CN110304604A - 一种mems传感器的封装方法 - Google Patents

一种mems传感器的封装方法 Download PDF

Info

Publication number
CN110304604A
CN110304604A CN201910526686.0A CN201910526686A CN110304604A CN 110304604 A CN110304604 A CN 110304604A CN 201910526686 A CN201910526686 A CN 201910526686A CN 110304604 A CN110304604 A CN 110304604A
Authority
CN
China
Prior art keywords
mems sensor
chip
layer
pad
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910526686.0A
Other languages
English (en)
Other versions
CN110304604B (zh
Inventor
李以贵
涂云婷
王欢
张成功
蔡金东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201910526686.0A priority Critical patent/CN110304604B/zh
Publication of CN110304604A publication Critical patent/CN110304604A/zh
Application granted granted Critical
Publication of CN110304604B publication Critical patent/CN110304604B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/0058Packages or encapsulation for protecting against damages due to external chemical or mechanical influences, e.g. shocks or vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B7/00Microstructural systems; Auxiliary parts of microstructural devices or systems
    • B81B7/0032Packages or encapsulation
    • B81B7/007Interconnections between the MEMS and external electrical signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Micromachines (AREA)

Abstract

本发明涉及一种MEMS传感器的封装方法,包括以下步骤:提供多层电路板,清洗烘干,在多层电路板上印制引线用焊盘,并在引线用焊盘上焊接金球;提供MEMS传感器芯片,在MEMS传感器芯片背面印制芯片焊盘,在芯片焊盘上利用溅射沉积多层金属膜;将MEMS传感器芯片倒装置于多层电路板上;以焊接金球作为凸点,采用热压焊技术接合引线用焊盘和芯片焊盘,并在在引线用焊盘与芯片焊盘之间填充填料;在MEMS传感器芯片正面用粘结剂粘结保护盖子;提供上表面覆盖有玻璃薄膜的弹性盖子,采用粘结剂将弹性盖子粘结于保护盖子上,得到MEMS传感器。与现有技术相比,本发明具有生产成本低、容易批量生产、气密性能好等优点。

Description

一种MEMS传感器的封装方法
技术领域
本发明涉及MEMS技术领域,尤其是涉及一种MEMS传感器的封装方法。
背景技术
机器人中使用的触觉传感器,它是使用单晶硅作为结构材料,同时使用半导体应变计检测施加压力的大小。这是一种能够连接到机器人指尖的小型高性能传感器,它使得机器人能够执行复杂的装配任务,并且能够在不能使用视觉传感器的环境(如,黑暗)中执行物体识别。硅作为用于检测力的传感器的结构材料具有许多优异特性,例如,完全弹性体,尺寸小,利于保持电路良好的亲和性。一种三轴触觉传感器阵列是1×1mm传感器元件的阵列,其可以通过压阻效应将施加的力分解成三个分量,并且将其检测为电压的变化。通过将这种传感器阵列高密度地集成在柔性基板上,再进一步地制作出高性能触觉传感器,它可以安装在球面上,如机器人手指。这种触觉传感器的目标功能有两个:识别待抓取物体和稳定夹持力的控制。这种传感器系统当物体接触传感器时,从机械信息图形显示诸如物体的形状,硬度和材料(表面粗糙度)之类的信息。
目前,将传感器阵列高密度地集成在柔性基板上常采用的是多芯片组件封装技术。为了保证传感器的高性能和高密度性,传统的多芯片组件封装会采用全气密性封装,通常有:金属封装,陶瓷封装或玻璃封装,但是这些材料的封装外壳成本却超过了器件本身。然而,非气密性塑料封装虽然成本低,但是塑封料直接与传感器接触容易降低传感器性能,只适用于一些灵敏度要求低的场合;开发一种在降低生产成本的同时保证封装的气密性的封装方法具有重要意义。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种MEMS传感器的封装方法,实现了单元型传感器芯片封装。
本发明的目的可以通过以下技术方案来实现:
一种MEMS传感器的封装方法,包括以下步骤:
提供多层电路板,清洗烘干,在所述多层电路板上印制引线用焊盘,并在所述引线用焊盘上焊接金球;
提供MEMS传感器芯片,在MEMS传感器芯片背面印制芯片焊盘,在所述芯片焊盘上利用溅射沉积多层金属膜;
将所述MEMS传感器芯片倒装置于所述多层电路板上;以所述焊接金球作为凸点,采用热压焊技术接合引线用焊盘和芯片焊盘,并在在所述引线用焊盘与所述芯片焊盘之间填充填料;
在所述MEMS传感器芯片正面用环氧树脂粘结保护盖子;
提供上表面覆盖有玻璃薄膜的弹性盖子,采用环氧树脂将所述弹性盖子粘结于所述保护盖子上,得到所述MEMS传感器。
本发明中选用倒装焊技术实现引线用焊盘和芯片焊盘之间的无引线电气互连,相比于传统的引线键合互连技术,优势明显:重量更轻,密度更高并且能够增加单位面积内的I/O数量,性能提高,散热能力提高,生产效率高,降低了批量封装的成本,克服了引线键合焊盘中心距极限的问题;并且在倒装焊中引线用焊盘和芯片焊盘之间填充填料的工序能够有效减小芯片和基板间热膨胀失配造成的影响,并能有效地缓冲机械冲击的损伤程度,使得封装抗疲劳寿命增强。
并且,选用多层电路板作为基板,装配密度高,体积小,质量轻,满足MEMS器件设备轻小型化需求;另外多层电路板图形具有重复性和一致性,减少了布线和装配的差错,加大了设计的灵活性。
本发明中,一个多层电路板和弹性盖子之间设有若干个MEMS传感器芯片,该若干个MEMS传感器芯片组成MEMS传感器阵列。
本发明中多层基板是构成多芯片封装的一个有机部分,可以在一块很小的基板上根据不同的用途,很容易地集成多种传感器,可以将多种不同功能的传感器芯片(例如涡轮传感器,加速度计,陀螺仪,温度传感器等)集成在一块基板上再进行封装,极大地扩大了器件使用范围,并且使得数据处理方便。
所述热压焊技术具体为:对所述焊接金球加热至300~350摄氏度,施加1.15~2.10N/bump的压力;所述引线用焊盘与芯片焊盘之间的填料为环氧树脂,填充方法为:将所述MEMS传感器芯片和多层电路板加热至70~75℃,用L形注射器沿所述MEMS传感器芯片的边缘双向注射填料;注射完毕后,分段升温至125~135℃,固化3~4小时。
所述芯片焊盘上的多层金属膜的制备方法为:在所述芯片背面沉积金属薄膜,涂光刻胶、掩膜光刻、通过金属腐蚀刻蚀除去非图样的金属膜,得到多层金属膜图形。
其中,多层金属膜包括黏附层,扩散阻挡层,浸润焊接层,所述黏附层与所述芯片焊盘连接。
所述焊接金球采用电度法制备得到,并通过热压焊连接到所述多层电路板的引线用焊盘上。
所述保护盖子为镂空结构的硅片,所述MEMS传感器芯片的柱子从所述镂空结构中伸出;该保护盖子的材质为表面含有氧化膜的硅片;所述硅片的厚度为280~320μm,优选为300μm;所述氧化膜的厚度为400~800nm。
所述保护盖子的制备方法为:提供一硅片,采用热氧化法是硅片表面生长一层氧化膜;在所述氧化膜上旋涂5~15μm厚的光刻胶正胶,利用掩膜版对所述光刻胶正胶进行曝光显影、烘干;采用反应离子刻蚀法对硅进行刻蚀,直到出现镂空结构为止;去胶处理、烘干处理得到所述保护盖子。
本发明在盖板密封过程中,在传感器芯片和弹性盖子中间另外加了一层硅盖,硅盖的硬度大,增强了对传感器的机械保护作用,使得传感器能够更加适应高过载环境;并且为保证盖子的绝缘性,在粘结之前对其进行加热,使其表面形成一层氧化物薄膜。
所述弹性盖子的背面设有与所述MEMS传感器芯片的柱子尺寸匹配的凹槽,其制备方法为:
提供一玻璃基片,清洗烘干处理,在所述玻璃基片行旋涂聚二甲基硅氧烷,55~65℃低温固化1.5~2h,在固化后的二甲基硅氧烷表面旋涂厚度为4~8μm的聚酰亚胺薄膜;
在所述聚酰亚胺薄膜上旋涂厚度为80~120μm的聚氨酯薄膜,50~60℃低温固化1.5~2h,得到第一聚氨酯层;
在所述第一聚氨酯层上通过溅射沉积得到第一Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、掩膜光刻、曝光显影固化,使得Cr/Cu金属阻挡层表面具有凹槽结构的第一掩膜层,去胶处理;
旋涂厚度为390~410μm的聚氨酯薄膜,50~60℃低温固化1.5~2h,得到第二聚氨酯层;
在所述第二聚氨酯层表面通过溅射沉积得到第二Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、曝光显影固化后烘干处理得到第二掩膜层,利用离子铣凹槽掩膜,采用离子铣技术在所述第二Cr/Cu金属阻挡层和第二掩膜层上开设凹槽结构的窗口;
利用反应离子刻蚀法对聚氨酯进行刻蚀,直到刻蚀到第一Cr/Cu金属阻挡层为止;
去除器件表面的光刻胶正胶、烘干处理;
采用湿法刻蚀去除所述第一Cr/Cu金属阻挡层、第二Cr/Cu金属阻挡层、第一掩膜层和第二掩膜层;
将湿法刻蚀处理后的器件浸泡在酒精溶液中,剥离聚酰亚胺薄膜,完成弹性盖子的释放。
所述弹性盖子表面的玻璃薄膜的厚度为190~210nm,并且通过交直流磁控溅射方法制备得到。
选用聚氨酯塑料作为盖板材料,质量轻,价格低廉,无毒环保,耐腐蚀,抗破碎能力强,为了提高密封的气密性,本发明还在弹性盖板表面溅射沉积玻璃薄层,大大改善了塑料密封的气密性,又不会引起短路,并且使用塑料密封大大降低了生产成本。
所述粘结剂为环氧树脂。
与现有技术相比,本发明不需要使用价格昂贵的金属封装,陶瓷封装或玻璃封装外壳,通过改进封装工艺以及封装材质的选择来提高封装的气密性,提供了一种新型的准气密封装方法来完成MEMS阵列传感器封装;现有技术中采用陶瓷封装外壳,由于陶瓷制备工艺的复杂性,导致成本较高,而玻璃封装外壳的导热性能差,纯金属或复合金属封装外壳在线膨胀系数,导热能力等方面存在自身的局限性。而本发明中,采用硅盖+聚氨酯弹性盖子的组合,封装过程无需严格密封,本发明的封装方法大大降低了生产成本,可以批量制造,又改善了封装的气密性,保证了传感器元件阵列的高灵敏度和高性能。
附图说明
图1为本发明中MEMS传感器阵列的封装分解结构示意图;
图2为本发明中单个MEMS传感器芯片的封装截面剖视图;
图中,1为弹性盖子,2为保护盖子,3为MEMS传感器芯片,4为焊接金球,5为多层电路板,6为粘结剂。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
一种MEMS传感器的封装方法,制备得到的MEMS传感器如图1和图2所示,该方法包括以下步骤:
1.多层电路板5的处理
选取一块多层电路板5,对其进行清洗烘干处理,利用丝网印刷技术在多层电路板上印制引线用焊盘,并在引线用焊盘上焊接金球4。
其中,本实施例多层电路板未经阻焊处理;丝网印刷技术具体工艺步骤为:通过丝网将阻焊油墨印刷到多层电路板5的版面,并在一定的温度,时间以及抽风量的条件下,使油墨中的溶剂初步挥发,再用菲林图形将所需焊盘及通孔进行保护,然后进行曝光,显影时将未与UV光反应的油墨溶解掉,最终在多层电路板上得到引线用焊盘和通孔。然后进行制备凸点,本实施例中焊接金球4采用电度法制备得到,并通过热压焊连接到多层电路板5的引线用焊盘上。
2.MEMS传感器芯片3的处理
提供MEMS传感器芯片3,在MEMS传感器芯片3背面印制芯片焊盘,在芯片焊盘上利用溅射沉积多层金属膜;
其中,本实施例中采用光刻和电镀方法相结合印制MEMS传感器芯片3的芯片焊盘,芯片焊盘印制主要包括引线层和引脚层的制作,具体为:①制作引线层:旋涂光刻胶正胶,厚度约为20μm,选用引线层模板,曝光显影烘干,再采用电镀方法电镀厚度约为15μm的Ni引线层结构;②制作引脚层:利用胶上甩胶的方法,在原有的光刻胶上面再旋涂一层厚度为20μm的光刻胶正胶,选用引脚层掩膜版,曝光显影烘干,利用电镀的方法电镀厚度约为20μm的Ni引脚层结构;③去胶。先用丙酮棉球擦拭,再分别用丙酮,酒精和去离子水超声清洗,最后进行烘干处理。然后,需要在芯片焊盘上制备多层金属膜(UBM),UBM包括黏附层,扩散阻挡层,浸润焊接层,它是在芯片焊盘和焊接金球之间的一层金属化层,目的是使得芯片与多层电路板之间的互连更容易实现,互连可靠性更高;本实施例中,在芯片焊盘上利用溅射沉积多层金属膜,先在芯片焊盘上沉积金属薄膜,然后通过涂胶,掩膜光刻,金属腐蚀,最后刻蚀掉不是图样的金属膜部分,留下所需的UBM图形。
3.倒装焊连接多层电路板5和MEMS传感器芯片3
将MEMS传感器芯片3倒装置于多层电路板5上,以焊接金球4作为凸点,采用热压焊技术接合引线用焊盘和芯片焊盘,并在在引线用焊盘与芯片焊盘之间填充填料;其中,热压焊技术具体为:对焊接金球4加热至300摄氏度,施加1.15N/bump的压力;焊接完成后需要进行芯片底部填充,引线用焊盘与芯片焊盘之间的填料为环氧树脂,填充方法为:将MEMS传感器芯片3和多层电路板5加热至75℃,用装有填料的L形注射器沿MEMS传感器芯片3的边缘双向注射填料,由于缝隙的毛细血管的虹吸作用,填料被吸入,并向中心流动,芯片边缘有阻挡,以防止填料流出,也可以使用基板倾斜的方法以利于流动;注射完毕后,在烘箱中分段升温,达到130℃左右的固化温度后,保持3小时即可完全固化。
其中,一个多层电路板5上可以设有若干个MEMS传感器芯片3,该若干个MEMS传感器芯片3组成MEMS传感器阵列,如图1所示,一个多层电路板5设有四个MEMS传感器芯片3,分别为涡轮传感器,加速度计,陀螺仪,温度传感器,满足不同的功能需求。
4.制备并组装保护盖子2
本实施例中采用光刻工艺制作带有镂空结构的保护盖子2,具体步骤为:①选取一块大小为1×1mm厚度为300μm的硅片;②采用热氧化法,把硅片放在高温炉中并在氧化气氛下加热生长一层厚度约为600nm的氧化膜;③旋涂光刻胶正胶,厚度约10μm,选用硅盖镂空掩膜板,曝光显影烘干;④使用反应离子刻蚀硅片到出现镂空为止;⑤去胶,先用丙酮棉球擦拭,然后分别用丙酮、酒精和去离子水超声清洗,最后进行烘干处理。制备得到保护盖子2后,在MEMS传感器芯片3正面用粘结剂6粘结保护盖子2,MEMS传感器芯片3的柱子从镂空结构中伸出;
使用环氧树脂作为粘结剂,将保护盖子2和MEMS传感器芯片3的上表面粘结,可以使用点胶机把环氧树脂涂覆到保护盖子2的四周边缘并与MEMS传感器芯片3粘结。
5.制备并组装弹性盖子1
弹性盖子1的上表面覆盖有玻璃薄膜的弹性盖子1,背面设有与MEMS传感器芯片3的柱子尺寸匹配的凹槽,如图2所示,其材质为聚氨酯,本实施例中采用光刻工艺制作带有凹槽的弹性盖子1,具体步骤为:①在玻璃基片上制作过渡层:选取一块玻璃基片,进行清洗烘干处理,在基片上旋涂聚二甲基硅氧烷PDMS并在60℃的烘箱中低温固化1.8h,最后在其固化好的PDMS表面旋涂制作聚酰亚胺薄膜,薄膜厚度约为5μm;②在聚酰亚胺薄膜上旋涂厚度为100μm的聚氨酯薄膜,55℃低温固化1.8h,得到第一聚氨酯层,作为悬空的支撑层;③在第一聚氨酯层上通过溅射沉积得到第一Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、选用阻挡层掩膜板掩膜光刻、曝光显影固化,使得Cr/Cu金属阻挡层表面具有凹槽结构的第一掩膜层,去胶处理;④旋涂厚度为400μm的聚氨酯薄膜,55℃低温固化1.8h,得到第二聚氨酯层;⑤在第二聚氨酯层表面通过溅射沉积得到第二Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、曝光显影固化后烘干处理得到第二掩膜层,利用离子铣凹槽掩膜,采用离子铣技术在第二Cr/Cu金属阻挡层以及第二掩膜层上开设凹槽结构的窗口;⑥利用反应离子刻蚀法对聚氨酯进行刻蚀,直到刻蚀到第一Cr/Cu金属阻挡层为止;⑦去除器件表面的光刻胶正胶,先用丙酮棉球擦拭,然后分别用丙酮、酒精和去离子水超声清洗,最后进行烘干处理;⑧采用湿法刻蚀去除第一Cr/Cu金属阻挡层、第二Cr/Cu金属阻挡层、第一掩膜层和第二掩膜层;⑨将湿法刻蚀处理后的器件浸泡在酒精溶液中,手工剥离聚酰亚胺,完成弹性盖子1的释放。
为了进一步改善塑料的弹性盖子1的密封性能,利用交直流磁控溅射系统在聚氨酯表面溅射一层玻璃,厚度为200nm。
采用环氧树脂的粘结剂6将弹性盖子1粘结于保护盖子2上,可以在弹性盖子1上预涂环氧树脂,随后将弹性盖子1固定在保护盖子2上面,经过加热和少许力就可以完成密封得到MEMS传感器。
本实施例提供了一种新型的准气密封装方法来完成MEMS阵列传感器封装,于现有技术相比,本实施例具有以下优点:
1.采用倒装焊技术克服了引线键合焊盘中心距极限的问题。可靠性高,由于芯片下填料的作用使得封装抗疲劳寿命增强。
2.盖板密封过程中,在传感器芯片和弹性盖子中间另外加了一层硅盖,增强了对传感器的机械保护作用,使得传感器能够更加适应高过载环境。
3.多层基板是构成多芯片封装的一个有机部分,将多种不同功能的传感器集成在一块基板上再进行封装,极大地扩大了器件使用范围,并且使得数据处理方便。
4.选用聚氨酯这种塑料作为盖板材料,质量轻,价格低廉,无毒环保,耐腐蚀,抗破碎能力强。
5.在弹性盖板表面溅射沉积玻璃薄层,大大改善了塑料密封的气密性,既降低了成产成本又达到了理想的密封效果。
总之,本发明的封装方法大大降低了生产成本,可以批量制造,又改善了封装的气密性,保证了传感器元件阵列的高灵敏度和高性能。
实施例2
本实施例为一种MEMS传感器的封装方法,主要步骤与实施例1相同,不同之处在于制备过程中的工艺参数;具体为:
一种MEMS传感器的封装方法,制备得到的MEMS传感器如图1和图2所示,该方法包括以下步骤:
1.多层电路板5的处理
选取一块多层电路板5,对其进行清洗烘干处理,利用丝网印刷技术在多层电路板上印制引线用焊盘,并在引线用焊盘上焊接金球4。
其中,本实施例多层电路板未经阻焊处理;丝网印刷技术具体工艺步骤为:通过丝网将阻焊油墨印刷到多层电路板5的版面,并在一定的温度,时间以及抽风量的条件下,使油墨中的溶剂初步挥发,再用菲林图形将所需焊盘及通孔进行保护,然后进行曝光,显影时将未与UV光反应的油墨溶解掉,最终在多层电路板上得到引线用焊盘和通孔。然后进行制备凸点,本实施例中焊接金球4采用电度法制备得到,并通过热压焊连接到多层电路板5的引线用焊盘上。
2.MEMS传感器芯片3的处理
提供MEMS传感器芯片3,在MEMS传感器芯片3背面印制芯片焊盘,在芯片焊盘上利用溅射沉积多层金属膜;
其中,本实施例中采用光刻和电镀方法相结合印制MEMS传感器芯片3的芯片焊盘,芯片焊盘印制主要包括引线层和引脚层的制作,具体为:①制作引线层:旋涂光刻胶正胶,厚度约为20μm,选用引线层模板,曝光显影烘干,再采用电镀方法电镀厚度约为15μm的Ni引线层结构;②制作引脚层:利用胶上甩胶的方法,在原有的光刻胶上面再旋涂一层厚度为20μm的光刻胶正胶,选用引脚层掩膜版,曝光显影烘干,利用电镀的方法电镀厚度约为20μm的Ni引脚层结构;③去胶。先用丙酮棉球擦拭,再分别用丙酮,酒精和去离子水超声清洗,最后进行烘干处理。然后,需要在芯片焊盘上制备多层金属膜(UBM),UBM包括黏附层,扩散阻挡层,浸润焊接层,它是在芯片焊盘和焊接金球之间的一层金属化层,目的是使得芯片与多层电路板之间的互连更容易实现,互连可靠性更高;本实施例中,在芯片焊盘上利用溅射沉积多层金属膜,先在芯片焊盘上沉积金属薄膜,然后通过涂胶,掩膜光刻,金属腐蚀,最后刻蚀掉不是图样的金属膜部分,留下所需的UBM图形。
3.倒装焊连接多层电路板5和MEMS传感器芯片3
将MEMS传感器芯片3倒装置于多层电路板5上,以焊接金球4作为凸点,采用热压焊技术接合引线用焊盘和芯片焊盘,并在在引线用焊盘与芯片焊盘之间填充填料;其中,热压焊技术具体为:对焊接金球4加热至350摄氏度,施加2.10N/bump的压力;焊接完成后需要进行芯片底部填充,引线用焊盘与芯片焊盘之间的填料为环氧树脂,填充方法为:将MEMS传感器芯片3和多层电路板5加热至70℃,用装有填料的L形注射器沿MEMS传感器芯片3的边缘双向注射填料,由于缝隙的毛细血管的虹吸作用,填料被吸入,并向中心流动,芯片边缘有阻挡,以防止填料流出,也可以使用基板倾斜的方法以利于流动;注射完毕后,在烘箱中分段升温,达到125℃左右的固化温度后,保持3小时即可完全固化。
其中,一个多层电路板5上可以设有若干个MEMS传感器芯片3,该若干个MEMS传感器芯片3组成MEMS传感器阵列,如图1所示,一个多层电路板5设有四个MEMS传感器芯片3,分别为涡轮传感器,加速度计,陀螺仪,温度传感器,满足不同的功能需求。
4.制备并组装保护盖子2
本实施例中采用光刻工艺制作带有镂空结构的保护盖子2,具体步骤为:①选取一块大小为1×1mm厚度为280μm的硅片;②采用热氧化法,把硅片放在高温炉中并在氧化气氛下加热生长一层厚度约为400nm的氧化膜;③旋涂光刻胶正胶,厚度约5μm,选用硅盖镂空掩膜板,曝光显影烘干;④使用反应离子刻蚀硅片到出现镂空为止;⑤去胶,先用丙酮棉球擦拭,然后分别用丙酮、酒精和去离子水超声清洗,最后进行烘干处理。制备得到保护盖子2后,在MEMS传感器芯片3正面用粘结剂6粘结保护盖子2,MEMS传感器芯片3的柱子从镂空结构中伸出;
使用环氧树脂作为粘结剂,将保护盖子2和MEMS传感器芯片3的上表面粘结,可以使用点胶机把环氧树脂涂覆到保护盖子2的四周边缘并与MEMS传感器芯片3粘结。
5.制备并组装弹性盖子1
弹性盖子1的上表面覆盖有玻璃薄膜的弹性盖子1,背面设有与MEMS传感器芯片3的柱子尺寸匹配的凹槽,如图2所示,其材质为聚氨酯,本实施例中采用光刻工艺制作带有凹槽的弹性盖子1,具体步骤为:①在玻璃基片上制作过渡层:选取一块玻璃基片,进行清洗烘干处理,在基片上旋涂聚二甲基硅氧烷PDMS并在55℃的烘箱中低温固化1.5h,最后在其固化好的PDMS表面旋涂制作聚酰亚胺薄膜,薄膜厚度约为4μm;②在聚酰亚胺薄膜上旋涂厚度为80μm的聚氨酯薄膜,50℃低温固化1.5h,得到第一聚氨酯层,作为悬空的支撑层;③在第一聚氨酯层上通过溅射沉积得到第一Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、选用阻挡层掩膜板掩膜光刻、曝光显影固化,使得Cr/Cu金属阻挡层表面具有凹槽结构的第一掩膜层,去胶处理;④旋涂厚度为390μm的聚氨酯薄膜,50℃低温固化1.5h,得到第二聚氨酯层;⑤在第二聚氨酯层表面通过溅射沉积得到第二Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、曝光显影固化后烘干处理得到第二掩膜层,利用离子铣凹槽掩膜,采用离子铣技术在第二Cr/Cu金属阻挡层以及第二掩膜层上开设凹槽结构的窗口;⑥利用反应离子刻蚀法对聚氨酯进行刻蚀,直到刻蚀到第一Cr/Cu金属阻挡层为止;⑦去除器件表面的光刻胶正胶,先用丙酮棉球擦拭,然后分别用丙酮、酒精和去离子水超声清洗,最后进行烘干处理;⑧采用湿法刻蚀去除第一Cr/Cu金属阻挡层、第二Cr/Cu金属阻挡层、第一掩膜层和第二掩膜层;⑨将湿法刻蚀处理后的器件浸泡在酒精溶液中,手工剥离聚酰亚胺,完成弹性盖子1的释放。
为了进一步改善塑料的弹性盖子1的密封性能,利用交直流磁控溅射系统在聚氨酯表面溅射一层玻璃,厚度为180nm。
实施例3
本实施例为一种MEMS传感器的封装方法,主要步骤与实施例1相同,不同之处在于制备过程中的工艺参数;具体为:
一种MEMS传感器的封装方法,制备得到的MEMS传感器如图1和图2所示,该方法包括以下步骤:
1.多层电路板5的处理
选取一块多层电路板5,对其进行清洗烘干处理,利用丝网印刷技术在多层电路板上印制引线用焊盘,并在引线用焊盘上焊接金球4。
其中,本实施例多层电路板未经阻焊处理;丝网印刷技术具体工艺步骤为:通过丝网将阻焊油墨印刷到多层电路板5的版面,并在一定的温度,时间以及抽风量的条件下,使油墨中的溶剂初步挥发,再用菲林图形将所需焊盘及通孔进行保护,然后进行曝光,显影时将未与UV光反应的油墨溶解掉,最终在多层电路板上得到引线用焊盘和通孔。然后进行制备凸点,本实施例中焊接金球4采用电度法制备得到,并通过热压焊连接到多层电路板5的引线用焊盘上。
2.MEMS传感器芯片3的处理
提供MEMS传感器芯片3,在MEMS传感器芯片3背面印制芯片焊盘,在芯片焊盘上利用溅射沉积多层金属膜;
其中,本实施例中采用光刻和电镀方法相结合印制MEMS传感器芯片3的芯片焊盘,芯片焊盘印制主要包括引线层和引脚层的制作,具体为:①制作引线层:旋涂光刻胶正胶,厚度约为20μm,选用引线层模板,曝光显影烘干,再采用电镀方法电镀厚度约为15μm的Ni引线层结构;②制作引脚层:利用胶上甩胶的方法,在原有的光刻胶上面再旋涂一层厚度为20μm的光刻胶正胶,选用引脚层掩膜版,曝光显影烘干,利用电镀的方法电镀厚度约为20μm的Ni引脚层结构;③去胶。先用丙酮棉球擦拭,再分别用丙酮,酒精和去离子水超声清洗,最后进行烘干处理。然后,需要在芯片焊盘上制备多层金属膜(UBM),UBM包括黏附层,扩散阻挡层,浸润焊接层,它是在芯片焊盘和焊接金球之间的一层金属化层,目的是使得芯片与多层电路板之间的互连更容易实现,互连可靠性更高;本实施例中,在芯片焊盘上利用溅射沉积多层金属膜,先在芯片焊盘上沉积金属薄膜,然后通过涂胶,掩膜光刻,金属腐蚀,最后刻蚀掉不是图样的金属膜部分,留下所需的UBM图形。
3.倒装焊连接多层电路板5和MEMS传感器芯片3
将MEMS传感器芯片3倒装置于多层电路板5上,以焊接金球4作为凸点,采用热压焊技术接合引线用焊盘和芯片焊盘,并在在引线用焊盘与芯片焊盘之间填充填料;其中,热压焊技术具体为:对焊接金球4加热至300摄氏度,施加2.0N/bump的压力;焊接完成后需要进行芯片底部填充,引线用焊盘与芯片焊盘之间的填料为环氧树脂,填充方法为:将MEMS传感器芯片3和多层电路板5加热至75℃,用装有填料的L形注射器沿MEMS传感器芯片3的边缘双向注射填料,由于缝隙的毛细血管的虹吸作用,填料被吸入,并向中心流动,芯片边缘有阻挡,以防止填料流出,也可以使用基板倾斜的方法以利于流动;注射完毕后,在烘箱中分段升温,达到135℃左右的固化温度后,保持4小时即可完全固化。
其中,一个多层电路板5上可以设有若干个MEMS传感器芯片3,该若干个MEMS传感器芯片3组成MEMS传感器阵列,如图1所示,一个多层电路板5设有四个MEMS传感器芯片3,分别为涡轮传感器,加速度计,陀螺仪,温度传感器,满足不同的功能需求。
4.制备并组装保护盖子2
本实施例中采用光刻工艺制作带有镂空结构的保护盖子2,具体步骤为:①选取一块大小为1×1mm厚度为320μm的硅片;②采用热氧化法,把硅片放在高温炉中并在氧化气氛下加热生长一层厚度约为800nm的氧化膜;③旋涂光刻胶正胶,厚度约15μm,选用硅盖镂空掩膜板,曝光显影烘干;④使用反应离子刻蚀硅片到出现镂空为止;⑤去胶,先用丙酮棉球擦拭,然后分别用丙酮、酒精和去离子水超声清洗,最后进行烘干处理。制备得到保护盖子2后,在MEMS传感器芯片3正面用粘结剂6粘结保护盖子2,MEMS传感器芯片3的柱子从镂空结构中伸出;
使用环氧树脂作为粘结剂,将保护盖子2和MEMS传感器芯片3的上表面粘结,可以使用点胶机把环氧树脂涂覆到保护盖子2的四周边缘并与MEMS传感器芯片3粘结。
5.制备并组装弹性盖子1
弹性盖子1的上表面覆盖有玻璃薄膜的弹性盖子1,背面设有与MEMS传感器芯片3的柱子尺寸匹配的凹槽,如图2所示,其材质为聚氨酯,本实施例中采用光刻工艺制作带有凹槽的弹性盖子1,具体步骤为:①在玻璃基片上制作过渡层:选取一块玻璃基片,进行清洗烘干处理,在基片上旋涂聚二甲基硅氧烷PDMS并在65℃的烘箱中低温固化2h,最后在其固化好的PDMS表面旋涂制作聚酰亚胺薄膜,薄膜厚度约为8μm;②在聚酰亚胺薄膜上旋涂厚度为120μm的聚氨酯薄膜,60℃低温固化2h,得到第一聚氨酯层,作为悬空的支撑层;③在第一聚氨酯层上通过溅射沉积得到第一Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、选用阻挡层掩膜板掩膜光刻、曝光显影固化,使得Cr/Cu金属阻挡层表面具有凹槽结构的第一掩膜层,去胶处理;④旋涂厚度为410μm的聚氨酯薄膜,60℃低温固化2h,得到第二聚氨酯层;⑤在第二聚氨酯层表面通过溅射沉积得到第二Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、曝光显影固化后烘干处理得到第二掩膜层,利用离子铣凹槽掩膜,采用离子铣技术在第二Cr/Cu金属阻挡层以及第二掩膜层上开设凹槽结构的窗口;⑥利用反应离子刻蚀法对聚氨酯进行刻蚀,直到刻蚀到第一Cr/Cu金属阻挡层为止;⑦去除器件表面的光刻胶正胶,先用丙酮棉球擦拭,然后分别用丙酮、酒精和去离子水超声清洗,最后进行烘干处理;⑧采用湿法刻蚀去除第一Cr/Cu金属阻挡层、第二Cr/Cu金属阻挡层、第一掩膜层和第二掩膜层;⑨将湿法刻蚀处理后的器件浸泡在酒精溶液中,手工剥离聚酰亚胺,完成弹性盖子1的释放。
为了进一步改善塑料的弹性盖子1的密封性能,利用交直流磁控溅射系统在聚氨酯表面溅射一层玻璃,厚度为220nm。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

1.一种MEMS传感器的封装方法,其特征在于,包括以下步骤:
提供多层电路板(5),清洗烘干,在所述多层电路板(5)上印制引线用焊盘,并在所述引线用焊盘上焊接金球(4);
提供MEMS传感器芯片(3),在MEMS传感器芯片(3)背面印制芯片焊盘,在所述芯片焊盘上利用溅射沉积多层金属膜;
将所述MEMS传感器芯片(3)倒装置于所述多层电路板(5)上;以所述焊接金球(4)作为凸点,采用热压焊技术接合引线用焊盘和芯片焊盘,并在在所述引线用焊盘与所述芯片焊盘之间填充填料;
在所述MEMS传感器芯片(3)正面用粘结剂(6)粘结保护盖子(2);
提供上表面覆盖有玻璃薄膜的弹性盖子(1),采用粘结剂(6)将所述弹性盖子(1)粘结于所述保护盖子(2)上,得到所述MEMS传感器。
2.根据权利要求1所述的一种MEMS传感器的封装方法,其特征在于,一个多层电路板(5)和弹性盖子(1)之间设有若干个MEMS传感器芯片(3),该若干个MEMS传感器芯片(3)组成MEMS传感器阵列。
3.根据权利要求1所述的一种MEMS传感器的封装方法,其特征在于,所述热压焊技术具体为:对所述焊接金球(4)加热至300~350℃,施加1.15~2.10N/bump的压力;所述引线用焊盘与芯片焊盘之间的填料为环氧树脂,填充方法为:将所述MEMS传感器芯片(3)和多层电路板(5)加热至70~75℃,用L形注射器沿所述MEMS传感器芯片(3)的边缘双向注射填料;注射完毕后,分段升温至125~135℃,固化3~4小时。
4.根据权利要求1所述的一种MEMS传感器的封装方法,其特征在于,所述芯片焊盘上的多层金属膜的制备方法为:在所述芯片背面沉积金属薄膜,涂光刻胶、掩膜光刻、通过金属腐蚀刻蚀除去非图样的金属膜,得到多层金属膜图形。
5.根据权利要求1所述的一种MEMS传感器的封装方法,其特征在于,所述焊接金球(4)采用电镀法制备得到,并通过热压焊连接到所述多层电路板(5)的引线用焊盘上。
6.根据权利要求1所述的一种MEMS传感器的封装方法,其特征在于,所述保护盖子(2)为镂空结构的硅片,所述MEMS传感器芯片(3)的柱子从所述镂空结构中伸出;该保护盖子(2)的材质为表面含有氧化膜的硅片;所述硅片的厚度为280~320μm,优选为300μm;所述氧化膜的厚度为400~800nm。
7.根据权利要求6所述的一种MEMS传感器的封装方法,其特征在于,所述保护盖子(2)的制备方法为:提供一硅片,采用热氧化法是硅片表面生长一层氧化膜;在所述氧化膜上旋涂5~15μm厚的光刻胶正胶,利用掩膜版对所述光刻胶正胶进行曝光显影、烘干;采用反应离子刻蚀法对硅进行刻蚀,直到出现镂空结构为止;去胶处理、烘干处理得到所述保护盖子(2)。
8.根据权利要求1所述的一种MEMS传感器的封装方法,其特征在于,所述弹性盖子(1)的背面设有与所述MEMS传感器芯片(3)的柱子尺寸匹配的凹槽,其制备方法为:
提供一玻璃基片,清洗烘干处理,在所述玻璃基片上旋涂聚二甲基硅氧烷,55~65℃低温固化1.5~2h,在固化后的聚二甲基硅氧烷表面旋涂厚度为4~8μm的聚酰亚胺薄膜;
在所述聚酰亚胺薄膜上旋涂厚度为80~120μm的聚氨酯薄膜,50~60℃低温固化1.5~2h,得到第一聚氨酯层;
在所述第一聚氨酯层上通过溅射沉积得到第一Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、掩膜光刻、曝光显影固化,使得Cr/Cu金属阻挡层表面具有凹槽结构的第一掩膜层,去胶处理;
旋涂厚度为390~410μm的聚氨酯薄膜,50~60℃低温固化1.5~2h,得到第二聚氨酯层;
在所述第二聚氨酯层表面通过溅射沉积得到第二Cr/Cu金属阻挡层,然后旋涂光刻胶正胶、曝光显影固化后烘干处理得到第二掩膜层,利用离子铣凹槽掩膜,采用离子铣技术在所述第二Cr/Cu金属阻挡层和第二掩膜层上开设凹槽结构的窗口;
利用反应离子刻蚀法对聚氨酯进行刻蚀,直到刻蚀到第一Cr/Cu金属阻挡层为止;
去除器件表面的光刻胶正胶、烘干处理;
采用湿法刻蚀去除所述第一Cr/Cu金属阻挡层、第二Cr/Cu金属阻挡层、第一掩膜层和第二掩膜层;
将湿法刻蚀处理后的器件浸泡在酒精溶液中,剥离聚酰亚胺薄膜,完成弹性盖子(1)的释放。
9.根据权利要求1所述的一种MEMS传感器的封装方法,其特征在于,所述弹性盖子(1)表面的玻璃薄膜的厚度为180~220nm,并且通过交直流磁控溅射方法制备得到。
10.根据权利要求1所述的一种MEMS传感器的封装方法,其特征在于,所述粘结剂(6)为环氧树脂。
CN201910526686.0A 2019-06-18 2019-06-18 一种mems传感器的封装方法 Active CN110304604B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910526686.0A CN110304604B (zh) 2019-06-18 2019-06-18 一种mems传感器的封装方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910526686.0A CN110304604B (zh) 2019-06-18 2019-06-18 一种mems传感器的封装方法

Publications (2)

Publication Number Publication Date
CN110304604A true CN110304604A (zh) 2019-10-08
CN110304604B CN110304604B (zh) 2023-04-28

Family

ID=68076083

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910526686.0A Active CN110304604B (zh) 2019-06-18 2019-06-18 一种mems传感器的封装方法

Country Status (1)

Country Link
CN (1) CN110304604B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887977A (zh) * 2019-11-28 2020-03-17 上海应用技术大学 一种纳米级压阻式加速度传感器及其制备方法
CN113645556A (zh) * 2021-08-27 2021-11-12 歌尔微电子股份有限公司 Mems麦克风封装结构及封装方法
CN113819899A (zh) * 2021-11-22 2021-12-21 北京晨晶电子有限公司 异质集成表贴陀螺
CN115430592A (zh) * 2022-08-15 2022-12-06 西安航天精密机电研究所 一种陀螺浮子密封辅助工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011294A (en) * 1996-04-08 2000-01-04 Eastman Kodak Company Low cost CCD packaging
US20050014355A1 (en) * 2003-05-31 2005-01-20 Hong Kong University Of Science & Technology Under-bump metallization layers and electroplated solder bumping technology for flip-chip
CN101620022A (zh) * 2008-07-01 2010-01-06 欣兴电子股份有限公司 压力感测元件封装及其制作方法
CN101752266A (zh) * 2008-12-22 2010-06-23 中芯国际集成电路制造(上海)有限公司 Cmos图像传感器的芯片级封装结构及封装方法
WO2012002233A1 (ja) * 2010-06-30 2012-01-05 大日本印刷株式会社 センサデバイスの製造方法及びセンサデバイス
CN104201156A (zh) * 2014-08-08 2014-12-10 天水华天科技股份有限公司 基于基板的凸点倒装芯片csp封装件、基板及制造方法
CN104986720A (zh) * 2015-05-27 2015-10-21 重庆大学 Mems圆片级真空封装结构及方法
CN105047621A (zh) * 2015-06-26 2015-11-11 华天科技(西安)有限公司 一种传感芯片封装结构及其制备方法
CN107915200A (zh) * 2016-10-10 2018-04-17 普因特工程有限公司 微传感器封装

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6011294A (en) * 1996-04-08 2000-01-04 Eastman Kodak Company Low cost CCD packaging
US20050014355A1 (en) * 2003-05-31 2005-01-20 Hong Kong University Of Science & Technology Under-bump metallization layers and electroplated solder bumping technology for flip-chip
CN101620022A (zh) * 2008-07-01 2010-01-06 欣兴电子股份有限公司 压力感测元件封装及其制作方法
CN101752266A (zh) * 2008-12-22 2010-06-23 中芯国际集成电路制造(上海)有限公司 Cmos图像传感器的芯片级封装结构及封装方法
WO2012002233A1 (ja) * 2010-06-30 2012-01-05 大日本印刷株式会社 センサデバイスの製造方法及びセンサデバイス
CN104201156A (zh) * 2014-08-08 2014-12-10 天水华天科技股份有限公司 基于基板的凸点倒装芯片csp封装件、基板及制造方法
CN104986720A (zh) * 2015-05-27 2015-10-21 重庆大学 Mems圆片级真空封装结构及方法
CN105047621A (zh) * 2015-06-26 2015-11-11 华天科技(西安)有限公司 一种传感芯片封装结构及其制备方法
CN107915200A (zh) * 2016-10-10 2018-04-17 普因特工程有限公司 微传感器封装

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887977A (zh) * 2019-11-28 2020-03-17 上海应用技术大学 一种纳米级压阻式加速度传感器及其制备方法
CN110887977B (zh) * 2019-11-28 2021-12-07 上海应用技术大学 一种纳米级压阻式加速度传感器及其制备方法
CN113645556A (zh) * 2021-08-27 2021-11-12 歌尔微电子股份有限公司 Mems麦克风封装结构及封装方法
CN113819899A (zh) * 2021-11-22 2021-12-21 北京晨晶电子有限公司 异质集成表贴陀螺
CN115430592A (zh) * 2022-08-15 2022-12-06 西安航天精密机电研究所 一种陀螺浮子密封辅助工艺
CN115430592B (zh) * 2022-08-15 2023-05-23 西安航天精密机电研究所 一种陀螺浮子密封辅助工艺

Also Published As

Publication number Publication date
CN110304604B (zh) 2023-04-28

Similar Documents

Publication Publication Date Title
CN110304604A (zh) 一种mems传感器的封装方法
TWI353659B (en) Water level package with good cte performance and
TWI240338B (en) Structure of image sensor module and method for manufacturing of wafer level package
CN101221936B (zh) 具有晶粒置入通孔之晶圆级封装及其方法
US6528344B2 (en) Chip scale surface-mountable packaging method for electronic and MEMS devices
US7413925B2 (en) Method for fabricating semiconductor package
CN105206592B (zh) 扇出型封装的结构和制作方法
TWI240399B (en) Chip package structure and process for fabricating the same
US20100327431A1 (en) Semiconductor Chip Thermal Interface Structures
TW200830500A (en) Wafer level package with die receiving through-hole and method of the same
TW200837902A (en) Image sensor module having build-in package cavity and the method of the same
TW201145456A (en) Semiconductor device and method of forming conductive vias through interconnect structures and encapsulant of WLCSP
TW200834938A (en) Image sensor package with die receiving opening and method of the same
JP2004055628A (ja) ウエハレベルの半導体装置及びその作製方法
TW201125073A (en) Semiconductor package and method of mounting semiconductor die to opposite sides of TSV substrate
US20100320624A1 (en) Die package including encapsulated die and method of manufacturing the same
CN104465418A (zh) 一种扇出晶圆级封装方法
US6605491B1 (en) Method for bonding IC chips to substrates with non-conductive adhesive
CN106115608B (zh) 针对射频mems器件应用的横向互连低温圆片级封装方法
CN103745937A (zh) 扇出型圆片级封装的制作工艺
CN102683309B (zh) 晶圆级植球印刷填充通孔的转接板结构及其制作方法
JP2008235314A (ja) 半導体装置の製造方法及び該半導体装置
KR100744149B1 (ko) 은 범프를 이용한 반도체 패키지 구조 및 형성 방법
CN110379721A (zh) 扇出型封装方法及封装结构
CN206558504U (zh) 图像传感器模组

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant