CN110284259B - 一种复合热电薄膜材料及其制备方法 - Google Patents

一种复合热电薄膜材料及其制备方法 Download PDF

Info

Publication number
CN110284259B
CN110284259B CN201910567819.9A CN201910567819A CN110284259B CN 110284259 B CN110284259 B CN 110284259B CN 201910567819 A CN201910567819 A CN 201910567819A CN 110284259 B CN110284259 B CN 110284259B
Authority
CN
China
Prior art keywords
ethylenedioxythiophene
film material
prepare
thin film
composite thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910567819.9A
Other languages
English (en)
Other versions
CN110284259A (zh
Inventor
付甲
邱一民
韩慢慢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Shiyou University
Original Assignee
Xian Shiyou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Shiyou University filed Critical Xian Shiyou University
Priority to CN201910567819.9A priority Critical patent/CN110284259B/zh
Publication of CN110284259A publication Critical patent/CN110284259A/zh
Application granted granted Critical
Publication of CN110284259B publication Critical patent/CN110284259B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4209Inorganic fibres
    • D04H1/4242Carbon fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种复合热电薄膜材料及其制备方法,属于复合材料的制备技术领域,包括以下步骤:3,4‑乙撑二氧噻吩和碳纳米管混合,制得混合浆料;聚(3,4‑乙撑二氧噻吩)纳米纤维分散于极性质子有机溶剂Ⅰ中,并加入所述混合浆料,制得母液A;碳纤维分散于极性质子有机溶剂Ⅱ中,制得母液B;将所述母液A和所述母液B混合均匀后,蒸发溶剂,制得薄膜;将所述薄膜进行热处理,制得复合热电薄膜材料;本发明无需对碳纳米管进行表面修饰或改性,即可使碳纳米管在PEDOT导电聚合物基体中进行良好的分散,增强了热电薄膜导电性能和导热性能,为碳纳米管/PEDOT导电聚合物/碳纤维复合材料的进一步应用提供了良好的条件。

Description

一种复合热电薄膜材料及其制备方法
技术领域
本发明属于复合材料的制备技术领域,具体涉及一种复合热电薄膜材料及其制备方法。
背景技术
聚(3,4-乙撑二氧噻吩)(PEDOT)在德国的Bayer AG实验室被首次合成出来,是噻吩类导电聚合物的典型代表,通过在噻吩环的3位和4位引入乙撑二氧基得到的,其导电的掺杂状态非常稳定。PEDOT是聚噻吩的重要衍生物之一,具有很高的电导率、高的环境稳定性和相对较低的氧化聚合电位等。作为新近出现的导电高分子材料之一,近年来受到了人们的极大关注,在基础与应用研究方面均取得了很多重要进展和突破。例如,Heraeus和H.C.Stark公司已有多个系列的PEDOT与聚(4-苯乙烯磺酸)混合溶液(PEDOT:PSS)的商品化牌号CleviosTM销售,详情可参见公司相关网站。然而,目前大多数热电材料薄膜的制备是将导电性良好的PEDOT粒子附着在不导电的聚苯乙烯磺酸钠(PSS)主链上,二者在水溶液中的分布呈杂乱无序状,形成一种稳定的PEDOT/PSS悬浮液。导电材料(石墨烯、碳纳米管、碳纤维等)通常具有很高的杨氏模量和剪切模量值,可以起到促进导电和增韧的双重效果,此外,其还具有耐强酸、强碱性,用于柔性电热材料的制备中也具有良好的稳定性。但是导电材料造价高、生产速率低,限制了其大规模使用。为了进一步扩展上述导电材料的应用,本发明提供了一种复合热电薄膜材料的制备方法,为碳纤维/碳纳米管/PEDOT导电聚合物材料的进一步深入应用提供了一种可能。
发明内容
本发明提供了一种复合热电薄膜材料及其制备方法,解决了上述技术问题。
本发明第一个目的是提供一种复合热电薄膜材料的制备方法,包括以下步骤:
3,4-乙撑二氧噻吩(EDOT)和碳纳米管混合,制得混合浆料;聚(3,4-乙撑二氧噻吩)纳米纤维分散于极性质子有机溶剂Ⅰ中,并加入所述混合浆料,制得母液A;碳纤维分散于极性质子有机溶剂Ⅱ中,制得母液B;将所述母液A和所述母液B混合均匀后,蒸发溶剂,制得薄膜;将所述薄膜进行热处理,制得复合热电薄膜材料。
优选地,所述聚(3,4-乙撑二氧噻吩)纳米纤维由以下步骤制得:
将3,4-乙撑二氧噻吩单体加入氧化剂和表面活性剂,100℃反应2.5~3.5h,制得聚(3,4-乙撑二氧噻吩)纳米纤维;
所述3,4-乙撑二氧噻吩单体和氧化剂摩尔比为1:0.5~2,所述表面活性剂占所述3,4-乙撑二氧噻吩单体质量百分比为0.25%~1%。
优选地,所述氧化剂为含过氧基的过二硫酸根类强氧化剂。
优选地,所述表面活性剂为水溶性含氟聚氧乙烯醚类非离子表面活性剂。
优选地,所述混合浆料中3,4-乙撑二氧噻吩单体和碳纳米管质量比为8~10:1。
优选地,所述母液A中聚(3,4-乙撑二氧噻吩)纳米纤维和混合浆料质量比为0.5~1.5:1。
优选地,所述碳纤维和所述碳纳米管质量比为0.5~1.5:1。
优选地,所述极性质子有机溶剂Ⅰ和所述极性质子有机溶剂Ⅱ相同,且均为甲醇或乙醇。
优选地,所述热处理过程为:将所述薄膜放入管式加热炉,在130~150℃下退火处理10~20min,至50℃出炉,即可制得到复合热电薄膜材料。
本发明的第二个目的是提供一种上述制备方法制得的复合热电薄膜材料。
本发明与现有技术相比具有如下有益效果:
本发明通过将碳纤维与PEDOT导电聚合物分别置于相同的有机溶剂中并进行混合,导电性良好的PEDOT粒子附着在碳纤维结晶性主链段上,且与碳纳米管之间的非共价键力作用制备出具备高导热导电的热电薄膜,无需对碳纳米管进行表面修饰或改性,制备方法绿色环保,为碳纤维/碳纳米管/PEDOT导电聚合物热电薄膜的进一步应用提供了良好的条件,本发明所制得的热电薄膜在柔性固态超级电容器,柔性热电材料织物和可穿戴电子领域等方面有着广泛的应用前景。
附图说明
图1是实施例1制备的EDOT/碳纳米管混合浆料制备成薄膜的扫描电镜图;
图2是实施例1制备的复合热电薄膜材料扫描电镜图。
具体实施方式
为了使本领域技术人员更好地理解本发明的技术方案能予以实施,下面结合具体实施例和附图对本发明作进一步说明,但所举实施例不作为对本发明的限定。
实施例1
一种复合热电薄膜材料的制备方法,包括以下步骤:
S1:将EDOT单体加入过硫酸铵,杜邦水溶性含氟聚氧乙烯醚类非离子表面活性剂(Capstone FS-30,DuPont),100℃反应3h,制备PEDOT纳米纤维;EDOT单体和过硫酸铵摩尔比为1:1,表面活性剂是EDOT单体质量的0.5%;
S2:EDOT单体和碳纳米管按质量比为9:1混合搅拌均匀,制得EDOT/碳纳米管混合浆料;
S3:将S1制备的PEDOT纳米纤维分散于甲醇,加入等质量的S2制备的EDOT/碳纳米管混合浆料,得到母液A;
S4:将纯化的碳纤维分散在甲醇中,所述碳纤维和所述碳纳米管质量比为1:1,进行超声处理40~80min,得到混合溶液B;
S5:将母液A和混合溶液B按质量比为5:1混合,搅拌1.5h后转入旋转蒸发设备中直至溶剂蒸干,采用真空抽滤法抽滤到微孔滤膜上,干燥;
S6:最后将薄膜烘干后从滤膜剥离下来,放入管式加热炉,在140℃下退火处理15min,至50℃出炉,即可压制得到复合热电薄膜材料。
实施例2
一种复合热电薄膜材料的制备方法,包括以下步骤:
S1:将EDOT单体加入过硫酸铵,表面活性剂(杜邦水溶性含氟聚氧乙烯醚类非离子表面活性剂Capstone FS-30,DuPont),100℃反应2.5h,制备PEDOT纳米纤维;EDOT单体和过硫酸铵摩尔比为1:0.5,表面活性剂是EDOT单体质量的0.25%;
S2:EDOT单体和碳纳米管按质量比为8:1混合搅拌均匀,制得EDOT/碳纳米管混合浆料;
S3:将S1制备的PEDOT纳米纤维分散于乙醇,加入S2制备的EDOT/碳纳米管混合浆料,PEDOT纳米纤维和EDOT/碳纳米管混合浆料质量比为0.5:1,得到母液A;
S4:将纯化的碳纤维分散在乙醇中,所述碳纤维和所述碳纳米管质量比为0.5:1,进行超声处理40~80min,得到混合溶液B;
S5:将母液A和混合溶液B按质量比为4:1混合,搅拌1h后转入旋转蒸发设备中直至溶剂蒸干,采用真空抽滤法抽滤到微孔滤膜上,干燥;
S6:最后将薄膜烘干后从滤膜剥离下来,放入管式加热炉,在130℃下退火处理10min,至50℃出炉,即可压制得到复合热电薄膜材料。
实施例3
一种复合热电薄膜材料的制备方法,包括以下步骤:
S1:将EDOT单体加入过硫酸铵,表面活性剂(杜邦水溶性含氟聚氧乙烯醚类非离子表面活性剂Capstone FS-30,DuPont),100℃反应3.5h,制备PEDOT纳米纤维;EDOT单体和过硫酸铵摩尔比为1:2,表面活性剂是EDOT单体质量的1%;
S2:EDOT单体和碳纳米管按质量比为10:1混合搅拌均匀,制得EDOT/碳纳米管混合浆料;
S3:将S1制备的PEDOT纳米纤维分散于甲醇,加入等质量的S2制备的EDOT/碳纳米管混合浆料,PEDOT纳米纤维和EDOT/碳纳米管混合浆料质量比为1.5:1,得到母液A;
S4:将纯化的碳纤维分散在甲醇中,所述碳纤维和所述碳纳米管质量比为1.5:1,进行超声处理40~80min,得到混合溶液B;
S5:将母液A和混合溶液B按质量比为6:1混合,搅拌2h后转入旋转蒸发设备中直至溶剂蒸干,采用真空抽滤法抽滤到微孔滤膜上,干燥;
S6:最后将薄膜烘干后从滤膜剥离下来,放入管式加热炉,在150℃下退火处理20min,至50℃出炉,即可压制得到复合热电薄膜材料。
实施例1~3制备的复合热电薄膜材料性能近似,导电率均在75S/cm以上,我们仅以实施例1制备的复合热电薄膜材料为例,说明本发明提供的一种复合热电薄膜材料及其制备方法,测试方法:采用NHT-CSM纳米压痕仪下的原子力显微镜(AFM)测得样品的表面形貌和杨氏模量值,强度拉伸实验测试方法如下:采用切割法制备试样,试样采用长150mm、宽(15±0.1)mm的长条形,在SYSTESTER1002型电子拉力试验机下以试验速度为250mm/min分别进行纵向和横向拉伸测试。此外,采用四探针法在电阻测试仪上测试出薄膜的电阻率。电导率的测量则在安捷伦4294A型阻抗分析仪直接进行测试。JSM-7100F型扫描电镜用于观察显微组织形貌,SEM下碳纳米管/PEDOT薄膜,碳纳米管/PEDOT/碳纤维薄膜的形貌分别如图1和图2所示。如图1所示,复合前,将S2中混合浆料烘干所得的薄膜形貌,含纳米管的PEDOT复合热电薄膜材料形貌呈现细线型分布,纳米管附着在PEDOT导电聚合物上,增强了基体的连续性。如图2所示,复合后,含纳米管及碳纤维的PEDOT复合热电薄膜材料形貌呈现纤维状分布,PEDOT导电聚合物附着在纳米管和碳纤维上,几乎呈现均匀分布,极大地增强了基体的强度和导电率。
经测试,实施例1制备的复合热电薄膜材料在室温下的强度为60~110MPa,功率因子达8.8μW/mK 2,导电率80S/cm。在薄膜电阻测试为1000Ω时,最大输出功率可达630nW。本发明通过将碳纤维与PEDOT导电聚合物分别置于相同的有机溶剂中并进行混合,导电性良好的PEDOT粒子附着在碳纤维结晶性主链段上,且与碳纳米管之间的非共价键力制备得到同时具备高导热导电的热电薄膜,无需对碳纳米管进行表面修饰或改性,制备方法绿色环保,为碳纤维/碳纳米管/PEDOT导电聚合物热电薄膜的进一步应用提供了良好的条件,本发明所制得的热电薄膜在柔性固态超级电容器,柔性热电材料织物和可穿戴电子领域等方面有着广泛的应用前景。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内也意图包含这些改动和变型在内。

Claims (6)

1.一种复合热电薄膜材料的制备方法,其特征在于,包括以下步骤:
3,4-乙撑二氧噻吩和碳纳米管混合,制得混合浆料;聚(3,4-乙撑二氧噻吩)纳米纤维分散于极性质子有机溶剂Ⅰ中,并加入所述混合浆料,制得母液A;碳纤维分散于极性质子有机溶剂Ⅱ中,制得母液B;将所述母液A和所述母液B混合均匀后,蒸发溶剂,制得薄膜;将所述薄膜放入管式加热炉,在130~150℃下退火处理10~20min,至50℃出炉,制得复合热电薄膜材料;
所述混合浆料中3,4-乙撑二氧噻吩单体和碳纳米管质量比为8~10:1;所述母液A中聚(3,4-乙撑二氧噻吩)纳米纤维和混合浆料质量比为0.5~1.5:1;所述碳纤维和所述碳纳米管质量比为0.5~1.5:1。
2.根据权利要求1所述的复合热电薄膜材料的制备方法,其特征在于,所述聚(3,4-乙撑二氧噻吩)纳米纤维由以下步骤制得:
将3,4-乙撑二氧噻吩单体加入氧化剂和表面活性剂,100℃反应2.5~3.5h,制得聚(3,4-乙撑二氧噻吩)纳米纤维;
所述3,4-乙撑二氧噻吩单体和氧化剂摩尔比为1:0.5~2,所述表面活性剂占所述3,4-乙撑二氧噻吩单体质量百分比为0.25%~1%。
3.根据权利要求2所述的复合热电薄膜材料的制备方法,其特征在于,所述氧化剂为含过氧基的过二硫酸根类强氧化剂。
4.根据权利要求2所述的复合热电薄膜材料的制备方法,其特征在于,所述表面活性剂为水溶性含氟聚氧乙烯醚类非离子表面活性剂。
5.根据权利要求1所述的复合热电薄膜材料的制备方法,其特征在于,所述极性质子有机溶剂Ⅰ和所述极性质子有机溶剂Ⅱ相同,且均为甲醇或乙醇。
6.根据权利要求1~5任一项制备方法制得的复合热电薄膜材料。
CN201910567819.9A 2019-06-27 2019-06-27 一种复合热电薄膜材料及其制备方法 Active CN110284259B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910567819.9A CN110284259B (zh) 2019-06-27 2019-06-27 一种复合热电薄膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910567819.9A CN110284259B (zh) 2019-06-27 2019-06-27 一种复合热电薄膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN110284259A CN110284259A (zh) 2019-09-27
CN110284259B true CN110284259B (zh) 2020-11-24

Family

ID=68019295

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910567819.9A Active CN110284259B (zh) 2019-06-27 2019-06-27 一种复合热电薄膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN110284259B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540335B (zh) * 2021-07-15 2022-11-15 陕西科技大学 一种S掺杂SnSe/CNTs复合柔性薄膜及其制备方法
CN113861483B (zh) * 2021-10-28 2023-03-14 深圳大学 一种基于金属有机框架的复合热电材料的制备方法
CN117586539B (zh) * 2024-01-18 2024-05-14 成都飞机工业(集团)有限责任公司 一种高导电自支撑碳纳米管复合薄膜的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152425A1 (ja) * 2014-04-04 2015-10-08 新日鐵住金株式会社 透明電極、及び有機電子デバイス
WO2016086211A1 (en) * 2014-11-28 2016-06-02 Arizona Board Of Regents For The University Of Arizona Sulfonated tetrafluoroethylene based ionomer coated carbon fiber
US9901018B1 (en) * 2017-04-18 2018-02-20 Delphi Technologies, Inc. Electrically conductive hybrid polymer material
CN107146842B (zh) * 2017-06-13 2019-07-05 同济大学 自支撑柔性PEDOT纳米纤维/SWCNTs复合热电材料薄膜及其制备方法
CN108470598A (zh) * 2018-04-06 2018-08-31 天津工业大学 柔性透明导电薄膜及其制备方法

Also Published As

Publication number Publication date
CN110284259A (zh) 2019-09-27

Similar Documents

Publication Publication Date Title
CN110284259B (zh) 一种复合热电薄膜材料及其制备方法
Ge et al. Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons
Wang et al. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network
Zheng et al. Nanocellulose-mediated hybrid polyaniline electrodes for high performance flexible supercapacitors
Mirabedini et al. Developments in conducting polymer fibres: from established spinning methods toward advanced applications
Song et al. Freestanding needle-like polyaniline–coal based carbon nanofibers composites for flexible supercapacitor
WO2021114321A1 (zh) 一种柔性导电纤维膜材料及其制备方法
CN101654555B (zh) 碳纳米管/导电聚合物复合材料的制备方法
CN109736092B (zh) 一种导电聚苯胺包覆聚酰亚胺基多孔有机纳米复合纤维膜
Luo et al. In-situ polymerization of PPy/cellulose composite sponge with high elasticity and conductivity for the application of pressure sensor
CN110938894B (zh) 一种抗冻、自修复导电纳米复合水凝胶纤维及其制备方法
CN109456645B (zh) 一种免表面活性剂石墨烯复合导电油墨
Jiang et al. Flexible and multi-form solid-state supercapacitors based on polyaniline/graphene oxide/CNT composite films and fibers
CN105463613A (zh) 聚酰胺6-石墨烯量子点/碳纳米管防静电纤维及制备
Zubair et al. Electrochemical properties of PVA–GO/PEDOT nanofibers prepared using electrospinning and electropolymerization techniques
Wang et al. Facile production of natural silk nanofibers for electronic device applications
Ramirez et al. Polyaniline and carbon nanotube coated pineapple-polyester blended fabric composites as electrodes for supercapacitors
CN112151768B (zh) 一种挤出压延制备硅碳负极电极片的方法及电极片
Qiu et al. Electrospun carboxymethyl cellulose acetate butyrate (CMCAB) nanofiber for high rate lithium-ion battery
Wang et al. Comparative study on polyvinyl chloride film as flexible substrate for preparing free-standing polyaniline-based composite electrodes for supercapacitors
Liu et al. A hydrogel-mediated scalable strategy toward core-shell polyaniline/poly (acrylic acid)-modified carbon nanotube hybrids as efficient electrodes for supercapacitor applications
Liang et al. Flexible and freestanding PANI: PSS/CNF nanopaper electrodes with enhanced electrochemical performance for supercapacitors
Yang et al. Ag nanowires functionalized cellulose textiles for supercapacitor and photothermal conversion
Smirnov et al. Dual doped electroactive hydrogelic fibrous mat with high areal capacitance
CN110164706B (zh) 一种细菌纤维素-碳纳米管/聚苯胺复合微纤维及微型超级电容器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant