CN110270332A - 一种磁性TiO2(R)复合光催化剂及其制备方法 - Google Patents

一种磁性TiO2(R)复合光催化剂及其制备方法 Download PDF

Info

Publication number
CN110270332A
CN110270332A CN201910661075.7A CN201910661075A CN110270332A CN 110270332 A CN110270332 A CN 110270332A CN 201910661075 A CN201910661075 A CN 201910661075A CN 110270332 A CN110270332 A CN 110270332A
Authority
CN
China
Prior art keywords
tio
magnetism
magnetic
composite material
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910661075.7A
Other languages
English (en)
Other versions
CN110270332B (zh
Inventor
李小娟
刘政霖
廖凤珍
叶兰妹
刘明华
王永净
王永好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201910661075.7A priority Critical patent/CN110270332B/zh
Publication of CN110270332A publication Critical patent/CN110270332A/zh
Application granted granted Critical
Publication of CN110270332B publication Critical patent/CN110270332B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种磁性TiO2(R)复合材料及其制备方法和应用。该磁性复合光催化剂由金红石相TiO2(TiO2(R))包覆γ‑Fe2O3/FeTiO3表面,并有少量的碳(C)分散于材料中。其制备方法包括,首先采用水热法制得MIL‑88A,接着在其表面包覆聚丙烯酸(PAA)后与二氧化钛前驱体复合,最后在惰性气氛下高温煅烧获得磁性复合光催化剂。本发明的磁性复合光催化剂可应用于光催化降解罗丹明B(RhB)废水,具有形貌结构独特、粒径均匀、磁回收性能优异、光催化性能稳定且对RhB降解效率高的优点。

Description

一种磁性TiO2(R)复合光催化剂及其制备方法
技术领域
本发明属于环境光催化材料制备技术领域,具体涉及一种磁性TiO2(R)复合光催化剂及其制备方法和应用。
背景技术
TiO2是目前研究最广泛的,最典型的光催化材料,在紫外光照射条件下具有优异的光催化降解有机物的性能,已经被广泛的应用。纳米TiO2虽然光催化活性好,但是考虑到其分离沉降性能较差的问题,研究者们提出了让TiO2与磁性材料复合的方法来制备磁性TiO2复合光催化剂以实现光催化剂的简单分离回收利用。目前,常见报道的磁性TiO2复合光催化剂主要是通过将锐钛矿相TiO2(TiO2(A))分散于Fe3O4或者γ-Fe2O3等磁性粒子上获得,然而在该类磁性TiO2复合光催化剂的制备与应用中存在三大问题:一是磁性粒子在与TiO2复合过程中容易发生团聚,难以获得粒径均匀的磁性复合光催化剂;二是磁基体的热稳定性差,在热处理中难以保持磁性;三是Fe容易成为电子和空穴的复合中心,形成“光溶解”现象,从而使得对水中污染物的降解效果不佳。
发明内容
本发明的目的是克服现有技术的不足,提供一种形貌结构独特、粒径均匀、磁回收性能优异、光催化性能稳定且对RhB降解效率高的磁性复合光催化剂及其制备方法和应用。
为解决上述技术问题,本发明采用的技术方案是:
一种磁性TiO2(R)复合光催化剂,所述磁性复合光催化剂由金红石相TiO2(TiO2(R))、碳(C)、FeTiO3/γ-Fe2O3复合而成的,所述的TiO2(R)包覆于γ-Fe2O3/FeTiO3表面,所述的C分散于材料中。
一种磁性TiO2(R)复合光催化剂的制备方法,包括以下步骤:
(1)MIL-88A的制备
称取1.2626 g FeCl3·6H2O于100 mL烧杯中,加入40 mL蒸馏水,搅拌至溶解;然后称取0.9296 g反丁烯二酸加入到FeCl3水溶液中,搅拌1 h后转移入100 mL反应釜中,65℃下反应6~24 h;待温度降至室温后,将得到的晶体过滤出来,用乙醇和蒸馏水交替清洗3~5次并干燥,得到MIL-88A。
(2)磁性TiO2(R)复合光催化剂的制备
称取0.4 g MIL-88A于500 mL烧杯中,加入60 mL蒸馏水,超声1 h,在搅拌状态下往烧杯中先后加入960 μL聚丙烯酸(PAA)水溶液和1440 μL NH3·H2O(2 mol/L),继续搅拌30min,加入160 mL异丙醇,再搅拌30 min,往烧杯中先加入720 μL NH3·H2O(25%-28%),接着滴加7.2 mL 钛酸丁酯(TBOT)的异丙醇混合液(TBOT: IPA=1:2),搅拌反应12 h,最后在60℃下真空干燥48 h后研磨获得磁性复合光催化剂的前驱体。取0.3 g前驱体于陶瓷舟中,置于管式炉中,在惰性气氛中以5 ℃/min的升温速率升温至700℃煅烧一段时间后,自然降温至室温,取出陶瓷舟,获得磁性TiO2(R)复合光催化剂。
上述的磁性复合光催化剂的制备方法中,步骤(2)中所述的PAA水溶液的浓度范围为0.1~0.2 g/mL;所述的惰性气氛为氮气;所述的700℃下煅烧的时间为3~7 h。
上述制备方法制得的磁性复合光催化剂。
上述磁性复合光催化剂紫外光光催化降解罗丹明B(RhB)的应用。
与现有技术相比,本发明的优点在于:
(1)本发明制得的磁性TiO2(R)复合光催化剂,由金红石相TiO2(TiO2(R))、碳(C)、FeTiO3/γ-Fe2O3复合而成的,所述的TiO2(R)包覆于γ-Fe2O3/FeTiO3表面,所述的C分散于材料中,形貌结构独特。
(2)本发明中以金属有机骨架材料MIL-88A中的Fe金属中心作为生成磁性粒子γ-Fe2O3的Fe来源,由于MIL-88A骨架中Fe金属分布的均匀性及骨架对Fe的固定作用,使得生成的磁性粒子FeTiO3/γ-Fe2O3具有非常均匀的结构,而且磁性粒子不容易发生团聚,从而最终得到的磁性复合光催化剂颗粒均匀,分散性好,具有磁响应,可在磁场作用下实现简单分离回收再利用。
(3)本发明的磁性TiO2(R)复合光催化剂,其表面存在较多的Ti3+缺陷,这有利于光生电子与光生空穴的分离,可提高光催化性能;TiO2(R)对磁性粒子FeTiO3/γ-Fe2O3的良好包裹抑制了光生电子与光生空穴的复合,避免了“光溶解”现象的发生,可提高光催化性能;样品中含有的碳有部分为石墨化碳,该石墨化碳的存在能够减小催化剂的带隙值,提高金红石相TiO2的光利用率,并且可有效快速的分离光生电子空穴对,提高光催化性能。因此获得的磁性TiO2(R)复合光催化剂对RhB降解效率高且光催化性能稳定。
附图说明
图1为本发明制备的磁性TiO2(R)复合光催化剂的XRD图;
图2为本发明实施例1制备的磁性TiO2(R)复合光催化剂的TEM图和mapping图;
图3为本发明实施例1制备的磁性TiO2(R)复合光催化剂的XPS图;
图4为本发明实施例1制备的磁性TiO2(R)复合光催化剂的Raman图;
图5为本发明实施例1制备的磁性TiO2(R)复合光催化剂的磁性能图和分离效果图;
图6为本发明制备的磁性TiO2(R)复合光催化剂对RhB的光催化降解效果图;
图7为本发明实施例1制备的磁性TiO2(R)复合光催化剂对RhB的光催化降解五次循环使用效果图。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
实施例1
本实施例提供的一种磁性TiO2(R)复合光催化剂的制备方法,包括以下步骤:
(1)MIL-88A的制备
称取1.2626 g FeCl3·6H2O于100 mL烧杯中,加入40 mL蒸馏水,搅拌至溶解;然后称取0.9296 g反丁烯二酸加入到FeCl3水溶液中,搅拌1 h后转移入100 mL反应釜中,65℃下反应12 h;待温度降至室温后,将得到的晶体过滤出来,用乙醇和蒸馏水交替清洗3~5次并干燥,得到MIL-88A。
(2)磁性TiO2(R)复合光催化剂的制备
称取0.4 g MIL-88A于500 mL烧杯中,加入60 mL蒸馏水,超声1 h,在搅拌状态下往烧杯中先后加入960 μL 浓度为0.1 g/mL的聚丙烯酸(PAA)水溶液和1440 μL NH3·H2O(2mol/L),继续搅拌30 min,加入160 mL异丙醇,再搅拌30 min,往烧杯中先加入720 μLNH3·H2O(25%-28%),接着滴加7.2 mL 钛酸丁酯(TBOT)的异丙醇混合液(TBOT: IPA=1:2),搅拌反应12 h,最后在60℃下真空干燥48 h后研磨获得磁性复合光催化剂的前驱体。取0.3g前驱体于陶瓷舟中,置于管式炉中,在氮气气氛中以5 ℃/min的升温速率升温至700℃ 5h后,自然降温至室温,取出陶瓷舟,获得磁性TiO2(R)复合光催化剂。
实施例2
本实施例提供的一种磁性TiO2(R)复合光催化剂的制备方法,与实施例1的区别之处在于:
步骤(2)中所述的PAA的浓度为0.2 g/mL。
实施例3
本实施例提供的一种磁性TiO2(R)复合光催化剂的制备方法,与实施例1的区别之处在于:
步骤(2)中所述前驱体煅烧时间是 3 h。
实施例4
本实施例提供的一种磁性TiO2(R)复合光催化剂的制备方法,与实施例1的区别之处在于:
步骤(2)中所述前驱体煅烧时间是 4 h。
实施例5
本实施例提供的一种磁性TiO2(R)复合光催化剂的制备方法,与实施例1的区别之处在于:
步骤(2)中所述前驱体煅烧时间是6 h。
实施例6
本实施例提供的一种磁性TiO2(R)复合光催化剂的制备方法,与实施例1的区别之处在于:
步骤(2)中所述前驱体煅烧时间是 7 h。
光催化降解RhB应用试验例:
取60 mL 浓度为20 mg/L的RhB于150 mL的烧杯中,加入20 mg的复合光催化剂(实施例1~6),暗反应1 h后,以500 W汞灯(CEL-M500,北京中教金源科技有限公司)作为光源进行光反应,每30 min取样1次。取得的样品经离心分离后,采用紫外可见分光光度计(UV 2600,上海天美科学仪器有限公司)对样品进行测试,根据RhB在554 nm处对应的吸光度值,获得溶液中RhB的浓度。
图1为本发明制备的磁性TiO2(R)复合光催化剂的XRD图。当煅烧时间为3~7 h时样品中存在纯金红石相的TiO2的峰,其特征衍射峰位于2θ=27.3°、35.8°、40.9°、48.7°、53.0°等位置,此时TiO2的晶化程度高,且半峰宽较小,晶粒尺寸较大,同时也存在γ-Fe2O3的特征衍射峰(2θ=30.2°、35.6°、57.3°、63.0°等位置)和FeTiO3的特征衍射峰(2θ=23.8°、32.5°、35.2°、53.9°、68.5°等位置);但是当煅烧时间为7 h时,样品中还存在α-Fe2O3的特征衍射峰,说明随着煅烧时间的延长,部分具有磁性的γ-Fe2O3转变成了无磁性的α-Fe2O3(2θ=32.8°、35.1°等位置)。
图2为本发明实施例1制备的磁性TiO2(R)复合光催化剂的TEM图和mapping图。由TEM图可知,磁性复合光催化剂颗粒大小较均匀,这可能是由于在晶体生长过程中,碳骨架的完全坍塌并且含碳量大幅降级造成的。由mapping图可以看出,样品颗粒具有多面体结构,这是由于内部的γ-Fe2O3/FeTiO3造成的。此外,mapping图中Ti、Fe、O的分布均匀,紧密分布在样品颗粒上,Ti的信号明显大于Fe的信号,辅助说明了TiO2是包裹在γ-Fe2O3/FeTiO3外层的。而C的信号如图2(f)所示,圈中的C相对集中说明了样品中含有少量的碳,周边分散的C信号可能是碳网支撑膜的背景碳。另外EDX的数据发现样品表面Ti和Fe的含量分别是49.57%和1.61%,质量比为30.79:1,也就是说表面能测得的铁元素的含量极低。同时采用ICP获得了样品中Ti和Fe的含量,其中Ti约占总质量的47.70%(与EDX所得数据相当),Fe约占总质量的13.43%,钛和铁的质量比约为3.55:1。由此可以看出该样品表面测到的Fe远远低于样品中Fe的含量,即说明γ-Fe2O3/FeTiO3是被包在TiO2之下的。
图3为本发明实施例1制备的磁性TiO2(R)复合光催化剂的XPS图。由图可知,样品中含有Ti、Fe、O、C四种元素。Ti元素对应的Ti 2p1/2峰的结合能位置有两个,分别为464.37eV和463.71 eV;Ti 2p3/2峰的结合能位置有两个,分别为458.77 eV和458.05 eV。这两个结合能位置的差值为分别为5.66 eV和5.6 eV,即说明样品中存在+4价与+3价的Ti,Ti4+:Ti3+=1.94:1。XPS表征结果进一步证实了XRD和TEM的结论,此外还证明了样品表面存在着Ti3+缺陷。
图4为本发明实施例1制备的磁性TiO2(R)复合光催化剂的Raman图。由图可知,在1368 cm-1和1606 cm-1的位置分别存在着碳的D band和G band,其中D band表示了C原子晶格的缺陷,属于无序碳的特征峰,G band表示出C原子sp2杂化的面内伸缩振动,属于石墨化碳的特征峰,说明样品中存在碳并且有部分为石墨化碳。
图5为本发明实施例1制备的磁性TiO2(R)复合光催化剂的磁性能图和分离效果图。由图可知,品显示出明显的滞回特性,矫顽力为326 Oe,样品的剩磁可达5.88 emu/g,在外加磁场作用下,可实现简单分离回收再利用。
图6为本发明制备的磁性TiO2(R)复合光催化剂对RhB的光催化降解效果图。由图可知,不同煅烧时间制得的磁性复合光催化剂对RhB都具有较好的光催化去除效果,分析其原因如下:其表面存在较多的Ti3+缺陷,这有利于光生电子与光生空穴的分离,可提高光催化性能;TiO2(R)对γ-Fe2O3/FeTiO3的良好包裹抑制了光生电子与光生空穴的复合,避免了“光溶解”现象的发生,可提高光催化性能;样品中含有的碳有部分为石墨化碳,该石墨化碳的存在能够减小催化剂的带隙值,提高金红石相TiO2的光利用率,并且可有效快速的分离光生电子空穴对,提高光催化性能。其中煅烧时间为5 h时的复合光催化剂的光催化性能最佳,500 W汞灯照射150 min后,对RhB的降解率可以达到97.83%。另外,PAA浓度为0.2 g/mL的样品其光催化降解RhB的性能稍稍优异于浓度为0.1 g/mL的样品,而同时我们也研究了在制备过程中不添加PAA,发现在没有PAA存在的条件下,制得的材料磁性弱,无法在磁场作用下实现分离,主要原因是PAA层的添加,可以使得在高温条件下抑制FeTiO3的生成而产生磁性强的的γ-Fe2O3
图7为本发明实施例1制备的磁性TiO2(R)复合光催化剂对RhB的光催化降解五次循环使用效果图。催化剂经5次使用后的催化效果仍在85%以上,并没有明显的失活,说明其稳定性良好。
以上所描述的实施例是本发明一部分实施例,而不是全部的实施例。本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (4)

1.一种磁性TiO2(R)复合材料,其特征在于:由TiO2(R)、C、FeTiO3/γ-Fe2O3组成;所述的TiO2(R)包覆于γ-Fe2O3/FeTiO3表面,所述的C分散于复合材料中。
2.一种制备如权利要求1所述的磁性TiO2(R)复合材料的方法,其特征在于:包括以下步骤:
(1)MIL-88A的制备
在40 mL蒸馏水中加入1.2626 g FeCl3·6H2O,搅拌至溶解;加入0.9296 g反丁烯二酸,搅拌1 h后转移到反应釜中,65℃反应6~24 h;待温度降至室温后过滤,所得晶体用乙醇和蒸馏水交替清洗3~5次,干燥,得到MIL-88A;
(2)磁性TiO2(R)复合材料的制备
在60 mL蒸馏水中加入0.4 g MIL-88A,超声1 h,在搅拌状态下先后加入960 μL聚丙烯酸溶液和1440 μL浓度为2 mol/L的NH3·H2O,继续搅拌30 min,加入160 mL异丙醇,再搅拌30 min,先加入720 μL浓度为25-28wt.%的NH3·H2O,接着滴加7.2 mL 钛酸丁酯与异丙醇的混合液,搅拌反应12 h,最后60℃真空干燥48 h,研磨,在惰性气氛中以5 ℃/min的升温速率升温至700℃煅烧,自然降温,得磁性TiO2(R)复合材料。
3.根据权利要求2所述的方法,其特征在于:聚丙烯酸溶液的浓度为0.1~0.2 g/mL;钛酸丁酯与异丙醇的混合液中TBOT与IPA的体积比为1:2;惰性气氛为氮气;煅烧时间为3~7h。
4.一种如权利要求1所述的磁性TiO2(R)复合材料或如权利要求2所述的方法制得的磁性TiO2(R)复合材料的应用,其特征在于:磁性TiO2(R)复合材料在紫外光下光催化降解罗丹明B。
CN201910661075.7A 2019-07-22 2019-07-22 一种磁性TiO2(R)复合光催化剂及其制备方法 Expired - Fee Related CN110270332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910661075.7A CN110270332B (zh) 2019-07-22 2019-07-22 一种磁性TiO2(R)复合光催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910661075.7A CN110270332B (zh) 2019-07-22 2019-07-22 一种磁性TiO2(R)复合光催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN110270332A true CN110270332A (zh) 2019-09-24
CN110270332B CN110270332B (zh) 2021-06-01

Family

ID=67965107

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910661075.7A Expired - Fee Related CN110270332B (zh) 2019-07-22 2019-07-22 一种磁性TiO2(R)复合光催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN110270332B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116274330A (zh) * 2023-03-22 2023-06-23 江苏暨之阳环保科技有限公司 一种有机污染物污染土壤的修复方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872774A (zh) * 2011-07-11 2013-01-16 张�林 二氧化钛(壳)-掺杂物(核)复合材料及其制备方法
CN105478121A (zh) * 2015-11-23 2016-04-13 江苏大学 一种三氧化二铁改性的二氧化钛高效可见光催化剂的制备方法
CN108525665A (zh) * 2018-04-08 2018-09-14 合肥学院 一种介孔γ-Fe2O3/TiO2磁/催化双功能复合微球的制备方法
CN108837801A (zh) * 2018-06-27 2018-11-20 南方科技大学 一种双核壳疏水磁性微球及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102872774A (zh) * 2011-07-11 2013-01-16 张�林 二氧化钛(壳)-掺杂物(核)复合材料及其制备方法
CN105478121A (zh) * 2015-11-23 2016-04-13 江苏大学 一种三氧化二铁改性的二氧化钛高效可见光催化剂的制备方法
CN108525665A (zh) * 2018-04-08 2018-09-14 合肥学院 一种介孔γ-Fe2O3/TiO2磁/催化双功能复合微球的制备方法
CN108837801A (zh) * 2018-06-27 2018-11-20 南方科技大学 一种双核壳疏水磁性微球及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
S. QIAO等: "Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst", 《WATER SCIENCE AND TECHNOLOGY》 *
白春华著: "《非金属矿物基二氧化钛制备、改性及废水处理技术》", 31 December 2015, 中国矿业大学出版社 *
韩长日等: "《精细无机化学品制造技术》", 31 August 2008, 科技文献出版社 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116274330A (zh) * 2023-03-22 2023-06-23 江苏暨之阳环保科技有限公司 一种有机污染物污染土壤的修复方法
CN116274330B (zh) * 2023-03-22 2023-09-22 江苏暨之阳环保科技有限公司 一种有机污染物污染土壤的修复方法

Also Published As

Publication number Publication date
CN110270332B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
Rao et al. Low-temperature synthesis of TiO2 nanoparticles and preparation of TiO2 thin films by spray deposition
Guo et al. Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: The role of microporous amorphous/crystalline composite structure
Zhang et al. Polyacrylamide gel synthesis and photocatalytic performance of Bi2Fe4O9 nanoparticles
Yi et al. CeO2/Bi2MoO6 heterostructured microspheres with synergistic effect for accelerating photogenerated charge separation
Chen et al. Magnetic recyclable lanthanum-nitrogen co-doped titania/strontium ferrite/diatomite heterojunction composite for enhanced visible-light-driven photocatalytic activity and recyclability
Neelakandeswari et al. Spectroscopic investigations on the photodegradation of toluidine blue dye using cadmium sulphide nanoparticles prepared by a novel method
CN106890653A (zh) 一种氧空位自掺杂BiOI可见光催化剂及其制备方法和应用
Wang et al. Large-scale preparation of rice-husk-derived mesoporous SiO2@ TiO2 as efficient and promising photocatalysts for organic contaminants degradation
Wu The fabrication of magnetic recyclable nitrogen modified titanium dioxide/strontium ferrite/diatomite heterojunction nanocomposite for enhanced visible-light-driven photodegradation of tetracycline
CN103172030A (zh) 氧化物粉体及其制备方法、催化剂、以及催化剂载体
CN110013831A (zh) 一种负载CoCrCuFeNi高熵合金的纳米颗粒活性炭及其制备方法和应用
Wang et al. CdS-sensitized 3D ordered macroporous g-C3N4 for enhanced visible-light photocatalytic hydrogen generation
CN1562464A (zh) 磁性纳米TiO2复合光催化剂及其制备方法
Sun et al. Crystallinity and photocatalytic properties of BiVO4/halloysite nanotubes hybrid catalysts for sunlight-driven decomposition of dyes from aqueous solution
Wang et al. Experimental preparation and optical properties of CeO2/TiO2 heterostructure
Li et al. Mechanism and DFT study of degradation of organic pollutants on rare earth ions doped TiO2 photocatalysts prepared by sol-hydrothermal synthesis
Sun et al. Facile sol-gel preparation of amorphous TiO2 nanoparticles under pH of 8 for synergistic adsorption-photocatalytic degradation of tetracycline
CN110745864B (zh) 一种钙钛矿型钛酸镧材料及其制备方法和应用
CN102350332A (zh) 一种金红石/锐钛矿二氧化钛复合光催化剂的制备方法
Huang et al. Tubular structured hierarchical mesoporous titania material derived from natural cellulosic substances and application as photocatalyst for degradation of methylene blue
CN108359105A (zh) 金属有机骨架/氧化铁核壳结构复合材料制备方法
CN110270332A (zh) 一种磁性TiO2(R)复合光催化剂及其制备方法
CN103601239A (zh) 一种锐钛矿和板钛矿的混晶TiO2纳米线的制备方法
CN107394257B (zh) 一种高效制备多孔、高比表面积非晶TiPO的方法
CN111135839B (zh) 一种氧化铁改性凹凸棒石/钼酸铋复合光催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210601