CN110289174A - 一种储能与转换纳米材料的制备方法 - Google Patents

一种储能与转换纳米材料的制备方法 Download PDF

Info

Publication number
CN110289174A
CN110289174A CN201910560902.3A CN201910560902A CN110289174A CN 110289174 A CN110289174 A CN 110289174A CN 201910560902 A CN201910560902 A CN 201910560902A CN 110289174 A CN110289174 A CN 110289174A
Authority
CN
China
Prior art keywords
energy storage
nano material
preparation
conversion nano
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910560902.3A
Other languages
English (en)
Other versions
CN110289174B (zh
Inventor
祝建中
张欢
汪存石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201910560902.3A priority Critical patent/CN110289174B/zh
Publication of CN110289174A publication Critical patent/CN110289174A/zh
Application granted granted Critical
Publication of CN110289174B publication Critical patent/CN110289174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种储能与转换纳米材料的制备方法,属于纳米材料技术领域,包括如下步骤:1)向油相的有机溶剂中加入苯酚、碱性有机物、表面活性剂,超声溶解作为油相;2)将甲醛、金属阳离子溶于水,作为水相;金属阳离子是与氢氧根离子生成Zn‑LDH、Ni/Mn‑LDH和Ni/Fe‑LDH中一种或多种的金属阳离子;3)将水相与油相快速混合,形成双连续微乳液;4)静置双连续微乳液;5)对静置后的双连续微乳液干燥后,再在氮气条件下加热碳化即得储能与转换纳米材料。本发明的一种储能与转换纳米材料的制备方法,制备出具有丰富的有纳米层状晶体组成的纳米级电容结构,相比于双电层电容器和赝电容电容器来说具有更好的性能。

Description

一种储能与转换纳米材料的制备方法
技术领域
本发明属于纳米材料掺杂技术领域,具体涉及一种储能与转换纳米材料的制备方法。
背景技术
超级电容器在储能器件中具有举足轻重的作用,一般应用于手机、混合动力汽车、风力发电、航空航天和军事等领域。超级电容器是有电极材料、电解液和隔膜构成。通常情况下,电极不分正负。电极材料是研究超级电容器的关键。一般电极材料有碳材料、金属氧化物、导电聚合物等;电解液一般采用液体电解液或固体电解液,在两电极之间一般需要隔离膜分割两电极。
按照储存机理分类:超级电容器一般可以分为双电层电容器和赝电容电容器。双电层电容电荷存储在电极与电解液界面之间形成的双电层;赝电容储能机理基于在电极表面或体相中发生化学吸脱附或氧化还原反应。
在双电层电容器中,电极材料的选择是电容性能的关键。一般双电层电容器的材料大多数是碳材料,比如石墨烯、活性炭、碳纳米管等。碳材料具有良好的导电性、大的比表面积等。大的比表面积可以提供更多的活性位点用来储存电荷。
法拉第赝电容器的构成与双电层电容器类似。但发生氧化还原反应的活性材料才可以用来作为赝电容的电极材料。一般赝电容材料有金属氧化物、(金属)氢氧化物、金属硫化物、双金属氧化物及导电聚合物。双金属氧化物在适宜的温度范围内发生可逆的赝电容反应,因此,其产生的电容比碳材料大得多。而导电聚合物差的稳定性限制了其循环利用。
由双电层电容器的储能原理可知,高比表面积有助于增加可吸附离子的表面,进而提升整体比电容。因此,电极材料中微孔的数量是至关重要的。但是,通常微孔会降低离子的传输速度,进一步降低材料整体的功率性能。中孔能为离子传输提供更宽的通道,即使在高电流密度下也不会急剧降低离子的传输速度,从而保证了材料的高功率特性。但是,中孔对材料整体比表面积的贡献较低,较多的中孔会造成比表面积的急剧下降。因此,孔结构对电极材料的超级电容性能具有很大的影响。
现有技术常常是振动纳米材料的粉末的应用,如将粉末固结成型,这即实际上降低了比表面积同时也不能形成丰富的多级孔,非常不利于纳米材料的应用。
发明内容
发明目的:本发明的目的在于提供一种储能与转换纳米材料的制备方法,该新型储能与转换纳米材料及制备方法通过使用双连续微乳液模板,在其界面上合成出复合纳米材料,最终形成具备多级孔结构的纳米材料:包括从微孔、介孔到大孔的纳米孔径,最大孔径甚至能够达到微米级。
技术方案:为实现上述目的,本发明提供如下技术方案:
一种储能与转换纳米材料的制备方法,包括如下步骤:
1)向油相的有机溶剂中加入苯酚、碱性有机物、表面活性剂,超声溶解作为油相;
2)将甲醛、金属阳离子溶于水,作为水相;所述的金属阳离子是与氢氧根离子生成Zn-LDH、Ni/Mn-LDH和Ni/Fe-LDH中一种或多种的金属阳离子;
3)将水相与油相快速混合,形成双连续微乳液;
4)静置双连续微乳液;
5)对静置后的双连续微乳液干燥后,再在氮气条件下加热碳化即得储能与转换纳米材料。
进一步地,步骤1)中,所述的油相的有机溶剂选自正十二烷、一溴十四烷中任意一种或几种的组合。
进一步地,步骤1)中,所述的表面活性剂选自阳离子或非离子型表面活性剂,其HLB值为2-7。
进一步地,所述的表面活性剂为双十二烷基二甲基溴化铵和/或卵磷脂;所述的碱性有机物为苄胺,在所述的油相中,苄胺与油相的体积比为0.05~0.2。
进一步地,步骤2)中,所述的水相中的金属阳离子对应的正电子浓度为0.0001-0.0005mol/mL;金属阳离子正电荷数与碱性有机物理论生成的阴离子负电荷数的摩尔比为0.5~0.65。
进一步地,所述的油相中苯酚的浓度为0.05g/mL-0.10g/mL;油相与水相的体积比为0.5~1;水相中的甲醛的浓度为0.05g/mL-0.094g/mL。
进一步地,步骤4)中,所述的静置的条件是室温常压下静置时间≥24小时。
进一步地,步骤5)中,所述的干燥条件是在50-80℃有氧条件下干燥,时间为24h;热聚合的条件是100-120℃条件下聚合,时间为3-5h。
进一步地,在所述的步骤5),所述的氮气条件下加热碳化的条件是先在300-350℃下加热10-12h,再在500-700℃氮气条件下加热18-24h。
有益效果:与现有技术相比,本发明的一种储能与转换纳米材料的制备方法,制备出具有丰富的有纳米层状晶体组成的纳米级电容结构,相比于双电层电容器和赝电容电容器来说具有更好的性能。
附图说明
图1是氮气条件下500℃加热24h后的BET孔径分布图;
图2是氮气条件下500℃加热24h后材料的SEM图(放大5千倍);
图3是氮气条件下500℃加热24h后材料的SEM图(放大8万倍)。
具体实施方式
下面结合附图和具体实施例对本发明作更进一步的说明。
一种储能与转换纳米材料的制备方法,包括如下步骤:
1)向油相的有机溶剂中加入苯酚、碱性有机物、表面活性剂,超声溶解作为油相;
2)将甲醛、金属阳离子溶于水,作为水相;所述的金属阳离子是与氢氧根离子生成Zn-LDH、Ni/Mn-LDH和Ni/Fe-LDH中一种或多种的金属阳离子;
3)将水相与油相快速混合,形成双连续微乳液;
4)静置双连续微乳液;
5)对静置后的双连续微乳液干燥后,再在氮气条件下加热碳化即得储能与转换纳米材料。
步骤1)中,油相的有机溶剂选自正十二烷、一溴十四烷中任意一种或几种的组合。
步骤1)中,表面活性剂选自阳离子或非离子型表面活性剂,其HLB值为2-7。
表面活性剂为双十二烷基二甲基溴化铵和/或卵磷脂;碱性有机物为苄胺,在油相中,苄胺与油相的体积比为0.05~0.2。
步骤2)中,水相中的金属阳离子对应的正电子浓度为0.0001-0.0005mol/mL;金属阳离子正电荷数与碱性有机物理论生成的阴离子负电荷数的摩尔比为0.5~0.65。
油相中苯酚的浓度为0.05g/mL-0.10g/mL;油相与水相的体积比为0.5~1;水相中的甲醛的浓度为0.05g/mL-0.094g/mL。
步骤4)中,静置的条件是室温常压下静置时间≥24小时。
步骤5)中,干燥条件是在50-80℃有氧条件下干燥,时间为24h;热聚合的条件是100-120℃条件下聚合,时间为3-5h。
在步骤5),氮气条件下加热碳化的条件是先在300-350℃下加热10-12h,再在500-700℃氮气条件下加热18-24h。
反应包括:1、碱性有机物溶于油相中,与水反应生成OH-;3、溶于水中金属离子,与OH-(由溶解在油相中的,与水反应水解产生的)形成纳米层状、片状或带着沉淀,形成支撑层;4、在OH-的催化作用下,有机物,如正硅酸乙酯(TEOS)金属醇盐等,发生水解缩合反应形成纳米固体物质;6、将加成、缩合、缩聚反应的前体物分别溶解于油相和水相中,再在界面上发生加成、缩合、缩聚反应,生成目标物质,如在酸、碱性反应催化作用下,苯酚和甲醛在催化剂条件下缩聚制成的树脂;
支撑层是指能够形成层状、片状或者带状晶型的晶体,通过形成带状、片状或者层状纳米结构,组成支撑层;支撑层是曲面的一部分,同时起到限制曲面厚度,增加整体材料强度,提高孔隙率,减小收缩率的作用;新型储能与转换纳米材料包含纳米碳材料,同时根据需要可以包含其他的成分,如氧化物,金属氢氧化物等;整体固体材料的孔隙率≥90%,表面面积≥100m2/g;储能功率为100kW/kg左右。
油相包括正十二烷、一溴十四烷等,水相包括水;反应前体物包括正硅酸乙酯、苄胺、苯酚等溶解在油相中;硝酸锌、甲醛等溶解在水相中;表面活性剂双十二烷基二甲基溴铵、卵磷脂等溶解在油相中;金属氧化物包括ZnO、MnO2、NiO、ZnO、FeO等以及它们的层状双金属氢氧化物。
热处理包括脱水、热解、碳化等,进一步赋予材料各种性能;
混合形成双连续微乳液也可以是双连续乳液,在混合的开始时可能不是双连续微乳液,而仅仅只是乳液,但是随着反应的进行,混合乳液不断的想双连续微乳液发展,最终可能依旧有部分是双连续乳液。
实施例1
一种储能与转换纳米材料的制备方法,包括如下步骤:
1、称取0.7g卵磷脂,放入反应器(25ml烧杯)中;
2、0.5g苯酚倒入反应器中;
3、取3.5ml一溴十四烷倒入反应器中;
4、取0.7ml苄胺倒入反应器中;
5、超声溶解作为油相;
6、取少量的苯酚和Zn(NO3)2*6H2O溶于水中,浓度为0.000112049mol/ml,作为水相;
7、取7ml水相快速注入上述油相反应器中,形成双连续相微乳液;
8、在常温条件下静置24h;
9、80℃有氧条件下干燥24h;
10、100℃有机物交联反应
11、500℃氮气条件下加热24h;
制备材料的材料性能为:表面面积247.31m2/g;抗压碎强度为45039.76698Pa;收缩率为13.8%;孔隙率为94.1%;储能功率为121kW/kg。
图1是氮气条件下500℃加热24h后的BET孔径分布图;
图2-3是SEM图。由图可知合成的材料是一种多级多孔的整体纳米材料,即由纳米材料自组装形成纳米整体层,整体层在双连续相模板的作用下形成多级多孔的整体材料,多级多孔指孔径范围分布非常广,从nm级一直到um级,存在大量纳米级的电容结构。
实施例2
一种储能与转换纳米材料的制备方法,包括如下步骤:
1、称取0.7g双十二烷基二甲基溴铵,放入反应器(25ml烧杯)中;
2、取0.005g尿素倒入容器中;
3、取5.5ml一溴十四烷倒入反应器中;
4、取1.5ml苄胺倒入反应器中;
5、超声溶解作为油相;
6、取少量苯酚和Ni3/Mn–LDH溶于水相中,浓度为0.000336146mol/ml,作为水相;
7、取7ml水相快速注入上述7ml油相反应器中(非常关键,要确保注入后整个液体是混合乳白,没有分层,没有气泡,没有清液羁留);
8、在常温条件下静置24h;
9、60℃有氧条件下干燥10h;
10、100℃条件下热聚合2h;
11、700℃氮气条件下加热5h;
制备材料的材料性能为:表面面积253.21m2/g;抗压碎强度为31275Pa;收缩率为10%;孔隙率为95.2%;储能功率为95kW/kg;材料煅烧之后形态完整,没有大面积的断裂,具有整体性。
实施例3
一种储能与转换纳米材料的制备方法,包括如下步骤:
1、称取0.7g卵磷脂,放入反应器(25ml烧杯)中;
2、0.5g苯酚倒入反应器中;
3、取6.0ml一溴十四烷倒入反应器中;
4、取1.0ml苄胺倒入反应器中;
5、超声溶解作为油相;
6、取少量苯酚和Ni2/3/Fe1/3–LDH溶于水中,浓度为0.000281174mol/ml,作为水相;
7、取7ml水相和7ml油相,通过双连续相制备装置快速注入上述油相反应器中(非常关键,要确保注入后整个液体是混合乳白,没有分层,没有气泡,没有清液羁留);
8、在常温条件下静置24h;
9、80℃有氧条件下干燥24h;
10、700℃氮气条件下加热24h碳化和氧化还原;制备材料的材料性能为:表面面积287.31m2/g;抗压碎强度为42035.78Pa;收缩率为12.7%;孔隙率为95.1%;储能功率为115kW/kg;材料煅烧之后形态完整,没有大面积的断裂。具有整体性。
以上显示和描述了本发明的基本原理、主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (9)

1.一种储能与转换纳米材料的制备方法,其特征在于:包括如下步骤:
1)向油相的有机溶剂中加入苯酚、碱性有机物、表面活性剂,超声溶解作为油相;
2)将甲醛、金属阳离子溶于水,作为水相;所述的金属阳离子是与氢氧根离子生成Zn-LDH、Ni/Mn-LDH和Ni/Fe-LDH中一种或多种的金属阳离子;
3)将水相与油相快速混合,形成双连续微乳液;
4)静置双连续微乳液;
5)对静置后的双连续微乳液干燥后,再在氮气条件下加热碳化即得储能与转换纳米材料。
2.根据权利要求1所述的一种储能与转换纳米材料的制备方法,其特征在于:步骤1)中,所述的油相的有机溶剂选自正十二烷、一溴十四烷中任意一种或几种的组合。
3.根据权利要求1所述的一种储能与转换纳米材料的制备方法,其特征在于:步骤1)中,所述的表面活性剂选自阳离子或非离子型表面活性剂,其HLB值为2-7。
4.根据权利要求3所述的一种储能与转换纳米材料的制备方法,其特征在于:所述的表面活性剂为双十二烷基二甲基溴化铵和/或卵磷脂;所述的碱性有机物为苄胺,在所述的油相中,苄胺与油相的体积比为0.05~0.2。
5.根据权利要求1所述的一种储能与转换纳米材料的制备方法,其特征在于:步骤2)中,所述的水相中的金属阳离子对应的正电子浓度为0.0001-0.0005mol/mL;金属阳离子正电荷数与碱性有机物理论生成的阴离子负电荷数的摩尔比为0.5~0.65。
6.根据权利要求1所述的一种储能与转换纳米材料的制备方法,其特征在于:所述的油相中苯酚的浓度为0.05g/mL-0.10g/mL;油相与水相的体积比为0.5~1;水相中的甲醛的浓度为0.05g/mL-0.094g/mL。
7.根据权利要求1所述的一种储能与转换纳米材料的制备方法,其特征在于:步骤4)中,所述的静置的条件是室温常压下静置时间≥24小时。
8.根据权利要求1所述的一种储能与转换纳米材料的制备方法,其特征在于:步骤5)中,所述的干燥条件是在50-80℃有氧条件下干燥,时间为24h;热聚合的条件是100-120℃条件下聚合,时间为3-5h。
9.根据权利要求1所述的一种储能与转换纳米材料的制备方法,其特征在于:在所述的步骤5),所述的氮气条件下加热碳化的条件是先在300-350℃下加热10-12h,再在500-700℃氮气条件下加热18-24h。
CN201910560902.3A 2019-06-26 2019-06-26 一种储能与转换纳米材料的制备方法 Active CN110289174B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910560902.3A CN110289174B (zh) 2019-06-26 2019-06-26 一种储能与转换纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910560902.3A CN110289174B (zh) 2019-06-26 2019-06-26 一种储能与转换纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN110289174A true CN110289174A (zh) 2019-09-27
CN110289174B CN110289174B (zh) 2021-03-19

Family

ID=68006161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910560902.3A Active CN110289174B (zh) 2019-06-26 2019-06-26 一种储能与转换纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN110289174B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136808A1 (en) * 2007-11-27 2009-05-28 Kang Soon-Ki Porous carbon structure, method for preparing same, electrode catalyst for fuel cell, and electrode and membrane-electrode assembly including same
CN101572309A (zh) * 2009-06-08 2009-11-04 北京理工大学 一种复合掺杂α-Ni(OH)2的微乳液合成法
CN102509786A (zh) * 2011-10-11 2012-06-20 北京化工大学 一种多孔金属氧化物-碳复合薄膜电极及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136808A1 (en) * 2007-11-27 2009-05-28 Kang Soon-Ki Porous carbon structure, method for preparing same, electrode catalyst for fuel cell, and electrode and membrane-electrode assembly including same
CN101572309A (zh) * 2009-06-08 2009-11-04 北京理工大学 一种复合掺杂α-Ni(OH)2的微乳液合成法
CN102509786A (zh) * 2011-10-11 2012-06-20 北京化工大学 一种多孔金属氧化物-碳复合薄膜电极及其制备方法

Also Published As

Publication number Publication date
CN110289174B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
Loganathan et al. Recent studies on polymeric materials for supercapacitor development
Xiong et al. The recent progress on three-dimensional porous graphene-based hybrid structure for supercapacitor
Lee et al. Recent advances in preparations and applications of carbon aerogels: A review
Zhou et al. Carbon nanofiber-based three-dimensional nanomaterials for energy and environmental applications
Liu et al. Holey graphene for electrochemical energy storage
Zhang et al. Nanocellulose-enabled, all-nanofiber, high-performance supercapacitor
Li et al. Resorcinol-formaldehyde based carbon aerogel: Preparation, structure and applications in energy storage devices
Zhang et al. Morphology-dependent NiMoO4/carbon composites for high performance supercapacitors
Zhang et al. Recent advances in porous graphene materials for supercapacitor applications
Zou et al. One-pot synthesis of ternary polypyrrole⿿ Prussian-blue⿿ graphene-oxide hybrid composite as electrode material for high-performance supercapacitors
Wang et al. Mesoporous activated carbon spheres derived from resorcinol-formaldehyde resin with high performance for supercapacitors
Wei et al. Carbon quantum dot-induced self-assembly of ultrathin Ni (OH) 2 nanosheets: a facile method for fabricating three-dimensional porous hierarchical composite micro-nanostructures with excellent supercapacitor performance
Zhou et al. Lignin-derived hierarchical mesoporous carbon and NiO hybrid nanospheres with exceptional Li-ion battery and pseudocapacitive properties
US20040047798A1 (en) Mesoporous carbon material, carbon/metal oxide composite materials, and electrochemical capacitors using them
Dong et al. Hierarchically structured graphene-based supercapacitor electrodes
Zhou et al. Hierarchical nitrogen-doped porous carbon/carbon nanotube composites for high-performance supercapacitor
Wen et al. Core–shell-structured MnO 2@ carbon spheres and nitrogen-doped activated carbon for asymmetric supercapacitors with enhanced energy density
Fang et al. Synthesis of uniform discrete cage-like nitrogen-doped hollow porous carbon spheres with tunable direct large mesoporous for ultrahigh supercapacitive performance
CN113517143B (zh) 一种复合电极材料及其制备方法与用途
Shi et al. Synthesis, structure, and applications of lignin-based carbon materials: a review
Feng et al. Nitrogen-doped lignin-derived porous carbons for supercapacitors: Effect of nanoporous structure
Feng et al. Facile fabrication and capacitive performance of glucose-derived porous carbon
Zhu et al. In situ synthesis of porous Co 3 O 4 polyhedra/carbon nanotubes heterostructures for highly efficient supercapacitors
Zhang et al. Compression-tolerant supercapacitor based on NiCo2O4/Ti3C2Tx MXene/reduced graphene oxide composite aerogel with insights from density functional theory simulations
Ma et al. Acetone dissolution to prepare N-doped hierarchical porous carbon for supercapacitor

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant