CN110257012A - 适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质 - Google Patents

适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质 Download PDF

Info

Publication number
CN110257012A
CN110257012A CN201910595957.8A CN201910595957A CN110257012A CN 110257012 A CN110257012 A CN 110257012A CN 201910595957 A CN201910595957 A CN 201910595957A CN 110257012 A CN110257012 A CN 110257012A
Authority
CN
China
Prior art keywords
hexamethylene
pentafluorobutane
mass percent
working medium
organic rankine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910595957.8A
Other languages
English (en)
Other versions
CN110257012B (zh
Inventor
翟慧星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Civil Engineering and Architecture
Original Assignee
Beijing University of Civil Engineering and Architecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Civil Engineering and Architecture filed Critical Beijing University of Civil Engineering and Architecture
Priority to CN201910595957.8A priority Critical patent/CN110257012B/zh
Publication of CN110257012A publication Critical patent/CN110257012A/zh
Application granted granted Critical
Publication of CN110257012B publication Critical patent/CN110257012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • C09K5/045Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds containing only fluorine as halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/122Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明提供了一种适于270℃热源的有机朗肯循环五肯循环五氟丁烷/环己烷工质,包括:五氟丁烷和环己烷,其中混合工质中五氟丁烷的质量百分比为60‑80%,环己烷的质量百分比为40‑20%。本发明的混合工质ODP值为零,GWP值极低,环境性能良好,热工循环性能优异,其热源利用

Description

适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质
技术领域
本发明涉及热力循环技术领域,尤其涉及一种适于270℃热源条件的有机朗肯循环五氟丁烷/环己烷工质。
背景技术
随着化石能源的枯竭和环境问题的日益突出,充分利用余热资源和开发可再生能源是减少化石能源消耗、降低温室气体和污染物排放的重要途径。由于250-300℃热源广泛存在于工业余热和可再生能源中,如果采用此温度区间的热能直接进行热利用,能量品位会严重降低;如果采用常规蒸汽动力循环发电则效率较低,目前此温度区间的热源通常没有被很好地利用。有机朗肯循环可以利用350℃以下的热源进行发电,发电效率较常规蒸汽动力循环有明显提高。目前现有技术中限制有机朗肯循环应用的主要原因是系统的经济性较差。因此,需要开发一种环境友好、热力性能良好的混合工质,以进一步提高系统效率,提高系统的经济性以及促进250-300℃热源的高效利用。
发明内容
本发明提供了一种适于270℃热源的有机朗肯循环五肯循环五氟丁烷/环己烷工质,以解决现有技术中的270℃热源发电效率低的问题。
为了实现上述目的,本发明采取了如下技术方案。
本发明提供了一种适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质,包括:五氟丁烷和环己烷,其中混合工质中五氟丁烷的质量百分比为60-80%,环己烷的质量百分比为40-20%。
优选地,混合工质中五氟丁烷的质量百分比为60%,环己烷的质量百分比为40%。
优选地,混合工质中五氟丁烷的质量百分比为70%,环己烷的质量百分比为30%。
优选地,混合工质中五氟丁烷的质量百分比为80%,环己烷的质量百分比为20%。
由上述本发明的适于270℃热源条件的有机朗肯循环五氟丁烷/环己烷工质的技术方案可以看出,本发明的有机朗肯循环五氟丁烷/环己烷工质具有以下
有益效果:
(1)本发明的混合工质的ODP值为零,GWP值较低,环境性能良好;
(2)热工循环性能:同样的热源进出口条件下,本发明的混合工质热源利用效率均在50%以上,相比性能最优异的纯工质还可提高2.8%-3.9%。
本发明附加的方面和优点将在下面的描述中部分给出,这些将从下面的效率描述中变得明显,或通过本发明的实践了解到。
具体实施方式
下面通过描述的实施方式是示例性的,仅用于解释本发明,而不能解释为对本发明的限制。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本发明的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,这里使用的措辞“和/或”包括一个或更多个相关联的列出项的任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语)具有与本发明所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样定义,不会用理想化或过于正式的含义来解释。
为便于对本发明实施例的理解,下面将以具体实施例为例做进一步的解释说明。
本发明所提出的一种适于270℃热源的有机朗肯循环五肯循环五氟丁烷/环己烷工质包括五氟丁烷和环己烷按不同的质量百分比组成,且这两种物质的质量百分比的和为100%,制备方法是按本发明的各个配比直接物理混合而成。各组元物质的基本参数如下表1所示。
表1混合工质所含组元的基本参数
其中,M为工质分子量,Tc为工质临界温度,Pc为工质临界压力,ODP为臭氧层破坏潜能值,GWP为温室效应潜能值。
上述混合工质各组元物质的具体配比(质量百分数)为:
五氟丁烷/环己烷:60-80/40-20%。
本发明所采用的具体实施例如下:
实施例1:取0%的环己烷和100%的五氟丁烷;
实施例2:取10%的环己烷和90%的五氟丁烷在常温下进行物理混合;
实施例3:取20%的环己烷和80%的五氟丁烷在常温下进行物理混合;
实施例4:取30%的环己烷和70%的五氟丁烷在常温下进行物理混合;
实施例5:取40%的环己烷和60%的五氟丁烷在常温下进行物理混合;
实施例6:取50%的环己烷和50%的五氟丁烷在常温下进行物理混合;
实施例7:取60%的环己烷和40%的五氟丁烷在常温下进行物理混合;
实施例8:取70%的环己烷和30%的五氟丁烷在常温下进行物理混合;
实施例9:取80%的环己烷和20%的五氟丁烷在常温下进行物理混合;
实施例10:取90%的环己烷和10%的五氟丁烷在常温下进行物理混合;
实施例11:取100%的环己烷和0%的五氟丁烷。
以270℃热源为例,有机朗肯循环系统的设计工况为蒸发夹点温差30℃,冷凝夹点温差10℃,蒸发器出口过热度5℃,冷凝器出口过冷度5℃,膨胀机等熵效率0.8,泵等熵效率0.65,并依据热源情况取合适回热度,上述11个实施例及该工况下,在不同热源出口条件下的最佳纯工质异己烷isohexane的有关参数和循环性能指标如下表2-3所示。
表2热源出口条件为165℃实施例循环性能参数和指标
表3热源出口条件为145℃实施例循环性能参数和指标
通过上表2-3可以看出,当五氟丁烷的质量百分比为80%,环己烷的质量百分比为20%;五氟丁烷的质量百分比为70%,环己烷的质量百分比为30%;五氟丁烷的质量百分比为60%,环己烷的质量百分比为40%;(即实施例3、4、5)时,系统均有较为良好的热效率和热源利用效率值。随着热源出口温度降低,最佳混合工质中所含五氟丁烷的比例越高,环己烷的比例越低。采用所述的最佳混合工质其循环热源利用效率相对于对应条件下的最佳纯工质分别有2.8%、3.9%的提升,可以根据热源出口温度,循环采用合适的回热装置。
以上实施例仅用于说明本发明的设计思想和特点,其目的在于使本领域内的技术人员能够了解本发明的内容并据以实施,本发明的保护范围不限于上述实施例。多以,凡依据本发明所揭示的原理、设计思路所作的等同变化或修饰,均在本发明的保护范围之内。

Claims (4)

1.一种适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质,其特征在于,包括:五氟丁烷和环己烷,其中混合工质中五氟丁烷的质量百分比为60-80%,环己烷的质量百分比为40-20%。
2.根据权利要求1所述的工质,其特征在于,所述的混合工质中五氟丁烷的质量百分比为60%,环己烷的质量百分比为40%。
3.根据权利要求1所述的工质,其特征在于,所述的混合工质中五氟丁烷的质量百分比为70%,环己烷的质量百分比为30%。
4.根据权利要求1所述的工质,其特征在于,所述的混合工质中五氟丁烷的质量百分比为80%,环己烷的质量百分比为20%。
CN201910595957.8A 2019-07-03 2019-07-03 适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质 Active CN110257012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910595957.8A CN110257012B (zh) 2019-07-03 2019-07-03 适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910595957.8A CN110257012B (zh) 2019-07-03 2019-07-03 适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质

Publications (2)

Publication Number Publication Date
CN110257012A true CN110257012A (zh) 2019-09-20
CN110257012B CN110257012B (zh) 2021-02-19

Family

ID=67924209

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910595957.8A Active CN110257012B (zh) 2019-07-03 2019-07-03 适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质

Country Status (1)

Country Link
CN (1) CN110257012B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816264A (zh) * 2020-07-21 2020-10-23 中南大学 一种基于机器学习的有机朗肯循环工质设计方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110197604A1 (en) * 2007-12-20 2011-08-18 E.I. Dupont De Nemours And Company Secondary loop cooling system having a bypass and a method for bypassing a reservoir in the system
CN102257334A (zh) * 2008-12-19 2011-11-23 纳幕尔杜邦公司 吸收式动力循环系统
CN102292608A (zh) * 2008-11-26 2011-12-21 纳幕尔杜邦公司 具有双吸收回路的吸收循环系统
JP6019759B2 (ja) * 2012-05-30 2016-11-02 セントラル硝子株式会社 フルオロアルケンを含有する熱伝達媒体

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110197604A1 (en) * 2007-12-20 2011-08-18 E.I. Dupont De Nemours And Company Secondary loop cooling system having a bypass and a method for bypassing a reservoir in the system
CN102292608A (zh) * 2008-11-26 2011-12-21 纳幕尔杜邦公司 具有双吸收回路的吸收循环系统
CN102257334A (zh) * 2008-12-19 2011-11-23 纳幕尔杜邦公司 吸收式动力循环系统
JP6019759B2 (ja) * 2012-05-30 2016-11-02 セントラル硝子株式会社 フルオロアルケンを含有する熱伝達媒体

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816264A (zh) * 2020-07-21 2020-10-23 中南大学 一种基于机器学习的有机朗肯循环工质设计方法
CN111816264B (zh) * 2020-07-21 2024-01-12 中南大学 一种基于机器学习的有机朗肯循环工质设计方法

Also Published As

Publication number Publication date
CN110257012B (zh) 2021-02-19

Similar Documents

Publication Publication Date Title
Yang et al. Performance analysis of waste heat recovery with a dual loop organic Rankine cycle (ORC) system for diesel engine under various operating conditions
Modi et al. A review of recent research on the use of zeotropic mixtures in power generation systems
Wang et al. Exergy analyses and parametric optimizations for different cogeneration power plants in cement industry
Shengjun et al. Performance comparison and parametric optimization of subcritical Organic Rankine Cycle (ORC) and transcritical power cycle system for low-temperature geothermal power generation
Dhahad et al. Thermodynamic and thermoeconomic analysis of innovative integration of Kalina and absorption refrigeration cycles for simultaneously cooling and power generation
Borsukiewicz-Gozdur Pumping work in the organic Rankine cycle
Meinel et al. Economic comparison of ORC (Organic Rankine cycle) processes at different scales
Yagli et al. Comparison of toluene and cyclohexane as a working fluid of an organic Rankine cycle used for reheat furnace waste heat recovery
Braimakis et al. Exergetic performance of CO2 and ultra-low GWP refrigerant mixtures as working fluids in ORC for waste heat recovery
AU2004263612B2 (en) Method and device for carrying out a thermodynamic cycle
Kazemi et al. Thermodynamic and economic investigation of an ionic liquid as a new proposed geothermal fluid in different organic Rankine cycles for energy production
Bao et al. Exergy analysis and parameter study on a novel auto-cascade Rankine cycle
CN110330948A (zh) 适于270℃热源的有机朗肯循环异戊烷/环己烷工质
Habibzadeh et al. Thermodynamic analysis of different working fluids used in organic rankine cycle for recovering waste heat from GT-MHR
Li et al. Thermo-economic analysis and optimization of a cascade transcritical carbon dioxide cycle driven by the waste heat of gas turbine and cold energy of liquefied natural gas
Sharma et al. Review and preliminary analysis of organic rankine cycle based on turbine inlet temperature
CN110257012A (zh) 适于270℃热源的有机朗肯循环五氟丁烷/环己烷工质
Pashapour et al. Exergy analysis of a novel combined system consisting of a gas turbine, an organic rankine cycle and an absorption chiller to produce power, heat and cold
CN103937459A (zh) 以co2为主要组元新型动力循环混合工质及其系统和方法
Jaafari et al. Determination of optimum organic Rankine cycle parameters and configuration for utilizing waste heat in the steel industry as a driver of receive osmosis system
Maheshwari et al. Effect of atmospheric condition and ammonia mass fraction on the combined cycle for power and cooling using ammonia water mixture in bottoming cycle
Mocarski et al. Selected aspects of operation of supercritical (transcritical) organic Rankine cycle
Saadatfar et al. Thermodynamic vapor cycles for converting low-to medium-grade heat to power: a state-of-the-art review and future research pathways
Javed et al. Performance analysis of zeotropic mixture as a working fluid for medium temperature in regenerative Organic Rankine cycle
Wang et al. Thermodynamic analysis and comparison study of an Organic Rankine Cycle (ORC) and a Kalina cycle for waste heat recovery of compressor intercooling

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant