CN110264562A - 颅骨模型特征点自动标定方法 - Google Patents
颅骨模型特征点自动标定方法 Download PDFInfo
- Publication number
- CN110264562A CN110264562A CN201910434238.8A CN201910434238A CN110264562A CN 110264562 A CN110264562 A CN 110264562A CN 201910434238 A CN201910434238 A CN 201910434238A CN 110264562 A CN110264562 A CN 110264562A
- Authority
- CN
- China
- Prior art keywords
- model
- feature point
- point set
- skull
- skull model
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 210000003625 skull Anatomy 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 59
- 230000006870 function Effects 0.000 claims description 34
- 238000001914 filtration Methods 0.000 claims description 12
- 230000008569 process Effects 0.000 claims description 12
- 238000009826 distribution Methods 0.000 claims description 7
- 238000013507 mapping Methods 0.000 claims description 5
- 230000000630 rising effect Effects 0.000 claims description 3
- 238000012549 training Methods 0.000 claims description 3
- 238000011426 transformation method Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 7
- 238000003860 storage Methods 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000004590 computer program Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000003064 k means clustering Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000003708 edge detection Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000005477 standard model Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000013179 statistical model Methods 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T17/00—Three dimensional [3D] modelling, e.g. data description of 3D objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/46—Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
- G06V10/462—Salient features, e.g. scale invariant feature transforms [SIFT]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Computer Graphics (AREA)
- Geometry (AREA)
- Software Systems (AREA)
- Image Analysis (AREA)
Abstract
本发明公开的颅骨模型特征点自动标定方法,涉及图像处理技术领域,利用尺度不变特征变换SIFT算法对二维深度图像进行计算,得到参考颅骨模型的初始特征点集,利用尺度不变特征变换SIFT算法对二维深度图像进行计算,得到参考颅骨模型的初始特征点集,利用E2LSH算法,对候选特征点集进行过滤,生成目标特征点集并将目标特征点集映射至待复原颅骨模型上,实现颅骨模型特征点的自动标定,提高了特征点自动标定的效率及准确度。
Description
技术领域
本发明涉及图像处理技术领域,具体涉及一种颅骨模型特征点自 动标定方法。
背景技术
颅骨模型特征点标定是颅骨复原、计算机虚拟现实、模式识别等 许多科学研究领域中的难点问题,也是颅骨复原等人脸形态计算机辅 助处理中的重要基础,由于人的颅骨和面部结构非常复杂,因此,特 征点代表性的强弱直接关系到计算机对人脸模型的理解、识别以及颅 骨复原等一些后续处理结果的好坏,这就要求这些特征点既能够反映 人脸肌肉的组织结构特点,又能够唯一地标识特定个体。颅骨模型特 征点标定方法根据数据源的不同分为两类,一类是基于模型图片的特 征点标定,另一类是基于模型点云的特征点标定。其中,基于模型图 片特征点标定的技术已经相当成熟,主要方法包括:基于脸部几何模型的方法、基于遗传算法和特征脸技术的标定方法、基于贝叶斯形状 模型的方法、基于图像处理方法和脸部特征点几何关系相结合的方 法、基于改进的活动形状模型、基于边缘检测和映射的方法、基于主 动外观模型的方法等。
而基于模型点云的特征点标定是在基于模型图片特征点标定技术 已经非常成熟的背景下才开始发展的,目前国内外已经有众多的专家 学者研究该领域,其中比较有代表性的方法包括:将层次过滤模式和 局部特征相结合的方法精确地定位出鼻尖点,在此基础之上,通过一 种叫做包含夹角的曲线进一步估计出鼻梁。该方法最主要的特点是可 以实现特征点自动检测,很好地定位鼻尖点,同时具有平移和旋转不 变性以及适合于不同分辨率的场合,但是该方法的缺陷是只能对特征 比较明显的鼻尖点给出精确定位;相对角直方图法首先要求计算待标 定特征点模型上每一个点的相对角直方图,然后将其与标准模型上特 征点的相对角直方图进行比较和匹配,这样就可以获得该模型上对应 的特征点,利用该方法标定的特征点是一个近似的位置,并不精确; 此外,还有利用模型的局部几何信息,根据形状索引和曲度等几何信 息统计并筛选出可能成为特征的点作为候选集,然后在统计模型的基 础上,通过对误差进行分析并从中自适应地计算局部形状图的半径, 这样就可以自动地标定鼻尖和眼角处的特征点,该方法受外界因素影 响比较小,标定结果优于其他基于人脸特征点几何拓扑关系的方法, 但是半径大小的选择对定位结果有很大的影响,该值确定起来比较困 难,而且模型旋转过大时对眼角特征点定位会出现不合理的情况。
发明内容
为解决现有技术的不足,本发明实施例提供了一种颅骨模型特征 点自动标定方法。
为了实现上述目标,本发明采用如下的技术方案:
本发明实施例提供了一种基于生成式对抗网络的颅骨特征点自动 标定方法,该方法包括:
利用球面坐标变换方法,得到参考颅骨模型的二维深度图像;
利用尺度不变特征变换(Scale-invariant feature transform,SIFT) 算法对所述二维深度图像进行计算,得到所述参考颅骨模型的初始特 征点集,其中,所述初始特征点集包括鼻尖点、嘴角点及眼角点;
利用训练过的生成式对抗网络GAN对所述初始特征点集进行计 算,生成待复原颅骨模型的候选特征点集;
利用弱监督精确欧几里得局部敏感散列(Exact Euclidean Locality SensitiveHashing,E2LSH)算法,对所述候选特征点集进行过滤,生 成目标特征点集并将所述目标特征点集映射至所述待复原颅骨模型 上,实现颅骨模型特征点的自动标定。
进一步地,所述GAN的训练过程包括:
利用公式
从pg(w)中随机选取m个待复原颅骨模型的特征点{w(1),...,w(m)};
从pdata(x)中随机选取的m个特征点{x(1),...,x(m)};
通过上升随机梯度算法更新判别模型
通过下降随机梯度算法更新生成模型
其中,D(x)为GAN的判别模型,G(w)为GAN的生成模型,pg(w) 为先验噪声分布,w为随机选取的特征点,pdata(x)为参考颅骨模型的 特征点分布,x为参考颅骨模型的特征点集。
进一步地,利用弱监督精确欧几里得局部敏感散列E2LSH算法, 对所述候选特征点集进行过滤包括:
利用GAN的生成模型对待复原颅骨模型进行计算,生成待复原颅 骨模型的候选特征点集z,利用弱监督E2LSH算法对候选特征点集z 降维,得向量gi(z),其中,候选特征点集z包括其在所述二维深度图 像中的位置坐标ui、特征的尺度si、主方向θi及128维SIFT描述向量 ri,其中,i=1,…,L,M为设定的颅骨特征点的类别总数,L为在有监 督策略下生成的k个哈希函数中选取的独立函数的个数;
分别计算向量gi(z)中各个候选特征点的主哈希值h1(gi(z))及次哈 希值h2(gi(z)),将主哈希值及次哈希值均相同的候选特征点存入同一 个哈希桶中,生成哈希表其中,为Ti中 的第k个哈希桶,Ni代表Ti中哈希桶的总数目;
计算Ti中各个候选特征点与设定的初始特征点相关性的大小,去 除相关性小于设定阈值的特候选征点,使每个哈希表保持M个候选特 征点,即得到目标特征点集。
本发明实施例提供的颅骨模型特征点自动标定方法具有以下有益 效果:
(1)与传统的特征点标定方法相比,利用球面坐标变换生成参考 颅骨模型的二维深度图像,并利用SIFT算法获取该二维深度图像的 凸凹情况,采用训练过的GAN,根据参考颅骨模型的特征点及SIFT 算法自动生成待复原颅骨模型的特征点,提高了特征点自动标定的效 率;
(2利用E2LSH算法对生生成的候选特征点进行过滤,有效降低 了传统哈希算法的随机性,从而使得到的特征点的代表性更强,标定 准确度更高。
附图说明
图1为本发明实施例提供的颅骨模型特征点自动标定方法的流程 示意图;
图2为三维空间中建立的直角坐标系的示意图;
图3a为参考颅骨模型及其定义的特征点的主视图;
图3b为参考颅骨模型及其定义的特征点的侧视图;
图4a为采用无监督的E2LSH算法与K-Means聚类算法对颅骨模型 特征点过滤效果对比图;
图4b为采用弱监督的E2LSH算法与K-Means算法对颅骨模型特征 点过滤效果对比图;
图5为本发明实施例提供的颅骨模型特征点自动标定方法中对过 滤后的二维深度图像的特征点进行标定得到的效果示意图;
图6a为采用本发明实施例提供的颅骨模型特征点自动标定方法 多个候选颅骨模型进行特征点标定并复原后的效果的主视图;
图6b为采用采用本发明实施例提供的颅骨模型特征点自动标定 方法多个候选颅骨模型进行特征点标定并复原后的效果的侧视图。
具体实施方式
以下结合附图和具体实施例对本发明作具体的介绍。
如图1所示,本发明实施例提供的颅骨模型特征点自动标定方法 包括以下步骤:
S101,利用球面坐标变换方法,得到参考颅骨模型的二维深度图 像。
作为一个具体的实施例,该步骤的具体过程如下:
如图2所示,首先,在三维空间中建立直角坐标系,假设空间一 点在极坐标内表示为p(r,θ,φ),其中,r表示该点与坐标原点之间的距 离,θ表示该点和坐标原点连接的线段与Z轴正方向之间的夹角,φ表 示该点在纵轴及横轴形成的平面上的投影点和原点连接的线段与横 轴正方向所成的角度。如果该点在直角坐标系内表示为P'(xs,ys,zs), 那么P'的分量就可以利用P的分量可式(1)表示:
其中,θ∈[0,π],φ∈[0,2π]。
式(1)建立了极坐标到直角坐标的变换,空间中用极坐标表示的 任意一点都可以通过该式变换到直角坐标系下表示,从而实现颅骨深 度图像的生成并建立三维点云与二维图像之问的关系。颅骨三维模型 的球面深度图像就是利用其包围球的极坐标对颅骨按照一定的次序 进行全方位均匀采样而生成的二维图像,利用极坐标获得其在图像中 的位置,通过深度来反应图像中该点的灰度值。
其中,参考颅骨模型是由人工标注好特征点的经过训练的颅骨集 合。
S102,利用尺度不变特征变换SIFT算法对二维深度图像进行计 算,得到参考颅骨模型的初始特征点集,其中,初始特征点集包括鼻 尖点、嘴角点及眼角点。
作为一个具体的实施例,如图3所示,由于人的颅骨和面部结构 非常复杂,因此,特征点代表性的强弱直接关系到颅面复原效果的好 坏,这就要求这些特征点既能够反映人脸肌肉的组织结构特点,又能 够唯一地标识特定个体。本发明实施例参考人类学和法医学专家知识 并结合颅面复原的经验,定义13个颅骨特征点与颅面特征点一一对 应。其中,左耳骨及右耳骨共6个特征点、2个嘴角点、1个鼻尖点、 2个外眼角点以及2个内眼角点。
S103,利用训练过的生成式对抗网络GAN对初始特征点集进行计 算,生成待复原颅骨模型的候选特征点集。
其中,待复原颅骨模型为需要标注特征点的颅骨集合。
作为一个具体的实施例,
S104,利用E2LSH算法,对候选特征点集进行过滤,生成目标特 征点集并将目标特征点集映射至待复原颅骨模型上,实现颅骨模型特 征点的自动标定。
其中,由图5a可以看出,无监督的E2LSH算法用于聚类时,结果 随机性较强,并不能保证其效果优于K-Means聚类。而由图5b则不 难看出,弱监督的E2LSH算法的过滤结果较为稳定,说明本发明中对 哈希函数选取进行弱监督的方法能有效降低E2LSH算法的随机性,增 强对数据点过滤结果的鲁棒性。同时由图5b可以看出,K-Means在 数据点密集的区域聚类中心很多而在稀疏区域的聚类中心很少,而弱 监督的E2LSH聚类得到的各个中心分布更为均匀,显然聚类效果更 好,有助于增点各特征点的代表性。
作为一个具体的实施例采用本发明实施例提供的颅骨模型特征 点自动标定方法多个候选颅骨模型进行特征点标定并复原后的效果 如图6a-6b所示。从实验结果可以看出,采用发明实施例提供的颅骨 模型特征点自动标定方法得到的特征点在映射到人脸三维模型之后 基本都在预先定义的特征点附近,能够有效地反映颅骨特征点的位 置,从而说明本发明实施例提供的颅骨模型特征点自动标定方法在颅 骨模型特征点自动标定和颅面复原中具有较强的实用性。
其中,E2LSH中的哈希函数都是基于p-稳态分布的,这里我们选 取的是基于2-稳态分布的哈希函数,其定义如下:
其中,为向下取整操作,α是一个随机抽样得到的d维向量,β 为在区间中均匀分布的随机变量,易知哈希函数可 以把一个d维向量v映射到整数集上。然而,一个哈希函数往往分辨 力不强,因此,E2LSH常选取k个哈希函数联合起来使用。定义函数 族其中,g(v)=(h1(v),…,hk(v)),对任一数据点经过降维映射就能得到一个k维向量a=(a1,a2,…ak),再利用主 哈希函数h1和次哈希函数h2对向量a进行哈希,建立哈希表并存储数 据点,主次哈希函数h1,h2定义如下:
其中,r'i和r”i是随机整数,s是哈希表的大小,其取值为数据点的 总个数,m为一个大的素数,通常取值为232-5。E2LSH可以将主哈希 值h1和次哈希值h2都相同的数据点哈希到同一个桶中,如此就实现了 数据点的空间划分。
进一步地,所述GAN的训练过程包括:
利用公式
优化 所述GAN的生成模型和判别模型,包括:
从pg(w)中随机选取m个待复原颅骨模型的特征点{w(1),...,w(m)};
从pdata(x)中随机选取的m个特征点{x(1),...,x(m)};
通过上升随机梯度算法更新判别模型
通过下降随机梯度算法更新生成模型
其中,D(x)为GAN的判别模型,G(w)为GAN的生成模型,pg(w) 为先验噪声分布,w为随机选取的特征点,pdata(x)为参考颅骨模型的 特征点分布,x为参考颅骨模型的特征点集,当判别模型判断生成模 型的值为0.5时,式
达到 最优解,便确定生成模型生成的数据与真实数据一致。
可选地,利用E2LSH算法,对所述候选特征点集进行过滤包括:
利用GAN的生成模型对待复原颅骨模型进行计算,生成待复原颅 骨模型的候选特征点集z,利用E2LSH算法对候选特征点集z降维, 得向量gi(z),其中,候选特征点集z包括其在所述二维深度图像中的 位置坐标ui、特征的尺度si、主方向θi及128维SIFT描述向量ri,其 中,i=1,…,L,M为设定的颅骨特征点的类别总数,L为从弱监督策 略下生成的k个哈希函数中选取的独立函数的个数;
分别计算向量gi(z)中各个候选特征点的主哈希值h1(gi(z))及次哈 希值h2(gi(z)),将主哈希值及次哈希值均相同的候选特征点存入同一 个哈希桶中,生成哈希表其中,为Ti中 的第k个哈希桶,Ni代表Ti中哈希桶的总数目,通过计算所有哈希桶 的中心,过滤之后的颅骨特征点算子;
计算Ti中各个候选特征点与设定的初始特征点相关性的大小,去 除相关性小于设定阈值的特候选征点,使每个哈希表保持M个候选特 征点,即得到目标特征点集。
作为一个具体的实施例,从弱监督策略下生成的k个哈希函数中 选取的独立函数的具体过程如下:
假设函数gi中已经选取了j个哈希函数h1,h2,...hj,1≤j<k,则对第 j+1哈希函数进行弱监督策略如下:
首先,计算各个候选特征点的主哈希值及次哈希值,并将主、次 哈希值都相同的候选特征点存入同一个哈希桶中,得到包含Nj个哈 希桶的哈希表,得到初始过滤的特征点集合根据式(2) 计算集合中各个特征点的香农熵
其中,香农熵代表了初始j个哈希函数聚类结果的信息量大小, 它在一定意义上是一种相对熵增益,相对于绝对熵而言具有更好的稳 定性与适应性。其中,n为算子wi所在哈希桶中的算子总数,nl是属 于特征点l的算子数目,然后,选取一个h函数作为候选第j+1个哈希 函数并根据式(3)计算其对wi所在哈希桶的分裂熵如下:
其中,该分裂熵代表了新选取的h函数对哈希桶也即是平均算子 分裂结果的信息量大小,值越大说明分裂结果的不确定性越大。假设 将wi所在的哈希桶分裂为wij个,nj为wij个哈希桶中的特征点数。通 过公式计算上述分裂结果的互信息,其中, 互信息是指上述分裂结果的绝对熵增益,其值越大说明选取的h函数 与前j个哈希函数之间的区分性更强。如此,就能得到候选哈希函数 与前j个哈希函数h1,h2,...hj的差别得分;
在得到若干个候选哈希函数之后,根据公式选 出与j个哈希函数区分性最大的第j+1个哈希函数,其中,
重复上述过程,就能在弱监督策略下选出k个代表性和区分性强 的哈希函数,并以此减弱E2LSH聚类结果的随机性,增强各特征点 的代表性。
本发明实施例提供的颅骨模型特征点自动标定方法,利用尺度不 变特征变换SIFT算法对二维深度图像进行计算,得到参考颅骨模型 的初始特征点集,利用尺度不变特征变换SIFT算法对二维深度图像 进行计算,得到参考颅骨模型的初始特征点集,利用E2LSH算法, 对候选特征点集进行过滤,生成目标特征点集并将目标特征点集映射 至待复原颅骨模型上,实现颅骨模型特征点的自动标定,提高了特征 点自动标定的效率及准确度。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例 中没有详述的部分,可以参见其他实施例的相关描述。
可以理解的是,上述方法及装置中的相关特征可以相互参考。另 外,上述实施例中的“第一”、“第二”等是用于区分各实施例,而 并不代表各实施例的优劣。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁, 上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实 施例中的对应过程,在此不再赘述。
在此提供的算法和显示不与任何特定计算机、虚拟系统或者其它 设备固有相关。各种通用系统也可以与基于在此的示教一起使用。根 据上面的描述,构造这类系统所要求的结构是显而易见的。此外,本 发明也不针对任何特定编程语言。应当明白,可以利用各种编程语言 实现在此描述的本发明的内容,并且上面对特定语言所做的描述是为 了披露本发明的最佳实施方式。
此外,存储器可能包括计算机可读介质中的非永久性存储器,随 机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM) 或闪存(flash RAM),存储器包括至少一个存储芯片。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系 统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全 软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请 可采用在一个或多个其中包含有计算机可用程序代码的计算机可用 存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上 实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机 程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指 令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和 /或方框图中的流程和/或方框的结合。可提供这些计算机程序指令 到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设 备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理 设备的处理器执行的指令产生用于实现在流程图一个流程或多个流 程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据 处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算 机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现 在流程图一个流程或多个流程和/或方框图一个方框或多个方框中 指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设 备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生 计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提 供用于实现在流程图一个流程或多个流程和/或方框图一个方框或 多个方框中指定的功能的步骤。
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、 输入/输出接口、网络接口和内存。
存储器可能包括计算机可读介质中的非永久性存储器,随机存取 存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪 存(flash RAM)。存储器是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体 可以由任何方法或技术来实现信息存储。信息可以是计算机可读指 令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包 括,但不限于相变内存(PRAM)、静态随机存取存储器(SRAM)、动 态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、 只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪 记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多 功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设 备访问的信息。按照本文中的界定,计算机可读介质不包括暂存电脑 可读媒体(transitory media),如调制的数据信号和载波。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在 涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品 或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素, 或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没 有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除 在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
本领域技术人员应明白,本申请的实施例可提供为方法、系统或 计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实 施例或结合软件和硬件方面的实施例的形式。而且,本申请可采用在 一个或多个其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计 算机程序产品的形式。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领 域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神 和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请 的权利要求范围之内。
Claims (3)
1.一种颅骨模型特征点自动标定方法,其特征在于,包括:
利用球面坐标变换方法,得到参考颅骨模型的二维深度图像;
利用尺度不变特征变换SIFT算法对所述二维深度图像进行计算,得到所述参考颅骨模型的初始特征点集,其中,所述初始特征点集包括鼻尖点、嘴角点及眼角点;
利用训练过的生成式对抗网络GAN对所述初始特征点集进行计算,得到待复原颅骨模型的候选特征点集;
利用弱监督精确欧几里得局部敏感散列E2LSH算法,对所述候选特征点集进行过滤,生成目标特征点集并将所述目标特征点集映射至所述待复原颅骨模型上,实现颅骨模型特征点的自动标定。
2.根据权利要求1所述的颅骨模型特征点自动标定方法,其特征在于,所述GAN的训练过程包括:
利用公式
优化所述GAN的生成模型和判别模型,包括:
从pg(w)中随机选取m个待复原颅骨模型的特征点{w(1),...,w(m)};
从pdata(x)中随机选取的m个特征点{x(1),...,x(m)};
通过上升随机梯度算法更新判别模型
通过下降随机梯度算法更新生成模型
其中,D(x)为GAN的判别模型,G(w)为GAN的生成模型,pg(w) 为先验噪声分布,w为随机选取的特征点,pdata(x)为参考颅骨模型的特征点分布,x为参考颅骨模型的特征点集。
3.根据权利要求1所述的颅骨模型特征点自动标定方法,其特征在于,利用弱监督精确欧几里得局部敏感散列E2LSH算法,对所述候选特征点集进行过滤包括:
利用GAN的生成模型对待复原颅骨模型进行计算,生成待复原颅骨模型的候选特征点集z,利用E2LSH算法对候选特征点集z降维,得向量gi(z),其中,候选特征点集z包括各个候选特征点在所述二维深度图像中的位置坐标ui、特征的尺度si、主方向θi及128维SIFT描述向量ri,其中,i=1,…,L,M为设定的颅骨特征点类别总数,L为在有监督策略下生成的k个哈希函数中选取的独立函数的个数;
分别计算向量gi(z)中各个候选特征点的主哈希值h1(gi(z))及次哈希值h2(gi(z)),将主哈希值及次哈希值均相同的候选特征点存入同一个桶中,生成哈希表完成聚类,其中,为Ti中的第k个桶,Ni代表Ti中桶的总数目;
计算Ti中各个候选特征点与设定的初始特征点相关性的大小,去除相关性小于设定阈值的特候选征点,使每个哈希表保持M个候选特征点,即得到目标特征点集。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910434238.8A CN110264562B (zh) | 2019-05-23 | 2019-05-23 | 颅骨模型特征点自动标定方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910434238.8A CN110264562B (zh) | 2019-05-23 | 2019-05-23 | 颅骨模型特征点自动标定方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110264562A true CN110264562A (zh) | 2019-09-20 |
CN110264562B CN110264562B (zh) | 2023-06-27 |
Family
ID=67915189
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910434238.8A Active CN110264562B (zh) | 2019-05-23 | 2019-05-23 | 颅骨模型特征点自动标定方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110264562B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111599432A (zh) * | 2020-05-29 | 2020-08-28 | 上海优医基医疗影像设备有限公司 | 一种三维颅面影像特征点标记分析系统及方法 |
CN118011133A (zh) * | 2024-04-08 | 2024-05-10 | 西安乾景防务技术有限公司 | 一种基于智能反馈的can总线线缆检测分析方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101882326A (zh) * | 2010-05-18 | 2010-11-10 | 广州市刑事科学技术研究所 | 基于中国人全面部结构形数据的三维颅面复原方法 |
US20120182294A1 (en) * | 2009-07-30 | 2012-07-19 | Universidad De Granada | Forensic identification system using craniofacial superimposition based on soft computing |
CN103927742A (zh) * | 2014-03-21 | 2014-07-16 | 北京师范大学 | 基于深度图像的全局自动配准建模方法 |
CN106022267A (zh) * | 2016-05-20 | 2016-10-12 | 北京师范大学 | 一种三维人脸模型弱特征点的自动定位方法 |
CN109461188A (zh) * | 2019-01-30 | 2019-03-12 | 南京邮电大学 | 一种二维x射线头影测量图像解剖特征点自动定位方法 |
CN109636910A (zh) * | 2018-12-18 | 2019-04-16 | 四川大学 | 一种基于深度生成对抗网络的颅面复原方法 |
-
2019
- 2019-05-23 CN CN201910434238.8A patent/CN110264562B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120182294A1 (en) * | 2009-07-30 | 2012-07-19 | Universidad De Granada | Forensic identification system using craniofacial superimposition based on soft computing |
CN101882326A (zh) * | 2010-05-18 | 2010-11-10 | 广州市刑事科学技术研究所 | 基于中国人全面部结构形数据的三维颅面复原方法 |
CN103927742A (zh) * | 2014-03-21 | 2014-07-16 | 北京师范大学 | 基于深度图像的全局自动配准建模方法 |
CN106022267A (zh) * | 2016-05-20 | 2016-10-12 | 北京师范大学 | 一种三维人脸模型弱特征点的自动定位方法 |
CN109636910A (zh) * | 2018-12-18 | 2019-04-16 | 四川大学 | 一种基于深度生成对抗网络的颅面复原方法 |
CN109461188A (zh) * | 2019-01-30 | 2019-03-12 | 南京邮电大学 | 一种二维x射线头影测量图像解剖特征点自动定位方法 |
Non-Patent Citations (5)
Title |
---|
刘晓宁 等: "一种自动标定颅骨特征点的方法", 《西北大学学报(自然科学版)》 * |
朱丽品等: "加入迭代因子的层次化颅骨配准方法", 《中国图象图形学报》 * |
梁荣华等: "特征点自动标定的颅面复原及其评估方法", 《计算机辅助设计与图形学学报》 * |
沈先耿 吴薇: "一种改进的快速多姿态人脸特征点定位算法", 《中国科技论文》 * |
赵永威等: "基于弱监督E2LSH和显著图加权的目标分类方法", 《电子与信息学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111599432A (zh) * | 2020-05-29 | 2020-08-28 | 上海优医基医疗影像设备有限公司 | 一种三维颅面影像特征点标记分析系统及方法 |
CN111599432B (zh) * | 2020-05-29 | 2024-04-02 | 上海优医基医疗影像设备有限公司 | 一种三维颅面影像特征点标记分析系统及方法 |
CN118011133A (zh) * | 2024-04-08 | 2024-05-10 | 西安乾景防务技术有限公司 | 一种基于智能反馈的can总线线缆检测分析方法及系统 |
Also Published As
Publication number | Publication date |
---|---|
CN110264562B (zh) | 2023-06-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111795704B (zh) | 一种视觉点云地图的构建方法、装置 | |
CN106156692B (zh) | 一种用于人脸边缘特征点定位的方法及装置 | |
Su et al. | Region segmentation in histopathological breast cancer images using deep convolutional neural network | |
CN109859305B (zh) | 基于多角度二维人脸的三维人脸建模、识别方法及装置 | |
JP6262748B2 (ja) | 教師あり形状ランク付けに基づく生物学的単位の識別 | |
JP6216508B2 (ja) | 3dシーンにおける3d物体の認識および姿勢決定のための方法 | |
US20080260254A1 (en) | Automatic 3-D Object Detection | |
CN110866864A (zh) | 人脸姿态估计/三维人脸重构方法、装置及电子设备 | |
CN110688947B (zh) | 一种同步实现人脸三维点云特征点定位和人脸分割的方法 | |
Premachandran et al. | Perceptually motivated shape context which uses shape interiors | |
CN109584327B (zh) | 人脸老化模拟方法、装置以及设备 | |
CN103996052A (zh) | 基于三维点云的三维人脸性别分类装置及方法 | |
CN116452644A (zh) | 基于特征描述子的三维点云配准方法、装置及存储介质 | |
CN112884820B (zh) | 一种影像初始配准及神经网络的训练方法、装置和设备 | |
US20180307940A1 (en) | A method and a device for image matching | |
CN110264562B (zh) | 颅骨模型特征点自动标定方法 | |
CN110007764B (zh) | 一种手势骨架识别方法、装置、系统及存储介质 | |
CN117495891B (zh) | 点云边缘检测方法、装置和电子设备 | |
Song | Local voxelizer: A shape descriptor for surface registration | |
JP2019105992A (ja) | 画像処理装置、画像処理プログラム及び画像処理方法 | |
CN113496230A (zh) | 图像匹配方法和系统 | |
CN115661218B (zh) | 一种基于虚拟超点的激光点云配准方法和系统 | |
JP2018124798A (ja) | 画像探索装置および画像探索プログラム | |
CN113111687A (zh) | 数据处理方法、系统及电子设备 | |
JP2006031390A5 (zh) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230506 Address after: No. 146, Huanghe North Street, Yuhong District, Shenyang, Liaoning 110034 Applicant after: Shenyang Medical College Address before: Jinzhou Medical University, No.40, section 3, Songpo Road, Linghe District, Jinzhou City, Liaoning Province, 121000 Applicant before: Wu Wei Applicant before: Ren Fu |
|
GR01 | Patent grant | ||
GR01 | Patent grant |