CN110270690B - 一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺 - Google Patents

一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺 Download PDF

Info

Publication number
CN110270690B
CN110270690B CN201910555616.8A CN201910555616A CN110270690B CN 110270690 B CN110270690 B CN 110270690B CN 201910555616 A CN201910555616 A CN 201910555616A CN 110270690 B CN110270690 B CN 110270690B
Authority
CN
China
Prior art keywords
powder core
core wire
carbon steel
powder
electric arc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910555616.8A
Other languages
English (en)
Other versions
CN110270690A (zh
Inventor
雷卫宁
薛冰
陈世鑫
张文杰
李小平
张扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kangshuo Shanxi Low Stress Manufacturing System Technology Research Institute Co ltd
Xiamen Water Village Network Intellectual Property Service Co ltd
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN201910555616.8A priority Critical patent/CN110270690B/zh
Publication of CN110270690A publication Critical patent/CN110270690A/zh
Application granted granted Critical
Publication of CN110270690B publication Critical patent/CN110270690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/22Direct deposition of molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • B22F10/322Process control of the atmosphere, e.g. composition or pressure in a building chamber of the gas flow, e.g. rate or direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/34Process control of powder characteristics, e.g. density, oxidation or flowability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1003Use of special medium during sintering, e.g. sintering aid
    • B22F3/1007Atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • C23C24/103Coating with metallic material, i.e. metals or metal alloys, optionally comprising hard particles, e.g. oxides, carbides or nitrides
    • C23C24/106Coating with metal alloys or metal elements only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • B22F2007/042Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal characterised by the layer forming method
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Composite Materials (AREA)
  • Nonmetallic Welding Materials (AREA)

Abstract

本发明涉及一种Fe‑Mn‑Cu粉芯丝材及其电弧增材加工工艺,Fe‑Mn‑Cu粉芯丝材由低碳钢带和Fe‑Mn‑Cu粉芯组成;将本发明制备的Fe‑Mn‑Cu粉芯丝材对破损的碳钢基板进行电弧增材加工,加工后修复了破损的碳钢基板,再制造修复的焊道能有效提高碳钢基板的硬度、致密度和抗拉强度,使修复后的碳钢基体性能要求符合再次应用。本发明主要用于针对工作现场或野外环境下及时、高效地对急用装备等关键零部件进行快速修复与再制造。

Description

一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺
技术领域
本发明涉及金属表面加工技术领域,具体涉及一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺。
背景技术
丝材-电弧增材制造(WAAM)是以电弧为热源,以氩气等惰性气体作保护气,通过填充焊丝逐层沉积堆敷,从而获得近净成形的制造技术。WAAM是一种快速、低成本制造技术,适用于航空、航海、能源等领域复杂构件大尺寸、小批量制造。
常见的电弧熔覆丝材主要为Fe基和Ni基两大类。电弧熔覆粉芯丝材由金属外皮和粉芯两部分组成,因而同时具备丝材和粉末的优点,拓宽了焊丝材料的成分和种类范围,满足了对焊丝多功能化、多元化和高性能化的要求。近来金属粉芯丝材在电弧熔覆领域有了突飞猛进的发展,国内外已经开发了多种耐磨、耐腐蚀电弧熔覆粉芯丝材,广泛应用于电力、石油、化工、汽车制造等工业领域。因此,采用粉芯丝材电弧熔覆基体已成为该技术发展趋势。
然而目前市场上的电弧熔覆粉芯丝材种类较为单一,针对适用碳钢类型的粉芯丝材更为稀缺,在应用于修复碳钢的机械工作中,修复后的熔覆层或焊道极易出现气孔、裂纹等缺陷,且硬度、致密度和抗拉强度等力学性能均达不到所要求的修复标准。
发明内容
为了解决目前碳钢类型基板再修复粉芯丝材的缺失问题,而提供一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺。本发明工艺可有效提高基体与焊道的致密度,改善修复的基体表面硬度和抗拉强度。
本发明通过以下技术方案实现:
一种Fe-Mn-Cu粉芯丝材,由低碳钢带和Fe-Mn-Cu粉芯组成;
所述Fe-Mn-Cu粉芯丝材的制备方法为:
(1)Fe-Mn-Cu粉芯的制备:将Fe、Mn和Cu粉末过筛筛选成相同颗粒度,混合均匀,进行第一次球磨,第一次球磨冷却后,加入溶剂,再进行第二次球磨,干燥;将干燥后的Fe、Mn和Cu粉末在氩气保护下进行真空烧结制得所述Fe-Mn-Cu粉芯;
(2)Fe-Mn-Cu粉芯丝材的制备:将所述Fe-Mn-Cu粉芯置于送粉器中,将低碳钢带经过多道轧制工序后,形成凹槽,将Fe-Mn-Cu粉芯送入凹槽内再进行轧制,多次轧制后Fe-Mn-Cu粉芯被低碳钢带包裹,再经过多道连续拔丝最后制得Fe-Mn-Cu粉芯丝材。
进一步地,步骤(1)中Fe、Mn和Cu粉末分别按照2:1:1的摩尔比混合均匀。
进一步地,步骤(1)中所述溶剂为甘油、石蜡、煤油中的一种或几种。
进一步地,步骤(1)中所述第一次球磨的时间为1~2h,所述第二次球磨的时间为1h。
进一步地,步骤(1)中所述真空烧结的工艺参数为:烧结温度为1220~1280℃,升温速率为10℃/min,保温时间为4~5h,烧结压力为10~30Mpa。
进一步地,步骤(2)中所述凹槽为U型槽形状。
进一步地,步骤(2)中所述Fe-Mn-Cu粉芯丝材经过多道连续拔丝后直径小于1.2mm,所述低碳钢带厚度为0.2mm。
上述Fe-Mn-Cu粉芯丝材的电弧增材加工工艺,包括如下步骤:对需要电弧增材加工的碳钢基板进行表面氧化层、脱碳层及其他杂物的除杂处理;然后预热碳钢基板,在电压为15~18V、电流为160~200A、Fe-Mn-Cu粉芯丝材送丝速度为130~190cm/min、氩气气体流量为15L/min的条件下进行电弧增材加工。
进一步地,所述预热碳钢基板的温度为80~100℃。
有益技术效果:本发明涉及Fe-Mn-Cu粉芯丝材电弧增材加工工艺,将本发明制备的Fe-Mn-Cu粉芯丝材对碳钢基板进行电弧增材加工,加工后在碳钢上制得具有较高致密度的焊道,能有效提高碳钢硬度和抗拉强度,使修复的碳钢基体性能要求符合再次应用。本发明主要用于针对工作现场或野外环境下及时、高效地对急用装备等关键零部件进行快速修复与再制造。
附图说明
图1为碳钢基板及其与Fe-Mn-Cu粉芯丝材电弧增材加工后产生的焊道的抗拉强度对比图。
具体实施方式
以下结合附图及具体实施例进一步描述本发明,但不限制本发明范围。
实施例1
一种Fe-Mn-Cu粉芯丝材,由低碳钢带和Fe-Mn-Cu粉芯组成,所述丝材直径为1.2mm,所述低碳钢带厚度为0.2mm;
(1)Fe-Mn-Cu粉芯的制备:将Fe、Mn和Cu粉末过筛筛选成相同颗粒度,Fe、Mn和Cu粉末分别按照摩尔分数比例2:1:1混合均匀,进行1的第一次球磨,第一次球磨冷却后,加入甘油和石蜡,再进行1h第二次球磨,干燥;将干燥后的Fe、Mn和Cu粉末在氩气保护下进行真空烧结,工艺参数为:烧结温度为1220℃,升温速率为10℃/min,保温时间为4h,烧结压力为10Mpa,最后制得所述Fe-Mn-Cu粉芯;
(2)Fe-Mn-Cu粉芯丝材的制备:将上述制得的Fe-Mn-Cu粉芯置于送粉器中,将低碳钢带经过至少5道轧制工序后,形成U型槽形状后,将Fe-Mn-Cu粉芯送入U型槽内再进行轧制,至少5次轧制后Fe-Mn-Cu粉芯被低碳钢带包裹,再经过至少5道连续拔丝将直径减小至1.2mm的丝材,最后制得Fe-Mn-Cu粉芯丝材。
选用20#钢的低碳钢,基板板厚20mm,在平整的基板上开一个V型坡口,坡口深度6mm,再进行本发明的一种Fe-Mn-Cu粉芯丝材电弧增材加工工艺,包括如下步骤:
(1)清理20#钢基板的V型坡口及外侧5cm范围处的杂质、污物、毛刺等,然后使用装有砂轮片的角向磨光机打磨表面10分钟,去除较厚的氧化层、脱碳层,再用240#的砂纸打磨表面至光滑,最后清洗烘干;
(2)将20#钢基板放入DHG-202型电热鼓风干燥箱预热,使20#钢基板预热至80℃,在电压为17.5V、电流为160A、Fe-Mn-Cu粉芯丝材送丝速度为140cm/min、99.99%的纯氩气保护、气体流量为15L/min的条件下进行电弧增材加工工艺;
实施例2
一种Fe-Mn-Cu粉芯丝材,由低碳钢带和Fe-Mn-Cu粉芯组成,所述丝材直径为1.2mm,所述低碳钢带厚度为0.2mm;
所述Fe-Mn-Cu粉芯丝材的制备方法为:
(1)Fe-Mn-Cu粉芯的制备:将Fe、Mn和Cu粉末过筛筛选成相同颗粒度,Fe、Mn和Cu粉末分别按照摩尔分数比例2:1:1混合均匀,进行1.5h的第一次球磨,第一次球磨冷却后,加入石蜡和煤油,再进行1h第二次球磨,干燥;将干燥后的Fe、Mn和Cu粉末在氩气保护下进行真空烧结,工艺参数为:烧结温度为1250℃,升温速率为10℃/min,保温时间为5h,烧结压力为30Mpa,最后制得所述Fe-Mn-Cu粉芯;
(2)Fe-Mn-Cu粉芯丝材的制备:将上述制备的Fe-Mn-Cu粉芯置于送粉器中,将低碳钢带经过至少5道轧制工序后,形成U型槽形状后,将Fe-Mn-Cu粉芯送入U型槽内再进行轧制,至少5次轧制后Fe-Mn-Cu粉芯被低碳钢带包裹,再经过至少5道连续拔丝将直径减小至1.2mm的丝材,最后制得Fe-Mn-Cu粉芯丝材。
选用T10钢的高碳钢,基板板厚20mm,在平整的基板上开一个V型坡口,坡口深度6mm,在进行本发明的一种Fe-Mn-Cu粉芯丝材电弧增材加工工艺,包括如下步骤:
(1)清理T10钢基板的V型坡口及外侧5cm范围处的杂质、污物、毛刺等,然后使用装有砂轮片的角向磨光机打磨表面15分钟,去除较厚的氧化层、脱碳层,再用240#的砂纸打磨表面至光滑,最后清洗烘干;
(2)将T10钢基板放入DHG-202型电热鼓风干燥箱预热,使T10钢基板预热至100℃,在电压为15.3V、电流为190A、Fe-Mn-Cu粉芯丝材送丝速度为190cm/min、99.99%的纯氩气保护、气体流量为15L/min的条件下进行电弧增材加工工艺。
对本发明实施例1和实施例2的Fe-Mn-Cu粉芯丝材电弧增材加工后产生的焊道进行切样,实施例1的焊道标记试样1,实施例2的焊道标记试样2,使用HVS-1000A型维氏硬度计对试样1和2进行显微硬度测试,载荷200g,保压时间为5s,数据见表1。
采用排水法对试样1、试样2进行致密度测试,测试方法:采用阿基米德排水法原理,利用公式(1-1)计算致密度:
Figure BDA0002106790840000041
式中,ρ为蒸馏水密度0.9982g/cm3,ρ1为试样1或试样2的密度9.7g/cm3,m0为试样在空气中的质量,m1为试样在蒸馏水中的质量,m0和m1使用高精度电子天平测量,ρ和ρ1使用密度仪测量。
焊道与碳钢基板的硬度和致密度数据见表1。硬度采用GB/T 4340.1-2009标准测试。
表1焊道与碳钢基板的硬度和致密度数据
Figure BDA0002106790840000051
本发明的Fe-Mn-Cu粉芯丝材经过电弧增材加工工艺,在破损的碳钢基板上经过电弧加热熔化形成熔池,使碳钢基板与Fe-Mn-Cu粉芯丝材搅拌融合,并冷却凝固在坡口处,经过电弧增材加工后形成焊道,达到对破损件的再制造修复。由表1数据可知,经再制造修复后的20#钢硬度相比于其基材本身有明显的提高,焊道的硬度较20#钢基板提高了31%,较T10钢基板提高了28%;在致密度方面也有一定程度的提升,焊道的致密度较20#钢基板提高了4%,较T10钢基板提高了约7%,能够达到对破损零件再制造修复。
对碳钢基板20#钢、T10钢和进行了Fe-Mn-Cu粉芯丝材电弧增材加工后产生焊道进行抗拉强度测试,按照GB/T 228.1-2010标准测试。抗拉强度性能对比图如图1所示,由图1可知,再制造修复后的碳钢基板的抗拉强度均大于基板本身的强度,焊道的抗拉强度较20#钢基板提高了17.2%,较T10钢基板提高了47%。

Claims (7)

1.一种Fe-Mn-Cu粉芯丝材,其特征在于,由低碳钢带和Fe-Mn-Cu粉芯组成;
所述Fe-Mn-Cu粉芯丝材的制备方法为:
(1)Fe-Mn-Cu粉芯的制备:将Fe、Mn和Cu粉末过筛筛选成相同颗粒度,Fe、Mn和Cu粉末分别按照2:1:1的摩尔比混合均匀,进行第一次球磨,第一次球磨冷却后,加入溶剂,再进行第二次球磨,干燥;将干燥后的Fe、Mn和Cu粉末在氩气保护下进行真空烧结制得所述Fe-Mn-Cu粉芯;
步骤(1)中所述溶剂为甘油、石蜡、煤油中的一种或几种;
(2)Fe-Mn-Cu粉芯丝材的制备:将所述Fe-Mn-Cu粉芯置于送粉器中,将低碳钢带经过多次轧制工序后,形成凹槽,将Fe-Mn-Cu粉芯送入凹槽内再进行轧制,多次轧制后Fe-Mn-Cu粉芯被低碳钢带包裹,再经过多道连续拔丝最后制得Fe-Mn-Cu粉芯丝材。
2.根据权利要求1所述的一种Fe-Mn-Cu粉芯丝材,其特征在于,步骤(1)中所述第一次球磨的时间为1~2h,所述第二次球磨的时间为1h。
3.根据权利要求1所述的一种Fe-Mn-Cu粉芯丝材,其特征在于,步骤(1)中所述真空烧结的工艺参数为:烧结温度为1220~1280℃,升温速率为10℃/min,保温时间为4~5h,烧结压力为10~30Mpa。
4.根据权利要求1所述的一种Fe-Mn-Cu粉芯丝材,其特征在于,步骤(2)中所述凹槽为U型槽形状。
5.根据权利要求1所述的一种Fe-Mn-Cu粉芯丝材,其特征在于,步骤(2)中所述Fe-Mn-Cu粉芯丝材经过多道连续拔丝后直径小于1.2mm,所述低碳钢带厚度为0.2mm。
6.一种根据权利要求1~5任一项所述的Fe-Mn-Cu粉芯丝材的电弧增材加工工艺,包括如下步骤:对需要电弧增材加工的碳钢基板进行表面氧化层、脱碳层及其他杂物的除杂处理;然后预热碳钢基板,在电压为15~18V、电流为160~200A、Fe-Mn-Cu粉芯丝材送丝速度为130~190cm/min、氩气气体流量为15L/min的条件下进行电弧增材加工。
7.根据权利要求6所述的一种Fe-Mn-Cu粉芯丝材的电弧增材加工工艺,其特征在于,所述预热碳钢基板的温度为80~100℃。
CN201910555616.8A 2019-06-25 2019-06-25 一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺 Active CN110270690B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910555616.8A CN110270690B (zh) 2019-06-25 2019-06-25 一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910555616.8A CN110270690B (zh) 2019-06-25 2019-06-25 一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺

Publications (2)

Publication Number Publication Date
CN110270690A CN110270690A (zh) 2019-09-24
CN110270690B true CN110270690B (zh) 2022-02-11

Family

ID=67962496

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910555616.8A Active CN110270690B (zh) 2019-06-25 2019-06-25 一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺

Country Status (1)

Country Link
CN (1) CN110270690B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212691A (ja) * 2010-03-31 2011-10-27 Jfe Steel Corp 細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤ
CN102912277A (zh) * 2012-11-07 2013-02-06 郑州九环科贸有限公司 一种电弧喷涂粉芯线材
CN106216882A (zh) * 2016-09-08 2016-12-14 四川大西洋焊接材料股份有限公司 1000MPa高强钢用金属粉型药芯焊丝及其生产工艺
CN109128574A (zh) * 2018-09-11 2019-01-04 江苏理工学院 电弧熔敷增材制造用钢粉芯丝材及制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011212691A (ja) * 2010-03-31 2011-10-27 Jfe Steel Corp 細径多電極サブマージアーク溶接用フラックス入り溶接ワイヤ
CN102912277A (zh) * 2012-11-07 2013-02-06 郑州九环科贸有限公司 一种电弧喷涂粉芯线材
CN106216882A (zh) * 2016-09-08 2016-12-14 四川大西洋焊接材料股份有限公司 1000MPa高强钢用金属粉型药芯焊丝及其生产工艺
CN109128574A (zh) * 2018-09-11 2019-01-04 江苏理工学院 电弧熔敷增材制造用钢粉芯丝材及制备方法

Also Published As

Publication number Publication date
CN110270690A (zh) 2019-09-24

Similar Documents

Publication Publication Date Title
CN107815682B (zh) 一种在高锰钢表面制备耐磨增韧涂层的方法
CN110565087B (zh) 激光熔覆合成陶瓷相增强钴基熔覆层及其制备方法
CN109183029B (zh) 一种激光熔覆工艺
CN101530917B (zh) 由粉冶纯钨材料构成的不规则零件结构的制造方法
CN103993309A (zh) 一种用于轧辊的激光再制造的方法
CN1919599A (zh) 高强度耐磨金属复合板的制备方法和工艺装备
CN108018548B (zh) 一种修复钨基粉末合金压铸模具涂层合金及其制备方法
CN109128574B (zh) 电弧熔敷增材制造用钢粉芯丝材及制备方法
CN105671544B (zh) 利用熔覆粉末在激光熔覆中提高42CrMo钢耐磨性能的方法
CN110270690B (zh) 一种Fe-Mn-Cu粉芯丝材及其电弧增材加工工艺
CN112877569A (zh) 一种用于激光熔覆的镍基合金粉末及激光熔覆方法
CN110424005A (zh) 一种易磨损的金属件表面等离子熔覆方法
CN106756251A (zh) 激光制造热轧带钢卷曲前导尺衬板的梯度材料设计工艺
CN110340344B (zh) 一种提高激光增材制造合金钢粉末利用率的方法
CN113278835B (zh) 一种高强高导铜钛合金制备方法
CN111005025B (zh) 一种汽车气门模具用耐高温磨损涂层的制备方法
CN111378897B (zh) 一种助卷辊的辊面修复材料及一种助卷辊的激光熔覆再制造方法
JP6563571B1 (ja) 金型の製造方法
CN105177566A (zh) 一种无心磨导板夹具及用其激光熔覆无心磨导板的方法
CN111607754A (zh) 一种等离子熔覆制备金属过渡层的方法
CN111974984A (zh) 一种高速激光熔覆用铁基合金粉末及其熔覆方法
CN110541165B (zh) 一种车削再利用的激光熔覆材料及涂层制备方法
CN115704071A (zh) 一种高熵合金粉末及制备方法以及高熵合金涂层制备方法
CN115255562B (zh) 一种钛合金耐磨涂层制备方法
CN110684975B (zh) 一种铝合金牵引轮耐磨层的制备工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230713

Address after: 140-5 Xiting Li, Xiban Village, Maxiang Town, Xiang'an District, Xiamen City, Fujian Province, 361100

Patentee after: Xiamen Water Village Network Intellectual Property Service Co.,Ltd.

Address before: 213001 No. 1801 Wu Cheng Road, Changzhou, Jiangsu

Patentee before: JIANGSU University OF TECHNOLOGY

Effective date of registration: 20230713

Address after: 046700 Mishan Industrial Park, Gaoping economic and Technological Development Zone, Gaoping City, Jincheng City, Shanxi Province

Patentee after: Kangshuo (Shanxi) Low Stress Manufacturing System Technology Research Institute Co.,Ltd.

Address before: 140-5 Xiting Li, Xiban Village, Maxiang Town, Xiang'an District, Xiamen City, Fujian Province, 361100

Patentee before: Xiamen Water Village Network Intellectual Property Service Co.,Ltd.