CN110272621B - 一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用 - Google Patents

一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用 Download PDF

Info

Publication number
CN110272621B
CN110272621B CN201810203380.7A CN201810203380A CN110272621B CN 110272621 B CN110272621 B CN 110272621B CN 201810203380 A CN201810203380 A CN 201810203380A CN 110272621 B CN110272621 B CN 110272621B
Authority
CN
China
Prior art keywords
tung oil
graphene oxide
based polyurethane
bpu
hybrid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810203380.7A
Other languages
English (en)
Other versions
CN110272621A (zh
Inventor
张永胜
魏柳荷
张亚涛
马军
张霄玲
杨淑珍
王文娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Huapu Sealing Material Co ltd
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN201810203380.7A priority Critical patent/CN110272621B/zh
Publication of CN110272621A publication Critical patent/CN110272621A/zh
Application granted granted Critical
Publication of CN110272621B publication Critical patent/CN110272621B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/229Integrated processes (Diffusion and at least one other process, e.g. adsorption, absorption)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0079Manufacture of membranes comprising organic and inorganic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/76Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
    • B01D71/82Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/36Hydroxylated esters of higher fatty acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4829Polyethers containing at least three hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6696Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/36 or hydroxylated esters of higher fatty acids of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

一种桐油基聚氨酯‑氧化石墨烯杂化膜、其制备方法及应用,包括如下步骤:将桐油基多元醇与聚丙三醇加入反应瓶中,搅匀后,调pH为酸性,再110~130℃抽真空1.5~3h;结束后,将反应瓶中充满保护气,在保护气氛下降温到70±5℃加入二苯基甲烷二异氰酸酯,升温至80±5℃搅拌1.5~3h后,加入无水甲苯使反应物的粘度降低40%后,降温至60±5℃,加入扩链剂,70±5℃反应0.5~1h后再在80±5℃反应2‑2.5h,然后升温至90±5℃反应至有拔丝现象即可停止反应,得到桐油基聚氨酯;将氧化石墨烯溶解到DMF中,再加入桐油基聚氨酯,搅拌12h以上,得到铸膜液;将铸膜液倾倒在聚四氟乙烯盘中,成膜即得。

Description

一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用
技术领域
本发明属于石墨烯领域,具体涉及一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用。
背景技术
氧化石墨烯是石墨烯的重要衍生物,也是一种良好有机-无机杂化膜的良好的无机添加材料。对CO2气体有着良好的捕捉和选择功能,且由于热稳定性和化学稳定性良好,其拉伸强度大但容易脆断等特点。将GO与PU杂化后其不仅保留了GO强度大、化学稳定性好和电、热导性较高的优良性质,还可以遮盖它易脆断的缺点,同时PU膜捕捉CO2的效果也会改善。
聚氨酯与氧化石墨烯杂化膜制备的难点在于,氧化石墨烯的亲水性和热塑性聚氨酯的疏水性决定两者相容性差的特点。很难找到一种对二者溶解性都良好的溶剂。所以,一般都先将氧化石墨烯改性后,使得氧化石墨烯在有机溶剂的溶解度增大,从而解决二者相容性问题。GO/PU杂化膜材料的制备一般有几种方法:
(1)溶液共混法:先将氧化石墨烯表面含氧官能团用异氰酸酯等化学改性,分散到有机溶剂,再将聚氨酯溶解到溶剂中进行共混,溶剂挥发后成膜。
(2)原位聚合法;先将氧化石墨烯与合成聚氨酯的单体多异氰酸酯混合溶解于精制的极性有机溶剂中,加入引发剂使氧化石墨烯表面羟基与异氰酸酯反应,再加入多元醇或者扩链剂与多异氰酸酯继续发生聚合反应,制备复合材料
(3)熔融共混法:热剥离氧化石墨烯后,在高温熔融条件下聚氨酯与GO混合,制备成膜。
Hyunwoo Kim等人通过加工不同形态和性质的脱落石墨增强热塑性聚氨酯(TPU),首次比较不同的方法从氧化石墨烯(GO)中剥离的碳片:化学改性(异氰酸酯处理的GO,iGO)和热剥离(热还原GO,TRG)和三种不同的分散方法:溶剂共混,原位聚合和熔融配混。结果发现基于溶剂的方法对获得分布良好的TRG比熔体共混方法更为有效。在加入了低于0.5wt%的TRG可产生导电TPU,而且只有含量3wt%iGO的TPU可以实现高达10倍的抗张强度并观察到TPU的氮渗透降低90%。
赵丽等利用改进的Hummer法,通过改变氧化剂KMnO4的量制备了一系列不同氧化程度氧化石墨烯(GO),并通过原位聚合制备不同氧化程度不同氧化石墨烯含量的聚氨酯(PU)复合材料,且通过GO形态学表征和用CO2/N2体积比1:9的混合气研究GO/PU膜对于CO2和N2的渗透性能。结果表明,随着氧化剂的增加,石墨烯表面中引入含氧官能团的含量增大,氧化石墨烯的层间距增大且层数减少,这使得它在DMAc的溶解度增大,且在聚氨酯杂化膜中分散性变好,氧化石墨烯在聚氨酯中的团聚问题减少。含有分布均匀的GO的混合膜显示出较高的CO2渗透率和渗透率选择性。但加入过多的氧化剂使得 GO片上的表面缺陷增加,且在高含量的GO下混合膜中GO聚集体的形成抑制膜的性能。
发明内容
本发明的目的在于提供一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用。
基于上述目的,本发明采取如下技术方案:
一种桐油基聚氨酯-氧化石墨烯杂化膜的制备方法,包括如下步骤:
(1)将桐油基多元醇与聚丙三醇加入反应瓶中,搅匀后,调pH为酸性,再110~130℃抽真空1.5~3h;
(2)结束后关闭真空阀,将反应瓶中充满保护气,在保护气氛下降温到70±5℃加入二苯基甲烷二异氰酸酯,升温至80±5℃搅拌1.5~3h后,加入无水甲苯使反应物浓度(固含量)降低40%后,降温至60±5℃,加入扩链剂1,4-丁二醇,升温至70±5℃反应0.5~1h后再升温至80±5℃反应2-2.5h,然后升温至90±5℃反应至有拔丝现象即可停止反应,得到桐油基聚氨酯;
(3)将Hummer法制得的氧化石墨烯溶解到DMF中超声至少8h,再加入桐油基聚氨酯,搅拌12h以上,得到铸膜液;
(4)将铸膜液倾倒在聚四氟乙烯盘中,干燥成膜后即可得到桐油基聚氨酯-氧化石墨烯杂化膜。
进一步地,所述桐油基多元醇的羟值为282mgKOH/g,所述聚丙三醇的重均分子量为2000。
较好地,桐油多元醇基的OH、二苯基甲烷二异氰酸酯的NCO和1,4丁二醇的OH 摩尔比为1:3:2。
进一步地,步骤(1)中调pH采用磷酸调节,调节pH=5。
进一步地,所述磷酸浓度为85wt%。
进一步地,所述步骤(3)中氧化石墨烯的质量为桐油基聚氨酯质量的0.1~10%。
较好地,所述步骤(3)中干燥成膜是指在60±5℃干燥至少24h。
上述制备方法制得的桐油基聚氨酯-氧化石墨烯杂化膜。
所述桐油基聚氨酯-氧化石墨烯杂化膜在吸附CO2中的应用。
本发明采用加入部分桐油基多元醇取代石油化工产品聚醚多元醇,采用两步法——本体预聚、溶剂中扩链反应制备桐油基聚氨酯(简称BPU)。并用Hummer法制备氧化石墨烯(简称GO)。再将氧化石墨烯与桐油基聚氨酯按一定比例溶液共混后,溶剂挥发成GO-BPU杂化膜。最后通过FTIR, DSC,SEM,TGA及水接触角测试表征其结构及性能,并对不同含量GO-BPU膜表征机械性能及气体渗透性测试。结果表明:
(1)桐油基的加入使聚氨酯的玻璃化温度、热稳定性都提高。
(2)氧化石墨烯的加入使杂化膜的热稳定性提高。
(3)机械性能在GO含量0.5%-2.0%得到良好的改善,拉伸强度和断裂延伸率都提高一倍左右。但当GO含量过高时会暴露无机物脆断的恶劣性质。
(4)GO的加入使聚氨酯杂化膜的疏水性减弱,亲水性增加。
(5)GO的加入CO2/N2的气体分离选择性得到提高,但高含量时GO团聚会恶化气体分离和渗透效果。
附图说明
图1为实施例1制得的BPU的红外光谱图;
图2是PU、实施例1制得的BPU和实施例1制得的GO-BPU的DSC图;
图3是BPU、 2.0% GO/BPU的TGA热分析图;
图4 是PU、BPU、GO/BPU膜的应力应变曲线图;
图5 为PU、BPU、GO/BPU膜的拉伸强度(MPa)(A图),断裂延伸率(%)(B图);其中,a为PU,b为BPU,c为0.5%GO/BPU,d为1.5%GO/BPU,e为2.0%GO/BPU,f为5%GO/BPU,g为10%GO/BPU;
图6为 BPU (a) ,1.5%GO/BPU (b) 的SEM图像;
图7为不同含量GO/BPU在不同压力下CO2 渗透性结果图;
图8不同含量GO/BPU在不同压力下CO2 /N2 选择性结果图。
具体实施方式
以下结合具体实施例对本发明的技术方案作进一步详细说明。
下述实施例中实验材料情况如下表1和表2所示,
表1 化学试剂情况表
Figure DEST_PATH_IMAGE002
表2实验仪器及设备
Figure DEST_PATH_IMAGE004
实施例1
一种桐油基聚氨酯-氧化石墨烯杂化膜的制备方法,包括如下步骤:
一、桐油基聚氨酯(BPU)的制备
(1)市售分析纯甲苯加入氢化钙常压回流5h后,蒸馏除水即可得到无水甲苯,备用;1,4-丁二醇(BDO)减压蒸馏除水,备用。
(2)理论上当聚合反应中NCO:OH摩尔比为1︰1时,线型聚氨酯分子量可以无限大,因此选择桐油基多元醇的OH: MDI的NCO:BDO的OH 摩尔比为1:3:2。具体操作如下:
桐油基多元醇3.00g与PPG2000 15.00g混合在100ml四口圆底烧瓶,采用聚四氟乙烯搅拌浆进行机械搅拌,水银温度计进行实测温度,真空表检测瓶中真空度,加入85wt%磷酸1滴调节多元醇pH为酸性(测pH约为5)。
检查气密性良好后,选用合适大小的电加热套进行加热到实测瓶中液体温度稳定在120℃左右用带干燥塔油泵抽真空除水2h。结束后关闭真空阀,向反应瓶中充满高纯度氩气避免空气中的水分进入。Ar气保护下降温到70℃加入MDI 11.425g,升温至80℃进行预聚反应,反应时间为2h,加入无水甲苯使预聚体粘度降低至40%后,降温至60℃加入扩链剂BDO2.745g 进行扩链反应,升温至70℃反应半小时后再升温至80℃反应2-2.5h后,升温至90℃,在瓶中明显看到粘度很大用滴管取样时发现有拔丝现象时说明分子量较大即可停止反应。
此外还制备了无桐油基的聚氨酯(PU),制备方法与上述步骤相同,多元醇的OH:MDI的NCO:BDO的OH 摩尔比=1:3:2但多元醇只含有PPG2000,不含桐油基多元醇,用它与含桐油基聚氨酯进行对比。
二、氧化石墨烯(GO)的制备
选用500ml的圆底烧瓶,首先用量筒量取,在烧瓶中加入200 mL体积比为9:1的(95~98wt%)浓硫酸/磷酸(磷酸浓度为85wt%)混合液。再取9.00 g KMnO4 分批加入。最后取3.00 g石墨粉末分批加入混合。在50℃集热式恒温加热磁力搅拌器油浴中机械搅拌反应26h。反应结束后,先将反应物冷却至室温,转移到1L的大烧杯中。在烧杯中加入适量的冰块并将烧杯放置在冰水浴中。不断滴加 30wt% H2O2 并保持搅拌,直到反应物变成金黄色溶液为止。超声1.5 h后,8000rpm离心10 min,然后用30wt%的盐酸、无水乙醇、去离子水各自洗涤离心3次后-20℃冷冻干燥48h,再用真空干燥箱60℃干燥24h。
三、GO/ BPU杂化膜的制备
首先测试氧化石墨烯在丙酮,四氢呋喃(THF),N,N-二甲基甲酰胺(DMF)中的溶解度,发现在DMF中的溶解度是最大。选用DMF作溶剂。称量好不同重量的氧化石墨烯,使石墨烯的质量分别为桐油基聚氨酯质量的0.1%,0.15%,0.3%,0.35%,0.5%,1%,1.5%,2.0%,5%,10%,将称量好的10份氧化石墨烯分别溶解到10ml DMF中,在超声清洗器中超声8h,再将桐油基聚氨酯BPU溶解在已经充分分散的GO的有机溶剂中,并磁力搅拌12h,使BPU与GO混合均匀,可超声辅助分散。最后将铸膜液倾倒在聚四氟乙烯盘中,在电热恒温鼓风干燥箱中60℃下干燥24h使溶剂挥发完全,成膜,即得GO/BPU杂化膜(相对应的杂化膜即为0.1%GO/BPU,0.15%GO/BPU,0.3%GO/BPU,0.35%GO/BPU,0.5%GO/BPU,1%GO/BPU,1.5%GO/BPU,2.0%GO/BPU,5%GO/BPU,10%GO/BPU)。
BPU、GO、GO/ BPU杂化膜的表征和性能测试
1、傅里叶红外光谱测试(FTIR)
室温条件下使用傅里叶红外光谱仪表征制备的桐油基聚氨酯(BPU),吸收峰在4000-400cm-1之间。如图1所示,二苯基甲烷二异氰酸酯(MDI)的-NCO官能团对应的2260cm-1左右无吸收峰,这说明缩合聚合反应已进行完全。3334cm-1左右的吸收峰对应N-H键,说明异氰酸酯的-NCO官能团与羟基-OH加成反应生成了氨基甲酸酯官能团-NH-COO-。不与N-H形成氢键的自由C=O键的吸收峰在1740cm-1,而与N-H形成氢键的C=O键的吸收峰在1700cm-1左右,聚醚多元醇中的醚键的吸收峰在1108cm-1
2、差示扫描热仪DSC测试及热重TGA测试
利用DSC进行TPU膜,BPU膜,不同含量GO/BPU杂化膜的热分析测试,升温速率为10℃/min,N2流20ml/min,升温区间为 -70℃~450℃。
利用TG进行BPU膜,GO/BPU杂化膜的热分析测试,升温速率为10℃/min,N2 流40ml/min,升温区间为 30℃-600℃。
图2是不加桐油基多元醇的聚氨酯(PU)、桐油基聚氨酯(BPU)以及含量0.5%,2.0%氧化石墨烯/桐油基聚氨酯(GO/BPU)杂化膜的热分析DSC图。从图中可以看出PU玻璃化温度Tg为-51.3℃,桐油基聚氨酯的玻璃化温度Tg为-31.1℃,桐油基聚氨酯的玻璃化温度低于PU,这与桐油基多元醇的结构有着密切关系。因为在同样的制备比例下,桐油基多元醇的脂肪链与聚醚多元醇相比非常短,与硬段的相容性较之更好,使得与软段相连,融于软段相的硬段含量增加,提高了软段的玻璃化温度。同时随着氧化石墨烯的加入,BPU膜的玻璃化温度降低,0.5% GO/BPU的玻璃化温度-36.32℃,2.0% GO/BPU膜的玻璃化温度为-40.66℃。可能是聚氨酯中软硬段相连的氨基甲酸酯键中C=O与氧化石墨烯中的羟基形成氢键,导致与聚氨酯中N-H形成的氢键减少。软硬段相容性变差,微相分离增加,使之玻璃化温度降低;另一方面,从DSC曲线可以明显看出BPU的分解温度要高于PU。且随着氧化石墨烯的含量的增加,分解温度也随之提高(BPU 396℃,0.5%GO/BPU 398℃, 2.0%GO/BPU 406℃),杂化膜的热稳定性增加,这与图3中 TGA热重曲线中BPU及2.0% GO/BPU的分解温度相符。
3、 机械性能测定
利用万能试验机进行BPU膜,不同含量GO/BPU膜的机械性能测试,试样样品为10×40mm,原始标距(大约20mm)用游标卡尺测量,厚度(大约0.1mm)由螺旋测微器测量。图4是PU,BPU及不同含量GO/BPU 杂化膜的应力应变曲线图,图5是相应的的拉伸强度与断裂延伸率柱状图。从图4中可以看出,在相同拉伸速率0.05mm/s下不含桐油基的聚氨酯膜PU最大位移及最大应力(9.0297mm, 1.2754N)小于含有桐油多元醇的聚氨酯BPU(10.9656mm,2.244N),且TPU的拉伸强度,断裂延伸率皆小于BPU。这是因为加入的桐油基多元醇主链短结构和分子量小,BPU的硬段含量高于PU,其拉伸强度大。又因为桐油基含有长长的侧链,可改善BPU的弹性。同时也可以看出,加入0.5%-2.0%GO后GO/BPU膜的拉伸强度,断裂延伸率比BPU空白膜提高一倍左右,即膜的机械性能得到显著改善。且随着GO含量增大,拉伸强度增大,由于氧化石墨烯的脆断性,断裂延伸率略减。当杂化膜氧化石墨烯5%时,拉伸强度大大提高但断裂延伸率却大幅度下降,比BPU空白膜的还要低一倍,这时GO的加入已经影响到了膜的基本性能了。若把GO的含量再次提高到10%,可以看到膜的拉伸强度,断裂延伸率都大幅度减少,此时发生的是脆性断裂,完全呈现无机物本身的性质。从图中可以看出0.5%-2.0%的GO含量的GO/BPU膜的机械性能是比较良好和合适的。
4、 SEM表征
喷金处理后,通过SEM扫描电镜观察不同含量GO/BPU膜的形貌,查看GO在BPU中的分散程度。图6为 BPU (a) ,1.5%GO/BPU (b) 的SEM图像;
从图6可以看出,与BPU空白膜相比,1.5%氧化石墨烯在桐油基聚氨酯中有少量的团聚,这是因为在GO与BPU共混前没有进行表面改性的原因,使GO与BPU的相容性不够好,使GO在聚氨酯中的分散程度不够高。
5、 CO2,N2气体渗透性能测试
使用气体渗透装置测试BPU及不同含量GO/BPU膜对CO2,N2纯气的渗透性,及对CO2/N2的气体分离的选择性。
膜的气体渗透性P计算公式为:
Figure DEST_PATH_IMAGE006
(1)
其中, P—气体渗透性,Barrer,1 Barrer=10-10cm3(STP) cm/cm2 s cmHg.
q—气体流率,ml/s.
A—膜面积,cm2 .
l─膜厚,cm.
⊿p─膜前后压差,cmHg.
膜对CO2/N2的气体分离的理想选择性:
Figure DEST_PATH_IMAGE008
(2)
图7 是不同含量GO/BPU 膜在不同压力下(0.1~0.5MPa)的CO2 渗透曲线,图8是不同含量GO/BPU 膜在不同压力下(0.1~0.5MPa)的CO2 /N2 选择性曲线图。从图7中可以看出随着进气压力的增大,GO/BPU膜对CO2 的渗透能力P(Bar)开始下降,后来趋于稳定。从图7和图8中可以看出GO/BPU膜的CO2渗透性及CO2/N2 选择性均高于BPU膜,随着氧化石墨烯含量增大,CO2的渗透性及CO2/N2 选择性都先增后减。原因为一方面GO含量较低时在BPU分布均匀,其二维结构对CO2 吸附性良好,大п键与CO2 构成共辄键使其优于N2吸附,同时GO的加入使BPU出现了一些界面空隙,增大CO2渗透能力。另一方面随着GO在BPU膜的含量增多,出现了团聚现象,膜空隙结构降低,与CO2共轭键减少,恶化了气体的分离及渗透效果。

Claims (8)

1.一种桐油基聚氨酯-氧化石墨烯杂化膜的制备方法,其特征是,包括如下步骤:
(1)将桐油基多元醇与聚丙三醇加入反应瓶中,搅匀后,调pH为酸性,再110~130℃抽真空1.5~3h;
(2)结束后关闭真空阀,将反应瓶中充满保护气,在保护气氛下降温到70±5℃加入二苯基甲烷二异氰酸酯,升温至80±5℃搅拌1.5~3h后,加入无水甲苯使反应物固含量降低至40%后,降温至60±5℃,加入扩链剂1,4-丁二醇,升温至70±5℃反应0.5~1h后再升温至80±5℃反应2-2.5h,然后升温至90±5℃反应至有拔丝现象即可停止反应,得到桐油基聚氨酯;
(3)将Hummer法制得的氧化石墨烯溶解到DMF中超声至少8h,再加入桐油基聚氨酯,搅拌12h以上,得到铸膜液;
(4)将铸膜液倾倒在聚四氟乙烯盘中,干燥成膜后即可得到桐油基聚氨酯-氧化石墨烯杂化膜。
2.根据权利要求1所述的桐油基聚氨酯-氧化石墨烯杂化膜的制备方法,其特征是,所述桐油基多元醇的羟值为282mgKOH/g,所述聚丙三醇的重均分子量为2000。
3. 根据权利要求2所述的桐油基聚氨酯-氧化石墨烯杂化膜的制备方法,其特征是,桐油基多元醇的OH、二苯基甲烷二异氰酸酯的NCO和1,4-丁二醇的OH 摩尔比为1:3:2。
4.根据权利要求1所述的桐油基聚氨酯-氧化石墨烯杂化膜的制备方法,其特征是,步骤(1)中调pH采用磷酸调节,调节pH=5。
5.根据权利要求1所述的桐油基聚氨酯-氧化石墨烯杂化膜的制备方法,其特征是,所述步骤(3)中氧化石墨烯的质量为桐油基聚氨酯质量的0.1~10%。
6.根据权利要求1所述的桐油基聚氨酯-氧化石墨烯杂化膜的制备方法,其特征是,所述步骤(4)中干燥成膜是指在60±5℃干燥至少24h。
7.权利要求1至6任一所述的制备方法制得的桐油基聚氨酯-氧化石墨烯杂化膜。
8.权利要求7所述的桐油基聚氨酯-氧化石墨烯杂化膜在吸附CO2中的应用。
CN201810203380.7A 2018-03-13 2018-03-13 一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用 Active CN110272621B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810203380.7A CN110272621B (zh) 2018-03-13 2018-03-13 一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810203380.7A CN110272621B (zh) 2018-03-13 2018-03-13 一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用

Publications (2)

Publication Number Publication Date
CN110272621A CN110272621A (zh) 2019-09-24
CN110272621B true CN110272621B (zh) 2021-06-29

Family

ID=67957545

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810203380.7A Active CN110272621B (zh) 2018-03-13 2018-03-13 一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用

Country Status (1)

Country Link
CN (1) CN110272621B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113600132B (zh) * 2021-08-31 2023-09-15 南通大学 一种吸附用的插层石墨烯共混聚氨酯开孔海绵的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194057A (zh) * 2014-08-14 2014-12-10 青阳县吉祥塑胶有限公司 一种塑胶用耐热填料及其制备方法
CN104226127A (zh) * 2014-09-10 2014-12-24 浙江工商大学 一种石墨烯/聚氨酯杂化气体分离膜的制备方法及其产品
CN104946114A (zh) * 2015-07-07 2015-09-30 上海理工大学 含石墨烯的金属表面防腐涂层及其制备方法
CN104945992A (zh) * 2015-07-07 2015-09-30 上海理工大学 含石墨烯的自修复涂料及其制备方法
CN106433441A (zh) * 2016-11-29 2017-02-22 安徽圆梦建筑有限公司 一种耐水环保水性涂料
CN106674996A (zh) * 2017-01-04 2017-05-17 华南理工大学 一种自修复氧化石墨烯/聚氨酯复合材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104194057A (zh) * 2014-08-14 2014-12-10 青阳县吉祥塑胶有限公司 一种塑胶用耐热填料及其制备方法
CN104226127A (zh) * 2014-09-10 2014-12-24 浙江工商大学 一种石墨烯/聚氨酯杂化气体分离膜的制备方法及其产品
CN104946114A (zh) * 2015-07-07 2015-09-30 上海理工大学 含石墨烯的金属表面防腐涂层及其制备方法
CN104945992A (zh) * 2015-07-07 2015-09-30 上海理工大学 含石墨烯的自修复涂料及其制备方法
CN106433441A (zh) * 2016-11-29 2017-02-22 安徽圆梦建筑有限公司 一种耐水环保水性涂料
CN106674996A (zh) * 2017-01-04 2017-05-17 华南理工大学 一种自修复氧化石墨烯/聚氨酯复合材料及其制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and;Kim, Hyunwoo et al;《CHEMISTRY OF MATERIALS》;20100608;第22卷(第11期);3441-3450 *
Guiying Wu et al.Preparation and Characterization of Graphene Oxide-Modified Sapium sebiferum Oil-Based Polyurethane Composites with Improved Thermal and Mechanical Properties.《POLYMERS》.2018,第10卷(第2期), *
Polyurethanes From Tung Oil: Polymer Characterization and Composites;Mosiewicki, M. A et al;《POLYMER ENGINEERING AND SCIENCE》;20090430;第49卷(第4期);685-692 *
Preparation and Characterization of Graphene Oxide-Modified Sapium sebiferum Oil-Based Polyurethane Composites with Improved Thermal and Mechanical Properties;Guiying Wu et al;《POLYMERS》;20180130;第10卷(第2期);1-13 *
桐油基改性树脂研究进展;范友华等;《湖南林业科技》;20140315;第41卷(第2期);第58页 *

Also Published As

Publication number Publication date
CN110272621A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
Zhu et al. Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H 2/CO 2 separation
JP5551706B2 (ja) 高分子およびその製造方法
Lua et al. Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation
WO2018084264A1 (en) Composite membrane and method of separating gas using the same
Yeh et al. Preparation and properties of amino-terminated anionic waterborne-polyurethane–silica hybrid materials through a sol–gel process in the absence of an external catalyst
Li et al. Fluorinated polyurethane based on liquid fluorine elastomer (LFH) synthesis via two-step method: the critical value of thermal resistance and mechanical properties
Luo et al. Crosslinked polybenzimidazole via a Diels–Alder reaction for proton conducting membranes
Semsarzadeh et al. Structural and transport properties of polydimethylsiloxane based polyurethane/silica particles mixed matrix membranes for gas separation
KR20150070954A (ko) 높은 열산화 안정성을 갖는 폴리이미드 분말
Ahmadizadegan Synthesis and gas transport properties of novel functional polyimide/ZnO nanocomposite thin film membranes
Nematollahi et al. CO 2 separation over light gases for nano-composite membrane comprising modified polyurethane with SiO 2 nanoparticles
Hao et al. Ultra-low dielectric constant materials with hydrophobic property derived from polyhedral oligomeric silsequioxane (POSS) and perfluoro-aromatics
Kammakakam et al. PEG–imidazolium-functionalized 6FDA–durene polyimide as a novel polymeric membrane for enhanced CO 2 separation
CN110272621B (zh) 一种桐油基聚氨酯-氧化石墨烯杂化膜、其制备方法及应用
Wolińska-Grabczyk et al. Synthesis, characterization, and gas permeation properties of thermally rearranged poly (hydroxyimide) s filled with mesoporous MCM-41 silica
Askari et al. Study on thermal stability of polyurethane-urea based on polysiloxane and polycaprolactone diols
Zhu et al. Preparation of poly (ether‐block‐amide)/poly (amide‐co‐poly (propylene glycol)) random copolymer blend membranes for CO2/N2 separation
Zhang et al. Enhanced gas separation and mechanical properties of fluorene-based thermal rearrangement copolymers
Scholes et al. Thermal rearranged poly (imide-co-ethylene glycol) membranes for gas separation
Huang et al. High-performance fluorinated polyimide/pure silica zeolite nanocrystal hybrid films with a low dielectric constant
Xiao et al. Double-decker-shaped phenyl-substituted silsesquioxane (DDSQ)-based nanocomposite polyimide membranes with tunable gas permeability and good aging resistance
Dinari et al. Preparation, characterization and gas separation properties of nanocomposite materials based on novel silane functionalizing polyimide bearing pendent naphthyl units and ZnO nanoparticles
Ragosta et al. Compatibilizing polyimide/silica hybrids by alkoxisilane‐terminated oligoimides: Morphology–Properties relationships
Jeong et al. Development of CO2‐Philic Blended Membranes Using PIM–PI and PIM–PEG/PPG
CN115536845B (zh) 一种疏水聚酰亚胺树脂制备方法及在漆包线中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230924

Address after: Room 5105, Building 5, Entrepreneurship Street, Zhengzhou University Science Park, No. 100 Cuizhu Street, High tech Industrial Development Zone, Zhengzhou City, Henan Province, 450000

Patentee after: ZHENGZHOU HUAPU SEALING MATERIAL CO.,LTD.

Address before: 450001 No. 100 science Avenue, hi tech Zone, Henan, Zhengzhou

Patentee before: Zhengzhou University

TR01 Transfer of patent right