass delta-sigma A/D converter for a bulk micromachined capacitive gyroscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |